X-Ray Opacity Towards High-z GRBs and an IGM Connection

-

Ehud Behar Department of Physics, Technion, ISRAEL

- How one measures X-ray absorption of GRB afterglows (or quasars for that matter)
 - what we can't measure
- GRB opacity results at high-z
- Diffuse Intergalactic Medium (IGM) paradigm
- Connection to $Ly\alpha$
- Confront with Illustris cosmological simulations
- Discussion

Swift / XRT & UVOT

- Swift/XRT observes the GRB afterglow ~1 minute from detection (3" localization)
 - 0.3 10 keV spectra
- UVOT after ~3 minutes (1" localization)
 - Two grisms covering 170 - 520 nm
 - Highest red-shifted absorption system determines GRB redshift (or from the ground)

X-Ray Absorption Observations

A TENED WITH SAFE SLOW ALL SHOW IN THE STREET STREET STREET STREET STREET

- <u>Soft X-ray turnover</u>, compared to the hard power-law fit
- Interpreted as photoelectric effect comprising known Galactic and <u>unknown extra-galactic</u>
 - <u>No distinct spectral</u> <u>features - edges or lines -</u> <u>can be discerned</u>

•

Soft X-Ray Absorption is Common

A THE MERCHANK SAFE STOCKED IN A MORE THAT THE REAL PROPERTY AND T

X-Ray Absorption Measurements

A TENEDOWN THE DATE STORE STOR

- No distinct edges or lines can be discerned means one CANNOT measure
 - Redshift (z)
 - Elemental abundances (Z)
 - Ionization
- These need to be assumed in fit
- On one hand, models provide excellent fits to the data regardless of these assumptions
- On the other, equivalent H column density
 N_H = ∫n_Hdl = (Z_☉)⁻¹∫n(Z,z)dl
 STRONGLY depends on these assumptions

2

5

10

 \sim

0.5

Assuming Host Neutral Absorber (z) and Solar Abundances (Z $_{\odot}$) N_H(z) ~ (1+z)^{2.5}

A THE MARCH SHE SHARE STATISTICS IN THE REAL PROPERTY INTO THE

Roi Rahin

More (recently 2019) GRBs

10²⁴ Column Density (Cm⁻²) 10²² 10²¹ 10²⁰ 3 1+z 2 8 910 1 5 6 7 4

Issues with $N_H(z) \sim (1+z)^{2-3}$

- A TENEDON STATE BASIC STATE STATE A MARCH MARCH STATE STATE STATE
- No evidence for GRBs evolving cosmologically
 see many previous talks this week
- Host galaxy environments could be denser at high z, but ...
- N_{H} (X-ray) \gg N_{H} (Ly α)
 - ionization?
 - sub-solar metallicity makes problem worse
 - and no correlation
- Importantly, no sign of $Ly\alpha$ column evolving with z at all

Suspiciously $\sigma^{PI}(E)$ per H-atom ~ $E^{-2.5}$ High-z absorber $E_{abs} = (1+z) E_{obs} = > low \sigma = > High N_{H}$

Optical Depth τ (0.5 keV)

A THE MERCHANCE SANTA SANTANIAN STREET STREET STREET STREET STREET STREET

Systematics?

The Proposed Paradigm

- Intrinsic GRB columns, which scale $N_H \sim (1+z)^{2.5}$ could explain approximately fixed τ
- An attractive alternative explanation is the diffuse IGM; the "missing baryons"

Cosmic Inventory and The Missing Baryons

A TELEVISION STATE STATE STATE OF STATE

Naive, Mean Cosmological X-ray Opacity

A TENER WAS THE WAS TO AND A COMPANY A PROPERTY CONTRACTOR OF A REAL PROPERTY OF THE REAL PROPERTY.

- standard cosmology
- baryon (H) density $n_{H} = n_{0}(1+z')^{3}$
- PI cross section $\sigma(E,z',Z) = \sigma(E,0,Z_{\odot})(1+z')^{-2.5}$
- metallicity evolution, $Z(z') = Z_0 \eta(z') = Z_0 (1+z')^{-k}$
- Still neutral

$$\tau_{IGM}(E,z,Z_{\Theta}) = \int_{0}^{z} n_{H}(z')\sigma(E,z',Z_{\Theta})c\left(\frac{dt'}{dz'}\right)dz' \cong \frac{n_{0}cZ_{0}}{H_{0}}\sigma(E,0)\int_{0}^{z} \frac{(1+z')^{3}\eta(z')dz'}{(1+z')^{5/2}(1+z')\sqrt{(1+z')^{3}\Omega_{M}+\Omega_{\Lambda}}}$$

Only Metallicity Determines the IGM Optical Depth

 Indeed, at high-z τ tends to constant that depends on Z(z) and Z₀ the metallicity

$$\tau_{IGM} (0.5 \text{keV}, z) \xrightarrow{z \gg 1} 2Z_0 \int_{0}^{z \gg 1} \frac{dz'}{(1+z')^{2+k}} \cong \frac{2Z_0}{1+k}$$

- Counterintuitive (c.f., lines, Thomson scat.)
- For observed $\tau_{GRB}(0.5 \text{keV}) = 0.4$,
 - $Z_0 \sim 0.2$, k = 0 (lower $Z_0 \Rightarrow k < 0$)

• $Z_0 \sim 0.4 \text{ k} = 1$

Asymptotic IGM Behavior

 $2Z_0/(1+k)$

Is the Derived z=0 Metallicity of 0.2 - 0.4 Solar Reasonable?

- In hot galaxy cluster gas
 - no baryons are missing
 - Z_{\odot} (Fe) = 0.5 (1+z)^{-1.25} τ (0.5keV) = 0.45 ± 0.15
- In damped Lyα QSO sys.
 Z_o = 0.85(1+z)^{-3.25}
 τ(0.5keV) = 0.4
- In z < 0.4 Ly α systems
 - $Z_{\odot} \cong 0.1$ (Danforth & Shull '08)
- · And huge scatter in all
- Supernovae history
 - Z_{\odot} (Fe) = 0.2 (1+z)⁻¹

More Recently ~0.3 solar but CGM lines of sight

The X-ray absorbing column density of a complete sample of bright Swift gamma-ray bursts

z+1

S. Campana,^{1*} R. Salvaterra,² A. Melandri,¹ S. D. Vergani,¹ S. Covino,¹ P. D'Avanzo,¹ 335 D. Fugazza,¹ G. Ghisellini,¹ B. Sbarufatti¹ and G. Tagliaferri¹ 537X/776/2/96 ¹INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (LC), Italy ²INAF-IASF Milano, Via Bassini 15, I-20133 Milano, Italy 5 10 2 5 10 Starling+'13

²Dipartime Figure 13. Measured intrinsic column density at solar metallicity for the GRBs (black points), AGN (green), quasars (red) and stacked spectrum of high- n of both the diffuse redshift quasars (blue) as described in Sections 2, 5 and 4.2, with constrained non-zero values in the lower panels and upper limits in the upper panels. Overlaid are the models for a cold IGM (solid line), 10⁴ K warm IGM (dashed line) and 10⁶ K warm IGM (dot-dashed line). Here, we compare IGM models which use a metallicity of $Z = Z_{\Omega}$ on the left and $Z = 0.2 Z_{\Omega}$ on the right. The blue curves in the left-hand panels indicate the contribution expected from absorption by Lyman α clouds, assuming a prescription for their declining metallicity with redshift as described in Section 6.2.

z+1

But maybe not?

- A TE WERE THE SHORE ALL AND A WHERE THE
- wrong MW dust-to-metal ratios (Watson'11)
- dust extinction, but only up to z<4 (Watson & Jakobsson '12)
- pure natal HeI absorption with no metals (Watson+'13)
- Dense massive 10 M_o clouds (Krongold & Prochaska '13)
- Highly turbulent ISM (Tanga+'16)
- Highly ionized (NV) gas (Heintz, Watson et al. '18)
- None of these gives truly convincing evidence for z-dependence

What Do Cosmic Simulations Say? (work in progress)

Matan Grauer

Simulations give (theoretical) handle on

- redshift
- metallicity
- ionization (of H)

Total Optical Depth $\tau \sim 1$ Dominated by H & He at low-z

Mean Cosmological Metallicity ($Z_0 < 1$)

Considering Ionization of H & He => $\tau \sim 0.2$ now dominated by the metals

(too) Narrow Distribution of IGM $\Delta \tau \sim 0.02$

THE MERCHANK STATE STATE STATE & MARCH & MARCH

Comparison with Measurements

Points for Discussion

- Current X-ray measurements of GRB afterglows are limited in detecting absorber redshift, abundances, and ionization
- A <u>crude analytical approximation</u> of the diffuse (or not) IGM could explain the τ_X -> 0.4 tendency at high-z
- Any other explanation must explain z-dependence (not only discrepancy with Lyα column, which has many explanations)
- If true, bad news for GRB physics, but good news for using GRBs as cosmology probes - will we see lines?
- Cosmological simulations allow us to consider ionization and metallicity effects, predicting
 - τ (high-z) tends to 0.1 0.2 due to metals (H, He ionized)
 - Very low dispersion $\Delta \tau = 0.02$ (probably due to resolution)
 - Low metallicity (agree with observations?)

THANK YOU FOR YOUR ATTENTION