#### **Sexten Center for Astrophysics**

January 12, 2023

# **Cold gas and dust properties** of the first QSOs

#### **Speaker: Roberta Tripodi**

PhD student at UniTs





#### Supervisor: F. Fiore Co-supervisor: C. Feruglio





SEXTEN CENTER FOR ASTROPHYSICS RICCARDO GIACCONI



# The importance of study AGN at high-z

 Progenitors of giant galaxies in rich environments (e.g. ellipticals in clusters of galaxies) Often signposts of overdensities/proto-clusters (Decarli+17, Willott+17) History of formation of massive objects + Kinematics and Dynamics of peculiar galaxies in the early Universe with ALMA



# Intriguing mysteries

R. Tripodi 12/01/2023

Sexten Center for Astrophysics

\* How did this massive systems form in short timescales? \* Which is the relation between BH and its host galaxy?



![](_page_2_Picture_6.jpeg)

# General knowledge of high-z QSOs

# Gas

- ► H<sub>2</sub> cannot be observed
- CO molecules as main tracer of molecular gas
- Quantify the molecular mass, i.e. SF reservoir (Combes+18 and therein)
- Only few QSOs observed in molecular gas with ~kpc resolution and high S/N ratio at this epoch (Feruglio+18)
- CO transitions probe different regions CO SLED as useful diagnostic of the physics of the emitting ISM (quiescient/straburst)

![](_page_3_Figure_10.jpeg)

# General knowledge of high-z QSOs

![](_page_4_Picture_1.jpeg)

#### [CII] as tracer of the multi-phase gas

#### [CII] for identifying high-z objects CIII for studying kinematics and dynamics

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_7.jpeg)

Sexten Center for Astrophysics

![](_page_4_Figure_9.jpeg)

![](_page_4_Figure_10.jpeg)

5

# General knowledge of high-z QSOs

![](_page_5_Picture_1.jpeg)

- Quantify dust-reprocessed SFR and dust properties
- At high-z, the peak of dust SED shifted in ALMA bands

#### Very few QSOs with accurately sampled SEDs

![](_page_5_Figure_5.jpeg)

Dust

![](_page_5_Picture_9.jpeg)

![](_page_5_Picture_11.jpeg)

\* Spatially and spectral resolving power (0.1" resolution) — — size ~  $1.3 \times 1.1 \text{ kpc}^2$ 

![](_page_6_Figure_2.jpeg)

![](_page_6_Picture_8.jpeg)

#### \* Spatially and spectral resolving power (0.1" resolution) — — size ~ $1.3 \times 1.1 \text{ kpc}^2$

![](_page_7_Figure_2.jpeg)

![](_page_8_Figure_1.jpeg)

\* Spatially and spectral resolving power (0.1" resolution)

 $\Rightarrow$  size [CII] ~ 2.6 × 1.9 kpc<sup>2</sup>

\*Rotating disk (velocity gradient)

(Feruglio+18, Wang+13)

![](_page_9_Figure_5.jpeg)

R. Tripodi 12/01/2023

#### \* Detection of outflow emissions

- $\rightarrow M_{out} = 5 \% M_{disk}$
- $\Rightarrow \dot{M}_{out} = 1800 4500 \text{ M}_{\odot} \text{yr}^{-1}$

 $* Low \dot{E}_{out}/L_{bol} \sim 0.0005 - 0.002$ compared to other molecular winds (Fiore+17)

#### (Shao+22, Barai+18)

Sexten Center for Astrophysics

![](_page_9_Picture_15.jpeg)

10

![](_page_10_Figure_1.jpeg)

R. Tripodi 12/01/2023

![](_page_11_Figure_1.jpeg)

# Study the evolutionary paths of the SMBH and its host galaxy

(Volonteri 2012, adapted)

R. Tripodi 12/01/2023

![](_page_12_Figure_5.jpeg)

![](_page_12_Picture_6.jpeg)

 $\frac{\dot{M}_{\rm BH}}{M_{\rm BH}} \lesssim \frac{1}{2} \frac{\rm SFR}{M_{\rm dyn}}$ , the BH build-up slower than host galaxy \*Possible cause: AGN radiatively-driven winds \*(Bischetti+22, Shao+22) Massive SFR Rise of feedback age black hole M<sub>dyn</sub>  $M_{\rm BH}$ Today  $\dot{M}_{
m BH}$ SFR Dominance Symbiosis M<sub>dyn</sub>  $M_{\rm BH}$ Adjustment Early universe Galaxy (Volonteri 2012, adapted)

![](_page_13_Figure_5.jpeg)

![](_page_14_Figure_1.jpeg)

The study of the rotation curve is not over yet

R. Tripodi 12/01/2023

#### REPORT

GALAXIES

#### A massive stellar bulge in a regularly rotating galaxy **1.2 billion years after the Big Bang**

Federico Lelli<sup>1,2</sup>\*, Enrico M. Di Teodoro<sup>3</sup>, Filippo Fraternali<sup>4</sup>, Allison W. S. Man<sup>5</sup>, Zhi-Yu Zhang<sup>6</sup>, Carlos De Breuck<sup>7</sup>, Timothy A. Davis<sup>1</sup>, Roberto Maiolino<sup>8,9</sup>

![](_page_15_Figure_8.jpeg)

![](_page_15_Picture_9.jpeg)

Dynamical modeling of the rotation curve

### 3/4 components:

- ✦ Gas disk
- Stellar disk
- Black Hole
- ✦ Bulge

S: Modeling:

- 2 thick disks
- Point mass
- Sérsic profile (n=4)

![](_page_16_Picture_13.jpeg)

Dynamical modeling of the rotation curve

BH only is not enough  $\bigcirc$ • Bulge with  $M_{\rm bulge} \sim 10^{10} {\rm M}_{\odot}$ 

Highest-z Bulge candidate!

(Tripodi+23, submitted to A&A)

R. Tripodi 12/01/2023

Sexten Center for Astrophysics

![](_page_17_Figure_9.jpeg)

18

- Bulge with  $M_{\rm bulge} \sim 10^{10} {\rm M}_{\odot}$

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_19_Figure_1.jpeg)

Sexten Center for Astrophysics

20

## The most luminous QSO at z > 6: SDSS J0100+0228

![](_page_20_Figure_1.jpeg)

R. Tripodi 12/01/2023

![](_page_20_Picture_4.jpeg)

# Conclusions

- properties of high-z QSOs
- ALMA band 8-9 essential for precise determination of  $T_{dust}$ ,  $M_{dust}$ , SFR
- Outflow in QSO J2310+1855,  $\dot{M}_{out} = 1800 4500 \text{ M}_{\odot} \text{yr}^{-1}$ , low  $\dot{E}_{out}/L_{bol}$
- excitation by dust-reprocessed SF in the host galaxy ISM
- J2310

• High resolution and high frequency observations allow us to perform detailed studies of the

First spatially resolved water vapor disk in z~6 QSO J2310, consistent with H<sub>2</sub>O line • Resolved rotation curves allow precise dynamical modeling; highest-z bulge candidate for

In J2310 the SMBH accretion is slowing down, while J0100's evolution is BH dominated

![](_page_21_Picture_10.jpeg)

# Back-up slides

![](_page_22_Picture_1.jpeg)

# **Dust Spectral Energy Distribution**

$$S_{\nu/(1+z)}^{\text{obs}} = \frac{\Omega}{(1+z)^3} \left[ B_{\nu}(T_{\text{dust}}(z)) - B_{\nu}(T_{\text{CMB}}(z)) \right] (1 - e^{-\tau_{\nu}}) \quad (4)$$

$$T_{\text{dust}}(z) = (T_{\text{dust}})^{4+\beta} + T_0^{4+\beta} [(1+z)^{4+\beta} - 1])^{\frac{1}{4+\beta}}$$

$$\Omega = (1+z)^4 A_{\text{galaxy}} D_L^{-2}$$

$$\tau_{\nu} = \Sigma_{\text{dust}} k_{\nu} = \Sigma_{\text{dust}} k_0 \left(\frac{\nu}{\nu_0}\right)^{\beta}, \qquad \Sigma_{\text{dust}} = M_{\text{dust}} A_{\text{galaxy}}$$

$$k_{\nu} = 0.45 \times (\nu/250 \text{ GHz})^{\beta} \text{ cm}^2$$

$$\tau_{\nu} = \Sigma_{\rm dust} k_{\nu} = \Sigma_{\rm dust} k_0 \left(\frac{\nu}{\nu_0}\right)^{\beta},$$

$$\Omega = (1+z)^4 A_{\text{galaxy}} D_{\text{L}}^{-2}$$

$$\Sigma_{\text{dust}} = M_{\text{dust}} A_{\text{galaxy}}$$

$$k_{\nu} = 0.45 \times (\nu/250 \text{ GHz})^{\beta} \text{ cm}^2$$

Methods: Modified Black Body (e.g. Carniani+2019)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

#### (Tripodi et al., 2022)

# **Environment of J2310+1855**

![](_page_24_Figure_2.jpeg)

#### $4\sigma$ cont emitter

# High-resolution view of J2310+1855: outflow

#### Very few cases of outflows in QSOs at high redshift

(Maiolino+2005, Bischetti+2019, Izumi+2021a,b)

\* Detection of outflow emissions

 $\rightarrow M_{out} = 5 \% M_{disk}$ 

$$\Rightarrow \dot{M}_{out} = 1800 - 4500 \text{ M}_{\odot} \text{yr}^{-1}$$
  
(Barai+18)

(Fiore+17)

![](_page_25_Figure_7.jpeg)

![](_page_25_Figure_8.jpeg)

![](_page_25_Figure_9.jpeg)

Radio Velocity [km/s]

#### **3D BBAROLO** residuals for moment 1 and 2

![](_page_25_Figure_12.jpeg)

![](_page_25_Picture_13.jpeg)

# **Comparing dust and gas sizes in J2310+1855**

![](_page_26_Figure_1.jpeg)

<sup>(</sup>Tripodi et al., 2022)

Surface brightness profiles in annular concentric regions

\* Dust size (~6.7 kpc) > [CII] size (~5.5 kpc) \*CO(6-5) size of ~4.7 kpc, from Feruglio+18 \* [CII] deficit in the center (Walter+22)

 $\Rightarrow \Sigma_{gas} = 84 \text{ M}_{\odot} \text{pc}^{-2}$ , that places J2310 above the KS relation

![](_page_26_Figure_6.jpeg)

![](_page_26_Picture_7.jpeg)

# Extension to a large sample of z~6 QSOs

### Sample drawn from the HYPerluminous QSOs at the Epoch of ReionizatION (HYPERION) Survey

Hyperion selection criteria:

 $A M_{\text{SMBH}} > 10^9 \text{ M}_{\odot} \text{ at } z > 6$ 

XMM-Newton Multi-Year Heritage program (accepted in Dec 2020, 2.4 Ms)

Objectives:

- $\checkmark$  Physics of the disk/corona complex
- $\checkmark$  Evolution on z and nuclear winds
- ✓ Investigate the nuclear and host ISM
- $\checkmark$  Legacy sample to address with multi- $\lambda$  data: SMBH formation, accretion/ejection, AGN/host formation/ evolution at EoR

![](_page_27_Figure_10.jpeg)

![](_page_27_Picture_11.jpeg)

# **Dust Temperature and Mass distributions**

![](_page_28_Figure_1.jpeg)

✦ High accuracy = Accurate sampling of the distribution  $\bullet T_{\text{dust}} \sim (30 - 80) \text{ K}, M_{\text{dust}} \sim (1 - 8) \times 10^8 \text{ M}_{\odot}$ 

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

# **Gas to Dust Ratio**

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)