The interstellar medium and SFR of high redshift quasars/galaxies (and GRB hosts)

Chiara Feruglio, Sexten, Jan 12, 2023

Outline

- ISM composition and dynamics at high redshift z>6
- Composition: molecular gas, cold neutral gas, dust
- Gas dynamics: disks, outflows
- SFR in biased systems (luminous QSOs) and normal galaxies (JWST)

ISM Composition H2/HI & Gas-to-dust ratio along cosmic time

- a very complex environment
- Dense molecular gas
- PDR
- Cold Neutral Medium
- Dust

ISM Composition H2/HI & Gas-to-dust ratio along cosmic time

- Warm/cold neutral medium dominates mass and volume
- Dense molecular medium, small H

	-					
PHASE	Dens (cm ⁻³)	T (K)	VFF (%)	M (10 ⁹ M _o)	H (pc)	MA
Hot Intercloud (HIM)	0.003	10 ⁶	?50	?	3000	SS O
Warm Ionized Medium (WIM)	0.1	8000	25	1	1000	FTHE
Warm Neutral Medium (WNM)	0.5	8000	30	2.8	220	STA
Cold Neutral Medium (CNM)	50	80	1	2.2	100	RS = 1
Molecular Clouds	>200	>10	0.05	1.3	75	N110
HII Regions	1-105	104	- 1	0.05	70	1 ₀

Major ISM phases in Milky Way

2 2 I THF 2 TA J 2

ISM Composition Cold gas at high redshift

Cold					
mol	ecu	lar			

Cold atomic

warm ionised

- main coolants submm/ FIR emission lines
- CO (J->J-1) @J*115GHz
- [Cl] @369um
- [CII] @158um (11.3 eV)
- [NII] @205um (14.5 eV)
- [OIII] @88um

Courtesy S. Gallerani

ISM Composition Cold dust

- FIR submm continuum
- Dust mass & emissivity
- Dust Temperature
- Star formation rate

Courtesy S. Gallerani

ISM Composition Atomic gas in z>6 QSO hosts

- [CII] 158 um emission line main ISM coolant
- ionisation potential 11.3 eV
- ~80% from neutral ISM (cold) neutral medium and PDR, Kauffman+1999, Pensabene+21)
- ~20% diffuse ionised medium (Carral et al. 1994, Lord et al. 1996; Colbert et al. 1999, Decarli20,22.

Pensabene+21

ISM Composition Atomic gas in z>6 QSO hosts

 HI reservoirs at high redshift from [CII] (Hailey Dunsheath+2010)

$$\frac{M_a}{M_{\odot}} = 0.77(\frac{0.77L_{[CII]}}{L_{\odot}})(\frac{1.4 \times 10^{-4}}{X_{C^+}}) \times \frac{1 + 2exp(-91K/T) + 2exp(-91K/T)}{2exp(-91K/T)}$$
$$X_{\odot} = 1.4 \times 10^{-4} \qquad n_{\odot} = 2.7 \times 10^3 cm^{-3}$$

Crit

 surface temperature of PDR with n=10⁴ cm⁻³ and G₀=10^{3.2} is T=230K (Kaufman1999, Decarli+22 for high z quasars)

ISM Composition H₂ in z>6 QSO hosts

- Cold dense gas/ Star formation reservoir traced by CO
- CO fainter than [CII]
- few tens CO detections
- Traces massive molecular reservoirs of 10^{10} 10^{11} \ M_{\odot} over few kpc
- Large molecular gas fractions $\mu = M(H_2)/M_* \sim 4$

(Feruglio+2018, LI+2022)

ISM Composition H2 in z=7.5!! QSO Pōniuā'ena

- highest z CO detections to date obtained with NOEMA
- massive H_2 reservoir $M(H_2)=1.2\ 10^{10}\ M_\odot$
- t_H ~ 700 Myr
- Similar to z~6 molecular reservoirs

Feruglio in prep.

ISM Composition The cosmic density of H2 at z=7-8

• Ω_{H_2} consistent with model predictions (Maio+2022)

Feruglio, Tripodi, Maio, in prep.

ISM Composition GRB 080207 host galaxy z~2

- Massive H2 reservoir, in a SF disk galaxy, M(H2)~10¹¹ Msun
- About solar metallicity
- Consistent with SK relation for galactic CO luminosity to mass conversion factor
- long GRB can occurr in normal SF disk environements at z~2
- Arabsalmani+2018 (see also Hatsukade+2019)
- Mdust = 1.5e8 MSun
- GDR~600

ISM Composition GRB 080207 host galaxy z~2

- Massive H2 reservoir, in a SF disk galaxy, M(H2)~10¹¹ Msun
- ~solar metallicity
- Consistent with SK relation for galactic CO luminosity to mass conversion factor
- long GRB can occurr in normal SF disk environements at z~2
- Arabsalmani+2018 (see also Hatsukade+2019)
- Mdust = 1.5e8 MSun
- GDR~600

Remy-Ruyere+2014

ISM Composition H2/HI mass ratio in z>6 QSO hosts

- Neutral gas >> molecular gas at all redshifts (Peroux&Howk2020)
- Considering ISM+CGM+IGM
- Within galaxies neutral gas is negligible at high redshift (Tacconi+2020)

ISM Composition H2/HI mass ratio in z>6 QSO hosts

- Neutral gas >> molecular gas at all redshifts (Peroux&Howk2020)
- Considering ISM+CGM+IGM
- Within galaxies neutral gas is negligible at high redshift (Tacconi+2020)

ISM Composition Dust in z>6 QSO hosts

- Pōniuā'ena QSO @z=7.5
- 3 continuum data points on RJ tail, tight constraints on Mdust and emissivity index

$$S_{\nu_{obs}}^{obs} = S_{\nu/(1+z)}^{obs} = \frac{\Omega}{(1+z)^3} [B_{\nu}(T_{dust}(z)) - B_{\nu}(T_{CMB}(z))](1-z)$$

$$\tau_{\nu} = \frac{M_{\rm dust}}{A_{\rm galaxy}} k_0 \left(\frac{\nu}{250 \,\rm GHz}\right)^{\beta}$$

ISM Composition Gas to dust ratio

- Remy-Ruyer+2014 local galaxies with broad range of metallicity
- Popping+22: galaxies with $0.5 1.25 Z_{\odot}$

ISM Composition Gas to dust ratio

 z> 6 QSO have high metallicity

ISM dynamics Disks

- Disk ubiquitous up to the highest redshifts
- Dynamical masses $10^{10} 10^{11} M_{\odot}$ over
- Sizes few kpc

QSO z=6[CII] & H20 Tripodi, CF+22

toda

QSO z=4.7 [CII]Bischetti, CF+21

QSO z~7 Walter+22

also Feruglio+2018, Neeleman+2021

ISM dynamics Disks

- Few molecular disk mapped J2310+1855 (Feruglio+2018)
- Turbulent disks $v_{rot}/\sigma \sim 2$
- dynamically hot disk, or inflows/outflows

0.5

0

0.5

CO65 velocity

ISM dynamics Disks + bars

- Not only disks but also bars are in place at z>1
- Recent JWST image of a bar at z~2 in CEERS survey (Guo+2022)
- <u>https://twitter.com/AAS_Press/</u> <u>status/1611047123063279616</u>

ISIN dynamics **Outflows ubiquitous at high z**

- Cold/molecular outflows in emission (broad lines [CII]) and absorption (OH, OH+)
- Maiolino+2012, Feruglio+2018, Shao+2022, Bischetti+2019
- Inferred outflow rates 100-1000 M⊙/yr
- Feedback in action

ISM dynamics **Outflows ubiquitous**

- First investigation of BH-driven outflows in quasars at z=5.8-6.6, traced by BAL systems in UV spectra. 30 targets with high-quality X-shooter data in the XQR-30 The Ultimate XShooter survey of QSOs at Reionisation Epoch
- Widespread presence of BAL outflows, detected in ~50% of z~6 quasars.
- BAL fraction significantly higher than in lower-z quasars.
- Bischetti, CF+2022, Nature

Suppression of black-hole growth by strong outflows at redshifts 5.8-6.6

https://doi.org/10.1038/s41586-022-04608-1

Received: 23 September 2021

M. Bischetti^{1⊠}, C. Feruglio^{1,2}, V. D'Odorico^{1,2,3}, N. Arav⁴, E. Bañados⁵, G. Becker⁶, S. E. I. Bosman⁵, S. Carniani³, S. Cristiani¹, G. Cupani¹, R. Davies^{7,8}, A. C. Eilers⁹, E. P. Farina¹⁰, A. Ferrara³, R. Maiolino¹¹, C. Mazzucchelli¹², A. Mesinger³, R. A. Meyer⁵, M. Onoue⁵, E. Piconcelli¹³, E. Ryan-Weber^{7,8}, J.-T. Schindler⁵, F. Wang¹⁴, J. Yang¹⁵, Y. Zhu⁶ & F. Fiore^{1,2}

Published online: 11 May 2022

Accepted: 3 March 2022

3

2

ISM dynamics Outflows ubiquitous

- First investigation of BH-driven outflows in quasars at z=5.8-6.6, as traced by BAL systems in UV spectra. 30 targets with high-quality X-shooter data in the XQR-30 survey.
- Widespread presence of BAL outflows, detected in ~50% of z~6 quasars.
- BAL fraction significantly higher than at lower z
- Bischetti+2023, submitted

SFR density obscured vs. unobscured

UV-derived SFR density
 Bouwens+2022

Star Formation Efficiency

• SFE peaks at 0.1-0.2

~constant with z from z=1.7 to z=7

0.1 $1/M_{
m h}$ \mathbf{C} Ē 0.01 S

0.00

Harikane+2022a

SFR density at z>6 from JWST

- SFR density z=6 to 18 Bouwens+2022
- spectroscopy confirms 80% photo-z (Carniani, priv. comm.)
- z=17 galaxy confirmed by ALMA

•Assumes SFE ~0.1-0.2 •Data imply >>SFE , close to 1, problem for λCDM

Dusty winds clear up JWST galaxies

134 galaxies at z > 6.5, filled = JWST detected galaxy candidates

Fiore+2022

Dusty winds clear up JWST galaxies

Fiore+2022

Conclusions The interstellar medium and SFR of high redshift quasars & galaxies

- H2 dominates the mass within galaxies at high z
- GDR implies high metallicity in QSO host galaxies z>6
- JWST suggest SFE>0.2 at z>8
- SF-AGN feedback is efficient in clearing early galaxies from gas/dust

