Supernova Explosions in the Multimessenger Era

- Massimo Della Valle

pothmonte Observatory, INAF-Naple

Anglo-Australian Observatory

Summary: Are we prepared to observe the next nearby SN?

2027

Ligo, Virgo, Kagra

De Stella Nova "in pede Serpetarii" 1606

PAN-STARRS

ZTF will survey an order of magnitude faster than PTF.

3750 deg²/hour

 \Rightarrow 3 π survey in 8 hours

for uniform survey

>250 observations/field/year

Active Area7.26 deg²47 deg²Overhead Time46 sec<15 secOptimal Exposure Time60 sec30 secRelative Areal Survey Rate1x15.0xRelative1x15.0x
Overhead Time 46 sec <15 sec
Optimal Exposure Time 60 sec 30 sec Relative Areal Survey Rate 1x 15.0x
Relative Areal Survey Rate 1x 15.0x Relative 10.0 10.0
Relative
Volumetric 1x 12.3x Survey Rate

Existing PTF camera MOSAIC 12k New ZTF camera: 16 6k x 6k e2v CCDs

ASASSN SDSS and DES ATLAS ESSENCE SN survey DLT40 SUDARE @ VST

SkyMapper

Chile, Hawaii, Texas, South Africa

 ~ 1000 SNe/yr

LSST

R~24.4 z~1.7 V~500 Gpc³

$\sim 1000 \text{ SNe/stay}$

Astrophysics with Supernovae

- Explosive Death of Stars
- Metal Enrichment
- Energy Injection
- Tracers of SFRs
- Distance Indicators
- Tracers of cosmological models
- Bright Background Sources
- Bright Echoes
- Cosmic Rays
- Multi-Messenger

- -Physics of compact objects
- -Galaxies Nucleosinthesis
- -Evolution of stellar populations and galaxies
- -Cosmology
- -CBM/IGM Studies at high z
- -3D Structure of ISM
 SN Remnants
 -Neutrinos (SN 1987A)
 -GWs (not yet)

How many SNe do we expect to occur in the Milky Way in 400 years ?

SN rates in the Local Universe

galaxy	N. SNe*			rate [SNu]			
type	Ia	Ib/c	II	Ia	Ib/c	II	
E-SO	22.0			0.18 ± 0.06	< 0.01	< 0.02	
S0a-Sb	18.5	5.5	16.0	0.18 ± 0.07	0.11 ± 0.06	0.42 ± 0.19	
Sbc-Sd	22.4	7.1	31.5	0.21 ± 0.08	0.14 ± 0.07	0.86 ± 0.35	
Others#	6.8	2.2	5.0	0.40 ± 0.16	0.22 ± 0.16	0.65 ± 0.39	
All	69.6	14.9	52.5	0.20 ± 0.06	0.08 ± 0.04	0.40 ± 0.19	

Asiago Survey (Cappellaro et al. 1999; see also VST Survey, Botticella et al. 2017)

A				
Rate	SN Ia	SN Ibc	SN II	Lick Survey
Early(fiducial; SNuK) Late(fiducial; SNuK) Early(LF-average; SNuK) Late(LF-average; SNuK)	$\begin{array}{c} 0.064\substack{+0.008\\-0.007}\begin{pmatrix}+0.013\\-0.007\\-0.013\end{pmatrix}\\ 0.074\substack{+0.006\\-0.012\end{pmatrix}\\ 0.048\substack{+0.006\\-0.005}\begin{pmatrix}+0.010\\-0.010\end{pmatrix}\\ 0.065\substack{+0.006\\+0.010\end{pmatrix}\\ 0.065\substack{+0.006\\-0.010\end{pmatrix}}$	$\begin{array}{c} 0.008 +0.006 \\ -0.004 \\ -0.004 \\ -0.009 \\ -0.009 \\ -0.009 \\ -0.009 \\ -0.003 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.002 \\ -0.016 \\ -0.002$	$\begin{array}{c} 0.004^{+0.003}_{-0.002}(\stackrel{+0.001}{_{-0.001}})\\ 0.172^{+0.011}_{-0.011}(\stackrel{+0.045}{_{-0.036}})\\ 0.003^{+0.002}_{-0.001}(\stackrel{+0.001}{_{-0.001}})\\ 0.149^{+0.010}_{-0.000}(\stackrel{+0.039}{_{-0.031}})\end{array}$	(Li et al. 2011)
Vol-rate $(10^{-4} \text{ SN Mpc}^{-3} \text{ yr}^{-1})$	$0.301^{+0.038}_{-0.037} (^{+0.049}_{-0.049})$	$0.258^{+0.044}_{-0.042}(^{+0.058}_{-0.042})$	$0.447^{+0.068}_{-0.068} \begin{pmatrix} +0.131 \\ -0.068 \begin{pmatrix} -0.131 \\ -0.111 \end{pmatrix}$	

V_{MW} ~ 10⁻⁶ Mpc -> 2 SNe/100yr in the Milky Way

We have to find the probability that a number of events - with a known average rate- occur in a fixed time (assuming that the events are independent of the time since the last event)

CONFIDENCE LIMITS FOR SMALL NUMBERS OF EVENTS IN ASTROPHYSICAL DATA

NEIL GEHRELS

Laboratory for High Energy Astrophysics, NASA/Goddard Space Flight Center Received 1985 August 5; accepted 1985 September 30

ABSTRACT

Convenient tables and approximate formulae are presented for confidence limits based on Poisson and binomial statistics. Poisson statistics apply when event rates are calculated from small numbers of observed events, and binomial statistics apply when ratios of two different event types are calculated from small numbers of observed events. The limits in the tables are given for all confidence levels commonly used in astrophysics.

0	VS.	1σ	5.2 - 12.0
0	VS.	2σ	3.4 - 15.6
0	VS.	3σ	2.0 - 20.7

Most of SNe occurring in the Galactic Disk will be missed because of the high interstellar reddening in the cone toward the Galactic Bulge

	'Br	righ			
Date (AD)	Туре	m _{max}	N Vis		
185?	I?	-8	1		
393	?	-1			
837	?	-8?			s 4 D(K/c)
1006	Ι	-9	> 2yrs	2.2 kpc	SN 1006
1054	II	-6	~2yrs	2kpc	Crab Nebula
1181	II?	+1	0.5yrs	2kpc	3C58
1572	Ι	← -1	1.5 yrs	2.5-3 kpc	Tycho
1604	Ι	-3	1 yr	3-7 kpc	Kepler
~1690	II	+5?	missed	3.4 kpc	Cas A
1870	Ι	~+6	missed	Hartwig	M31
1987	II	+2.9	~1 yr	Ian Shelton	SN1987A

The volume actually sampled was ~ 10%

CONFIDENCE LIMITS FOR SMALL NUMBERS OF EVENTS IN ASTROPHYSICAL DATA

NEIL GEHRELS Laboratory for High Energy Astrophysics, NASA/Goddard Space Flight Center Received 1985 August 5; accepted 1985 September 30

ABSTRACT

Convenient tables and approximate formulae are presented for confidence limits based on Poisson and binomial statistics. Poisson statistics apply when event rates are calculated from small numbers of observed events, and binomial statistics apply when ratios of two different event types are calculated from small numbers of observed events. The limits in the tables are given for all confidence levels commonly used in astrophysics.

 0
 vs.
 1σ
 6.2 - 12.0
 0

 0
 vs.
 2σ
 0.4 - 11566
 0
 0.9 - 20.7
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

ARE WE PREPARED FOR THE OVERDUE NEARBY SUPERNOVA?

By O.-G. Richter and M. Rosa European Southern Observatory, Garching

Supernova taxonomy

The Energy Budget of a CC-SN

>1.4 M $_{\odot}$ Fe Core collapses to Neutron Star $R_{\rm NS}$ ~ 10 Km

Gravitational binding energy:
 $\Delta E_B \cong G M_{WD}^2 / R_{NS} - G M_{WD}^2 / R_{Fe-core} \cong 3 \times 10^{53}$ ergsKinetic energy of explosion $\approx 1\% \times \Delta E_B$ Electromagnetic radiation $\approx 0.01\% \times \Delta E_B$ Neutrinos $\approx 99\% \times \Delta E_B$

SN 1987A in the LMC

30 Dor Nebula after SN 1987A explosion

© Anglo-Australian Observatory

30 Dor Nebula before SN 1987A explosion

© Anglo-Australian Observatory

Neutrinos detection confirms that a NS is the residual of a CC SN explosion.

Kamiokande Progression Neutrinos sensitivity

Kamiokande 1983-1996 3kton

Super-Kamiokande ¹⁹⁹⁶⁻ 50kton

Hyper-Kamiokande 2027 0.52Mton

1

x 17

x 10

Expected SN/Neutrinos rates

SNe within the Milky-Way ~ 10 Kpc, good statistics: $5 \times 10^3 \div a$ few $\times 10^4$ neutrinos/SN; but

"Bright Guest Stars"

Date (AD)	Туре	mmex	Naked Visibility	Discovered by	Remnant
185?	I?	-8	?	Chinese	RCW86
393	?	-1	?	Chinese	
837	?	-8?	?	Chinese	IC 443
1006	Ι	-9	> 2yrs	Chinese/Arabs	SN 1006
1054	II	-6	~2yrs	China/Japan/	Crab Nebula
				Chaco Canyon	
1181	II?	+1	0.5yrs	China/Japan	3C58
1572	Ι	← -1	1.5 yrs	Tycho Brahe	Tycho
1604	Ι	-3	1 <u>yr</u>	Kepler/Galilei	Kepler
ca. 1667	II	+5?	missed	Flamsteed	Cas A
1870	Ι	~+6	missed	Hartwig	M3 1
1987	II	+2.9	~1 yr	Ian Shelton	SN1987A

CC-SN and SN/GRB rates

galaxy type	1	N. SNe		rate [SNu]			
	Ia	Ib/c	II	Ia	Ib/c	п	
E-S0	22.0			0.18 ± 0.06	< 0.01	< 0.02	
S0a-Sb	18.5	5.5	16.0	0.18 ± 0.07	0.11 ± 0.06	0.42 ± 0.19	
Sbc-Sd	22.4	7.1	31.5	0.21 ± 0.08	0.14 ± 0.07	0.86 ± 0.35	
Others#	6.8	2.2	5.0	0.40 ± 0.16	0.22 ± 0.16	0.65 ± 0.39	
All	69.6	14.9	52.5	0.20 ± 0.06	0.08 ± 0.04	0.40 ± 0.19	

Asiago Survey Cappellaro et al. 1999; Cappellaro et al. 2015

ON THE RATES OF GAMMA-RAY BURSTS AND TYPE INC SUPERNOVAE DAPNE GUETTA¹ AND MASSIMO DELLA VALLE² Received 2096 August 1; accepted 2005 December 5; published 2007 F shed 2007 February 2.

ABSTRACT

ABSTRACT We reach the field into a first section of the section o

Guetta & Della Valle 2007

Rate	SN Ia	SN Ibc	SN II
Early(fiducial; SNuK) Late(fiducial; SNuK) Early(LF-average; SNuK) Late(LF-average; SNuK)	$\begin{array}{c} 0.064 +0.008 \\ -0.007 \\ -0.006 \\ -0.006 \\ -0.012 \\ 0.074 \substack{+0.006 \\ -0.006 \\ -0.012 \\ -0.005 \\ -0.010 \\ 0.065 \substack{+0.006 \\ +0.010 \\ -0.010 \\$	$\begin{array}{c} 0.008 +0.006 \\ -0.002 \\ -0.004 \\ -0.009 \\ -0.009 \\ -0.009 \\ -0.003 \\ -0.002 \\ -0.003 \\ -0.002$	$\begin{array}{c} 0.004 +0.003 \\ -0.002 \\ -0.002 \\ -0.001 \\ -0.036 \\ 0.003 \substack{+0.002 \\ -0.001 $
Vol-rate $(10^{-4} \text{ SN Mpc}^{-3} \text{ yr}^{-1})$	$0.301\substack{+0.038\\-0.037}(\substack{+0.049\\-0.049})$	$0.258^{+0.044}_{-0.042}(^{+0.058}_{-0.058})$	$0.447^{+0.068}_{-0.068}(^{+0.131}_{-0.111})$

Lack of SN neutrinos detection in the last ~40 yrs

Lick Survey Li et al. 2011

Rozwadowska et al. 2020

 $R_{\rm full} = 1.63 \pm 0.46 \ (100 \ {\rm yr})^{-1}$

Expected SN/Neutrinos rates

SNe within the Milky-Way ~ 10 Kpc, good statistics: $5 \times 10^3 \div a$ few $\times 10^4$ neutrinos/SN; but 1 SN ~ 60 years

Within ~ LG of galaxies ~ 1 neutrino per SN about 1 SN ~ 30 years

The CC-SN frequency of occurrence in the LG of galaxies is miserable....

"Never underestimate desperate people. You never know how far they will go to get what they want"

(anonymous)

CC-SNe ~ Gpc: ~ 0.76 x 10⁻⁴ Mpc⁻³ yr⁻¹ ~ 10⁵ SNe/yr \rightarrow << 1 neutrino/yr \rightarrow diffuse neutrino background

core-collapse rate

observed supernova rate is a factor ~2 smaller than the expected one

dust? the observed near-infrared rate is still a factor 3-10 smaller than that estimated from the far-infrared luminosity of the galaxies. Among various possibilities, the most likely scenario is that dust extinction is so high (AV>30) to obscure most SNe even in the near-IR (Mannucci, DV and Panagia 2007)

Cresci et al. 2007

The Search for Failed Supernovae with The Large Binocular Telescope: First Candidates

J. R. Gerke¹, C. S. Kochanek^{1,2}, K. Z. Stanek^{1,2}

Diffuse neutrinos flux from stellar collapses with direct black hole formation (failed supernovae) is more energetic than that from successful supernovae. Thus it might contribute substantially to the total diffuse flux above realistic detection thresholds energy.

Relativistic Jets in Core-collapse Supernovae

Tsvi Piran¹, Ehud Nakar², Paolo Mazzali^{3,4}, and Elena Pian^{5,6} ¹Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel ²Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 69978, Israel ³Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool L3 5RF, UK ⁴Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany ⁵INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, I-40129 Bologna, Italy ⁶Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Received 2018 December 20; revised 2019 January 7; accepted 2019 January 17; published 2019 January 28

Table 1 Properties of the SNe Discussed Here							
SN	Туре	$E_{\rm tot}^{\rm a}$	$M_{\rm ej}{}^{\rm b}$	$E_j^{\mathbf{a}}$	M_c^{b}	θ_c	Comments
1997ef (1)	Ic-BL	20	8	9	0.4	20°	No GRB
1998bw (2)	Ic-BL	50	11	$\gtrsim 2$			<i>ll</i> GRB980425
2002ap (3)	Ic-BL	4	2.5	0.3			No GRB
2003bg (4)	IIb	5	4.5	1	0.2	20°	No GRB
2008D (5)	Ib	6	7	1.4			X-ray burst
2016jca (6)	Ic-BL	50	10	$\gtrsim 2$			GRB161219t

All HNe (CC-SNe?) may be preceded by a GRB. Most times the gamma-ray bursts transfer so much of their own energy to cocoons that there's not enough left for the GRB to break through (see Nakar & Piran 2017)

Cocoon signatures

The inner material transported by the jet interacts with the external layers and the medium surrounding the progenitor spreading sideways

(Nakar & Piran 2018, Nakar 2019)

GRB SNe vs. Hypernovae

GRB/SNe-Ibc: < 1.5%

HNe/SNe-Ibc: ~ 7%

A simplified (and possibly wrong) scheme for a GRB-SN event

LATE-TIME RADIO OBSERVATIONS OF 68 TYPE Ibc SUPERNOVAE: STRONG CONSTRAINTS ON OFF-AXIS GAMMA-RAY BURSTS

A. M. SODERBERG,¹ E. NAKAR,² E. BERGER,^{3,4,5} AND S. R. KULKARNI¹ Received 2005 July 5; accepted 2005 October 24

ABSTRACT

We present late-time radio observations of 68 local Type Ibc supernovae, including six events with broad optical absorption lines ("hypernovae"). None of these objects exhibit radio emission attributable to off-axis gamma-ray burst jets spreading into our line of sight. Comparison with our afterglow models reveals the following conclusions. (1) Less than ~10% of Type Ibc supernovae are associated with typical gamma-ray bursts initially directed away from our line of sight; this places an empirical constraint on the GRB beaming factor of $\langle f_b^{-1} \rangle \leq 10^4$, corresponding to an average jet opening angle, $\theta_j \geq 0$ °8. (2) This holds in particular for the broad-lined supernovae (SNe 1997dq, 1997ef, 1998ey, 2002ap, 2002bl, and 2003jd), which have been argued to host GRB jets. Our observations reveal no evidence for typical (or even subenergetic) GRBs and rule out the scenario in which every broad-lined SN harbors a GRB at the 84% confidence level. Their large photospheric velocities and asymmetric ejecta (inferred from spectropolarimetry and nebular spectroscopy) appear to be characteristic of the nonrelativistic SN explosion and do not necessarily imply the existence of associated GRB jets.

"Our observations.....rule out the scenario in which every broad-lined SN harbors a GRB at the 84% confidence level"

lonthly Notices

of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 440, 821–832 (2014) Advance Access publication 2014 March 14

doi:10.1093/mnras/stu246

Radio limits on off-axis GRB afterglows and VLBI observations of SN 2003gk

M. F. Bietenholz,^{1,2★} F. De Colle,³ J. Granot,⁴ N. Bartel² and A. M. Soderberg⁵

Confirmed by Bietenholz et al. 2014

SN 1998bw

SN 1987A

$E_{K} \sim 30 \ x \ 10^{51} \ erg$

 $E_{K} \sim 1 \ x \ 10^{51} \ erg$

A simplified (and possibly fair) scheme for a GRB-SN event

All HNe produce a GRB, most times the gamma-ray bursts transfer so much of their own energy to the stellar layers so there's not enough left for the GRB to break through -- > "choked jet" (see Nakar and Piran 2017)

Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst

L. Izzo ^{IM}, A. de Ugarte Postigo, K. Maeda, C. C. Thöne, D. A. Kann, M. Della Valle, A. Sagues Carracedo, M. J. Michałowski, P. Schady, S. Schmidl, J. Selsing, R. L. C. Starling, A. Suzuki, K. Bensch, J. Bolmer, S. Campana, Z. Cano, S. Covino, J. P. U. Fynbo, D. H. Hartmann, K. E. Heintz, J. Hjorth, J. Japelj, K. Kamiński, L. Kaper, C. Kouveliotou, M. Krużyński, T. Kwiatkowski, G. Leloudas, A. J. Levan, D. B. Malesani, T. Michałowski, S. Piranomonte, G. Pugliese, A. Rossi, R. Sánchez-Ramírez, S. Schulze, D. Steeghs, N. R. Tanvir, K. Ulaczyk, S. D. Vergani & K. Wiersema − Show fewer authors

Nature **565**, 324–327 (2019) Download Citation *±*

GRB 171205A

- i) third closest GRB-SN z = 0.0368 (160 Mpc)
- ii) low-luminous GRB Eiso ~ 1049 erg
- iii) grand-design spiral host galaxy

multi-wavelength photometric & spectroscopic campaign

(Swift, VLT, GTC, GROND, PST2, OSN, GOTÓ ...)

Izzo et al. Nature, 2019

We interpret these high velocity features as signatures of a hot cocoon generated when the jet moves inside the progenitor star.

Chemical composition of the high velocity (10⁵ km/s) components are characterized by chemical abundances different from those observed in the SN ejecta (x10⁴ km/s)

Interpreting spectra: position of elements

Immediately after explosion SNe go into homologous expansion \rightarrow v ~ r

Relative positions of elements do not change

"Our findings suggest a continuum of central engine activities in different types of CCSNe and call for rethinking of the explosion mechanism of CCSNe" (Piran et al. 2019)

Is this mechanism at play for all CC-SNe?

Constraining the Fraction of Core-Collapse Supernovae Harboring Choked Jets with High-energy Neutrinos DAFNE GUETTA,¹ ROI RAHIN,² IMRE BARTOS,³ AND MASSIMO DELLA VALLE^{4,5}

¹ ORT Braude, Karmiel, Israel

² Technion, Haifa, Israel

³Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440, USA

⁴Capodimonte Observatory, INAF-Naples, Salita Moiariello 16, 80131-Naples, Italy

⁵European Southern Observatory, Karl-Schwarzschild-Strae 2, D-85748 Garching bei Mnchen, Germany

$$p\gamma \rightarrow p\pi^{0}, n\pi^{+}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

Murase & Ioka 2013; Murase et al. 2016; Senno et al. 2016, 2017; Denton & Tamborra 2017; He et al. 2018; Esmaili & Murase 2018

-	ZTF	LSST
CCSN	40	10^{5}
SN-Ibc	200	6×10^5
Hypernova	2×10^4	2×10^7

These are the numbers of supernovae of different types, that are required for a 3σ detection above the neutrinos background.

The empirical confirmation of the chocked model requires a number of CC-SNe that can be achieved within a very few years by either ZTF or LSST if all CC-SNe (or a significant fraction of them) produce jets. It can take several years of even decades (in the worst case) if the ciocked jet scenario apply only to a small fraction of CC-SNe, such as SN-Ibc, BLs or HNe.

GWs from nearby CC-SNe

SN 2011fe

Core-Collapse SNe

SNe-II

Progenitor Mass ~ 8-20 M_{\odot} Remnant \rightarrow NS (1.5 M_{\odot}) Radiated Energy ~ 10⁴⁷/⁴⁹ erg Kinetic Energy ~ 10⁵¹ erg rate ~ 0.48 x 10⁻⁴ Mpc⁻³ yr⁻¹

SNe-Ibc/HNe

Progenitor Mass ~ $30-50 M_{\odot}$ Remnant: NS or BH ($3M_{\odot}$) Radiated Energy ~ $10^{47}/^{49}$ erg Kinetic Energy ~ 10^{51} erg rate ~ 0.26×10^{-4} Mpc⁻³ yr⁻¹ rate ~ 1.82×10^{-6} Mpc⁻³ yr⁻¹

~ BH

CC-SNe might have the needed ingredients for an output in gravitational radiation

- i) E_v evidences the formation of high density remnant (i.e. BHs or NSs)
- ii) High angular momentum of the remnant
- iii) Formation of an accretion disk around the remnant
- iv) In some cases the mass/motion takes place on the Schwarzschild scale (e.g., the Innermost Stable Circular Orbit (ISCO) around a newly formed black hole

The quadrupole formula predicts (see 2019) an appreciable luminosity for standard values of non-axisymmetric mass inhomogeneities δm about a central mass $M \approx 3 M_{\odot}$, $\xi = \delta m / M_D = 0.1$ as a mass perturbation in a torus or inner disk of mass $M_D \approx 0.03 M$

$$h = 3.4 \times 10^{-23} M \left(\frac{\xi}{0.1}\right) \left(\frac{\sigma}{0.01}\right) \left(\frac{D}{20 \,\mathrm{Mpc}}\right)^{-1} \left(\frac{f_{gw}}{600 \,\mathrm{Hz}}\right)^{\frac{2}{3}}$$

CC-SNe (particularly Ibc/HNe) might have the needed a anavitational nadiation Springer Link Review Published: 28 October 2019 Prospects for multi-messenger extended emission from ii) iii) core-collapse supernovae in the Local Universe Maurice H. P. M. van Putten 🖂, Amir Levinson, Filippo Frontera, Cristiano Guidorzi, Lorenzo Amati & iv) Massimo Della Valle *The European Physical Journal Plus* **134**, Article number: 537 (2019) Cite this article **38** Accesses **3** Citations **Metrics**

i)

The quadrupole formula predicts (see 2019) an appreciable luminosity for standard values of non-axisymmetric mass inhomogeneities δm about a central mass $M \approx 3 M_{\odot}$, $\xi = \delta m / M_D = 0.1$ as a mass perturbation in a torus or inner disk of mass $M_D \approx 0.01 M$

$$h = 3.4 \times 10^{-23} M \left(\frac{\xi}{0.1}\right) \left(\frac{\sigma}{0.01}\right) \left(\frac{D}{20 \,\mathrm{Mpc}}\right)^{-1} \left(\frac{f_{gw}}{600 \,\mathrm{Hz}}\right)^{\frac{2}{3}}$$

 $\sim 1 CC$ -SN / 60 yr in the MW

- ~ 1 CC-SN yr⁻¹ within the "Virgo Circle" (17 Mpc)
- ~ 0.6 SNe-II; 0.3 SNe-Ibc; 0.1 HNe yr $^{-1}$

SNe-Ibc within Virgo circle (D=17 Mpc)

Within Virgo Circle in the lat 10 years, we have observed:

4 SNe-II (2013gc, 2016gkg, 2019el, 2021sjt)
4 SNe-Ibc (2017ein, 2019ehk, 2019yvr, 2022fzy)
2 SNe-BL (2016coi, 2022xxf)

Conclusions

Neutrinos and GWs Observatories have the capability to detect CC SN explosions inside the Milky Way. The obvious drawback is represented by the low rate of events (~2 per century or so)

The analysis of the diffuse neutrinos background has the ability to disentangle the two scenarios: *dust vs. failed SNe*

Recent observations of ciocked jets, associated with GRBs appear a realistic possibility for neutrinos detections from SN events. Given the current estimates of SN rates, the required number of CC-SN detections for a 30 detection above the neutrinos background. can be achieved on a time-frame of a few years by either ZTF or LSST if all CC-SNe (or a significant fraction of them) produce jets. Decades in the worse case (only BLs SNe do it).

Conclusions

Present interferometers have the capability to detect GWs emission from CC-SNe in the MW. The obvious problem is represented by the low rate of events (~2 per century or so).

Future facilties (ET and CE) will detect GW emission from SNe occurring in the Virgo Cluster within the time-frame of 1-3 years up to about 10 yrs (only BLs).

SNe-Ia

Progenitor Mass 3-7 M_{\odot} Mass after merging \approx 1.4 M_{\odot} Remnant \rightarrow none Radiated Energy \sim 10⁴⁷/⁴⁹ erg Kinetic Energy \sim 10⁵¹ erg rate \sim 0.30 x 10⁻⁴ Mpc⁻³ yr⁻¹

~ 10km

~ 10,000km

$$h = 6.3 \times 10^{-23} \left(\frac{M}{3M_{\odot}}\right)^{\frac{5}{3}} \left(\frac{D}{100 \,\mathrm{Mpc}}\right)^{-1} \left(\frac{f_{gw}}{1000 \,\mathrm{Hz}}\right)^{\frac{2}{3}}$$

van Putten et al. 2019

Comparable final mass, size of the sysyems are different: 10,000km vs 10km, which is 1000 times wider \rightarrow Kepler frequency ~ (1/separation)^{3/2} \rightarrow the frequency lower by a factor ~ 1000 Hz/30,000 \approx 0.03 Hz

Lunar Gravitational Wave Antenna (Harms et al. 2021)

10⁻¹⁹ < h < 10⁻²² inside the MW (100-10,000 pc)