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Motivation
• Prove that breakthrough science can be done with nano-sats, not only with large, 

complex, expensive missions.  “Smaller” enables the“faster, better, cheaper”1 
mantra, but also expand usership, increasing competition and collaborations 


• Join the multimessenger revolution by providing a first mini-constellation  for 
GRB localizations


• Develop miniaturized payload technology for breakthrough science and 
demonstrate COTS applicability to challenging missions, contribute to Space 4.0 
goals


• Push and prepare for a high reliability, large constellation

1 Dan Goldin 1992
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1ton=200k$ 10ton=2M$ !!!!!



An intriguing perspective
• Present:  

Reduction of launch cost + Miniaturization + COTS components + ride-share 
launches:                                                                                                              
—> CubeSat proliferation, few kg payloads, M$, few years dev. 

• Future 
Further reduction of launch cost + COTS components                                        
—> large missions, hundred kg/tons payloads as “ride-share” missions, at the 
cost of ground based experiments (tens/hundreds M$ vs. 1-10B$, few year 
dev. vs. few decades): from Theseus to Te Deus! 
- no longer sensible to minimize risks by multiplying costs 
- mass production
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Why: GRBs and Compact binary coalescence

DAMAHERMES	PF

Current facilities, Swift, INTEGRAL, FERMI, AGILE, are aging
Loosing one event is a big science loss

A sensitive X-ray all sky monitor during the 20’:
DAMA: Distributed Architectures for Multimessenger Astrophysics



HERMES-PF & SpIRIT in a nutshel

• In orbit demonstrations:

• HERMES Pathfinder: six 3U cubesat 

equipped with advanced X-ray/gamma/
ray wide field detector. Nearly equatorial 
LEO.


• SpIRIT: 6U cubesat managed by 
University of Melbourne and funded by 
ASA. Host 1 HERMES-PF X-ray/gamma-
ray payload + S-band system. SSO. 



Mission concept

HERMES constellation of cubesat 

2016: ASI funds for detector R&D 
2018: MIUR funds (Progetti premiali  2015), 
managed by ASI 
2018 H2020 Space-SCI-20 project 
2019-2022 ASI internal funds 

Disruptive technologies: cheap, underperforming, but producing high impact. 
Distributed instrument: tens/hundreds of simple units to form a sensitive all sky 
monitor
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Why                now

Modularity: 
• Avoid single point failures, improve hardware 
• Pathfinder 

Open μsec - msec window:
• Accurate positions 
• QG tests

Limited cost and quick development
• COTS + in-house components  
• Trend in cost reduction of manufacturing and launching QS

Breakthrough scientific case:  EM counterparts of GW events



IPN legacy
First IPN 1976  
4-6 spacecrafts. 
Baseline ~ 1 AU

Second IPN ~1990 
PVO, Ulysses, CGRO, 
Wind

Third IPN 2000 
~ 20 spacecrafts

Localisations: arcmin-deg 
Main disadvantages: long data acquisition ~days, 
large systematic errors
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Requirements 
All sky monitor during the 2020’

• sub-deg localization capability

• wide band covering both gamma-rays and X-rays (short/hard 
GRBs, high-z GRBs)

• good sensitivity  

• prompt(minute) localisation

• sub-μs timing
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Requirements 
in orbit demonstrator: HERMES Pathfinder

• single collecting area ≥50cm2

• Energy range 3-1000 keV
• Temporal resolution a few hundred ns
• Position reconstruction of each satellite < 30m
• Absolute time reconstruction <100 ns
• Download full burst info in minutes







Payload concept
• Photo detector, SDD 

Scintillator crystal GAGG 
• 5-300 keV (3-1000 keV) 
• ≥50 cm2 coll. area 
• a few st FOV 
• Temporal res. ≤300 nsec 
• ~1.6kg
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SDD LYRA-FE

LYRA-BE







Where we are: SpIRIT

• SpIRIT paylod FM delivered to UoM on July 2022 after 
calibration and qualification (evironmental tests @ 
SERMS on June 2022).


• SpIRIT S-band system delivered to UoM Q2 2022


• Integration tests (mechanical, electrical, electronic) 
performed in July 2022



SpIRIT payload FM

Step Mode Measurement Temperature Notes Integration	time	[s]

1 X 109Cd	+	55Fe 20	°C ≥	10	kcts/channel 900	s

2 X 109Cd	+	55Fe 0	°C ≥	10	kcts/channel 900	s

3 X 109Cd	+	55Fe –10	°C ≥	10	kcts/channel 900	s

4 X 109Cd	+	55Fe –20	°C ≥	10	kcts/channel 900	s



SpIRIT payload FM



HERMES payload PFM 

Detector system                                   +BEE+PSU                                                                  
Side wings connected with


                                                                                                                                                     
BEE stack

Detector system        +BEE+PSU                 Side wings connected



HSP payload PFM

Example acquisition of four radioactive 
sources, showing different X and 
gamma-ray photon lines acquired with 
one representative channel.



Where we are: HERMES pathfinder payload

• PFM ready for integration in the S/M after calibration. Integration planned for Q1 
2022, qualification test planned for Q1 2023


• FM2, FM3 detector system integrated and tested @FBK labs in Trento. Full 
payload integrated and tested at @INAF-IAPS Q4 2022


• FM4, FM5 and FM6 integration and test planned for Q1 2023
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Where we are:  
HERMES pathfinder S/M
• PFM integration planned @POLIMI in Q1 2023, 

qualification test planned for Q1 2023


• FM2, FM3 integration and test planned for Q1-Q2 
2023

• FM4, FM5 and FM6 
integration and test planned 
for Q2-Q3 2023



Where we are: HERMES Pathfinder program
• Launch contract negotiation on going, Contract signature Q42022. Launcher: 

Virgin Orbit, lauch date June 2024


• MOC deployment contract under negotiation. Three industrial operators are 
partecipating to the bid. Contract signature predicted by the end of the year 
2022. A contract for operations will be issued to the same industrial operator.


• Ground Station implementations: two identical dedicated GS, one in Malindi 
managed by ASI, one in Katherine (NT, AU), managed by a consortium led by 
INAF and including Masaryk University, University of Tasmania, University of 
Melbourne and partly funded by AHEAD2020. 



HERMES PF expected performances

Background: 50-300 keV ~75cts/s; 100-500 keV~35cts/s; 3-20 keV 390counts/s

HERMES vs. GBM: half collecting area but ~1/3 lower background and soft energy 
band.                                                                                                 Campana et al. 2020
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HERMES-X
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σPos(FC)  ~ 15 arcmin  if σCCF,σsys~1ms

σPos = 2.4°[(σCCF2+ σsys2)/(N-3)]0.5

<B>~7000km 
N(pathfinder)~6-8, active simultaneously 3-4 
σPos~ 2.4 deg if σCCF,σsys~1ms

Goal for a real observatory (more units, 
longer baseline)

Pathfinder

Full constellation

Localization performances 



Next steps
• Toward a sensitive all sky monitor during the 20’: 


• First phase: crash program to deploy in LEO 6-8 units (6-12U) in three 
years to provide a first all-sky monitor for Ligo/Virgo O5 events


• Second phase: deploy additional 6-10 units (6-12U) after ~2 years to boost 
monitoring and localization capabilities during Ligo/Virgo O5 - O6… ET!


• Third phase: deploy a few units in HEO or Moon orbits to boost localization 
capabilities
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HERMES PF Institutes
• INAF, ASI, PoliMi, UniCagliari, UniPalermo, UniUdine, INFN, UniTrieste, 

UniPavia, UniFedericoII, UniFerrara, FBK, FPM 
• University of Tubingen (Germany) 
• University of Eotvos Budapest, C3S (Hungary), MUNI (CZ) 
• University of Nova Gorica, Skylabs, AALTA (Slovenia) 
• Deimos (Spain) 
• Institute of High Energy Physics, Chinese Academy of Science



A flash in the dark: GRB and high-z galaxies
cosmic blasts spotting distant galaxies  



JWST luminosity functions and SFRd evolution

Bouwens+2022



Dusty winds clears up JWST galaxies
Fiore+2022
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Fiore+2022


