

From Nano to Giga

fabrizio.fiore@inaf.it

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821896

The project has received funding from the Accordo Attuativi ASI-INAF and ASI-POLIMI

INAF ISTITUTO NAZIONALE **DI ASTROFISICA** NATIONAL INSTITUTE

ti.

Trade-offs

- Development time
- Cost
- Risk
- Performances
- Global and/or high frequency monitoring Short

Best

Trade-offs

- Development time
- Cost
- Risk
- Performances
- Global and/or high frequency monitoring Short

Distributed architectures of nanosatellites

Best

Trade-offs

- Development time
- Cost
- Risk
- Performances
- Global and/or high frequency monitoring Short

Distributed architectures of nanosatellites

Monolithic architectures

Best

Notivation

- **GRB** localizations
- Develop miniaturized payload technology for breakthrough science and goals
- Push and prepare for a high reliability, large constellation

 Prove that breakthrough science can be done with nano-sats, not only with large, complex, expensive missions. "Smaller" enables the "faster, better, cheaper" mantra, but also expand usership, increasing competition and collaborations

Join the multimessenger revolution by providing a first mini-constellation for

demonstrate COTS applicability to challenging missions, contribute to Space 4.0

Two revolutions: Space 4.0

Investment in Start-Up Space Companies 2012 to 2021, by Investment Type

Two revolutions: Space 4.0

Launch cost per kilogram to low earth orbit vs first launch date

First launch date

	¢51000			
	\$01,200			
scale)	\$25,600	•••		Space Shuttle
	\$12,800			
	\$6,400	•••	1) Soyuz	
(log	\$3,200	2		
ber kg	\$1,600	Satur	n V	
	\$800			
	\$400			
	\$200			
	\$100			
	19	60	1970	1980

	¢51000			
	\$01,200			
scale)	\$25,600	•••		Space Shuttle
	\$12,800			
	\$6,400	•••	1) Soyuz	
(log	\$3,200	2		
ber kg	\$1,600	Satur	n V	
	\$800			
	\$400			
	\$200			
	\$100			
	19	60	1970	1980

An intriguing perspective

Present:

launches:

--> CubeSat proliferation, few kg payloads, M\$, few years dev.

• Future

Further reduction of launch cost + COTS components dev. vs. few decades): from Theseus to Te Deus!

- no longer sensible to minimize risks by multiplying costs
- mass production

- Reduction of launch cost + Miniaturization + COTS components + ride-share

--> large missions, hundred kg/tons payloads as "ride-share" missions, at the cost of ground based experiments (tens/hundreds M\$ vs. 1-10B\$, few year

Advanced Ligo/Virgo provide position with accuracy ~ tens deg

NS-NS and BH-NS coalescence: 100-200 Mpc horizon GRB, cocoon, kilonova..

BH-BH coalescence: >Gpc horizon no expected EM counterpart (even more exciting if one is found...)

Large volumes difficult to survey at optical λ .

Tens/hundreds/thousands optical transients.

Best strategy:

~ all sky prompt search for transients at high energies. Negligible probability to find an uncorrelated HEA transient at the time of GWE

Large volumes difficult to survey at optical λ .

Tens/hundreds/thousands optical transients.

Best strategy:

~ all sky prompt search for transients at high energies. Negligible probability to find an uncorrelated HEA transient at the time of GWE

Large volumes difficult to survey at optical λ .

Tens/hundreds/thousands optical transients.

Best strategy:

~ all sky prompt search for transients at high energies. Negligible probability to find an uncorrelated HEA transient at the time of GWE

Why: GRBs and Compact binary coalescence

Updated 16 March 2022	01	02	2 03	0 4	05
LIGO	80 Mpc	100 Mpc	100-140 Mpc	160-190 Mpc	240 280 325 Mp
Virgo		30 Mpc	40-50 Mpc	80-115 Mpc	150-260 Mpc
KAGRA			0.7 Mpc	(1-3) ~ 10 Mpc	25-128 Mpc
G2002127-v11	2015 2016	2017 2018	2019 2020 2021	2022 2023 2024 202	25 2026 2027 2028

HERMES PF DAMA

Why: GRBs and Compact binary coalescence

Current facilities, Swift, INTEGRAL, FERMI, AGILE, are aging Loosing one event is a big science loss

A sensitive X-ray all sky monitor during the 20': DAMA: Distributed Architectures for Multimessenger Astrophysics

G2002127-v11 2015 2016 2017 2018 2019

HERMES-PF & SpIRIT in a nutshel

- In orbit demonstrations:
- HERMES Pathfinder: six 3U cubesat equipped with advanced X-ray/gamma/ ray wide field detector. Nearly equatorial LEO.
- SpIRIT: 6U cubesat managed by University of Melbourne and funded by ASA. Host 1 HERMES-PF X-ray/gammaray payload + S-band system. SSO.

Mission concept

Disruptive technologies: cheap, underperforming, but producing high impact. Distributed instrument: tens/hundreds of simple units to form a sensitive all sky monitor

HERMES constellation of cubesat

2016: ASI funds for detector R&D 2018: MIUR funds (Progetti premiali 2015), managed by ASI 2018 H2020 Space-SCI-20 project 2019-2022 ASI internal funds

Mission concept

Disruptive technologies: cheap, underperforming, but producing high impact. Distributed instrument: tens/hundreds of simple units to form a sensitive all sky monitor

HERMES constellation of cubesat

2016: ASI funds for detector R&D 2018: MIUR funds (Progetti premiali 2015), managed by ASI 2018 H2020 Space-SCI-20 project 2019-2022 ASI internal funds

Modularity:

- Avoid single point failures, improve hardware
- Pathfinder

Modularity:

- Avoid single point failures, improve hardware
- Pathfinder

Modularity:

- Avoid single point failures, improve hardware
- Pathfinder

Open µsec - msec window:

- Accurate positions
- QG tests

Modularity:

- Avoid single point failures, improve hardware
- Pathfinder

Open µsec - msec window:

- Accurate positions
- QG tests

Limited cost and quick development

- COTS + in-house components
- Trend in cost reduction of manufacturing and launching QS

IPN legacy

First IPN 1976 4-6 spacecrafts. Baseline ~ 1 AU

Second IPN ~1990 PVO, Ulysses, CGRO, Wind

Third IPN 2000 ~ 20 spacecrafts

ocalisations: arcmin-deg Main disadvantages: long data acquisition ~days, large systematic errors

sub-deg localization capability

- sub-deg localization capability
- GRBs, high-z GRBs)

- sub-deg localization capability
- GRBs, high-z GRBs)
- good sensitivity

- sub-deg localization capability
- GRBs, high-z GRBs)
- good sensitivity
- prompt(minute) localisation

- sub-deg localization capability
- GRBs, high-z GRBs)
- good sensitivity
- prompt(minute) localisation
- sub-µs timing
• single collecting area \geq 50cm²

single collecting area ≥50cm²
 Energy range 3-1000 keV

- single collecting area $\geq 50 \text{ cm}^2$
- Energy range 3-1000 keV
- Temporal resolution a few hundred ns

- single collecting area $\geq 50 \text{ cm}^2$
- Energy range 3-1000 keV
- Temporal resolution a few hundred ns
- Position reconstruction of each satellite < 30m

- single collecting area $\geq 50 \text{ cm}^2$
- Energy range 3-1000 keV
- Temporal resolution a few hundred ns
- Position reconstruction of each satellite < 30m
- Absolute time reconstruction <100 ns

- single collecting area $\geq 50 \text{ cm}^2$
- Energy range 3-1000 keV
- Temporal resolution a few hundred ns
- Position reconstruction of each satellite < 30m
- Absolute time reconstruction <100 ns
- Download full burst info in minutes

← SCI-PL

THE REAL PROPERTY.

the state state

- DOCK-EPS
- <-- BATT
- DOCK-ADCS
- ← IF-BRD
- ← MAIN-OBC
- TRX-UHF
- TR-SBAND
- ← MTORQ

Payload concept

- Photo detector, SDD
 Scintillator crystal GAGG
- 5-300 keV (3-1000 keV)
- $\geq 50 \text{ cm}^2 \text{ coll.}$ area
- a few st FOV
- Temporal res. ≤300 nsec
- ~1.6kg

Fuschino+2018, 2020, Evangelista+2020,2022, Campana+2020,2022

Payload concept

- Photo detector, SDD
 Scintillator crystal GAGG
- 5-300 keV (3-1000 keV)
- $\geq 50 \text{ cm}^2 \text{ coll.}$ area
- a few st FOV
- Temporal res. ≤300 nsec
- ~1.6kg

Fuschino+2018, 2020, Evangelista+2020,2022, Campana+2020,2022

Payload concept

- Photo detector, SDD
 Scintillator crystal GAGG
- 5-300 keV (3-1000 keV)
- $\geq 50 \text{ cm}^2 \text{ coll.}$ area
- a few st FOV
- Temporal res. ≤300 nsec
- ~1.6kg

Fuschino+2018, 2020, Evangelista+2020,2022, Campana+2020,2022

RPCs Global Routing

4 32 GARPOS A Fay

Config and

Analog Pads Array

				21		194	21
					21		÷1
Ť	ŕ	F	Ŷ	F	P	P	1
551				11	201		
		2010		333			
	199	22	81	225			

Where we are: SpIRIT

- SpIRIT paylod FM delivered to UoM on July 2022 after calibration and qualification (evironmental tests @ SERMS on June 2022).
- SpIRIT S-band system delivered to UoM Q2 2022
- Integration tests (mechanical, electrical, electronic) performed in July 2022

SpIRIT payload FM

Step	Mode	Measurement	Temperature	Notes	Integration time [s]
1	Х	¹⁰⁹ Cd + ⁵⁵ Fe	20 °C	≥ 10 kcts/channel	900 s
2	Х	¹⁰⁹ Cd + ⁵⁵ Fe	0 °C	≥ 10 kcts/channel	900 s
3	Х	¹⁰⁹ Cd + ⁵⁵ Fe	-10 °C	≥ 10 kcts/channel	900 s
4	Х	¹⁰⁹ Cd + ⁵⁵ Fe	–20 °C	≥ 10 kcts/channel	900 s

SpIRIT payload FM

Erequency (Hz)

HERMES payload PFM +BEE+PSU Detector system

Side wings connected

HSP payload PFM

Where we are: HERMES pathfinder payload

- PFM ready for integration in the S/M after calibration. Integration planned for Q1 2022, qualification test planned for Q1 2023
- FM2, FM3 detector system integrated and tested @FBK labs in Trento. Full payload integrated and tested at @INAF-IAPS Q4 2022
- FM4, FM5 and FM6 integration and test planned for Q1 2023

Where we are: HERMES pathfinder payload

NEFRMES

Where we are: HERMES pathfinder S/M

- PFM integration planned @POLIMI in Q1 2023, qualification test planned for Q1 2023
- FM2, FM3 integration and test planned for Q1-Q2 2023
- FM4, FM5 and FM6 integration and test planned for Q2-Q3 2023

防伤伤伤

Where we are: HERMES Pathfinder program

- Virgin Orbit, lauch date June 2024
- Melbourne and partly funded by AHEAD2020.

• Launch contract negotiation on going, Contract signature Q42022. Launcher:

 MOC deployment contract under negotiation. Three industrial operators are partecipating to the bid. Contract signature predicted by the end of the year 2022. A contract for operations will be issued to the same industrial operator.

 Ground Station implementations: two identical dedicated GS, one in Malindi managed by ASI, one in Katherine (NT, AU), managed by a consortium led by INAF and including Masaryk University, University of Tasmania, University of

HERMES PF expected performances

Background: 50-300 keV ~75cts/s; 100-500 keV~35cts/s; 3-20 keV 390counts/s HERMES vs. GBM: half collecting area but ~1/3 lower background and soft energy band. Campana et al. 2020

Performances

Long

Ghirlanda & Nava

Short

S Star Autron ろ

Localization performances $\sigma_{Pos} = 2.4^{\circ} [(\sigma_{CCF}^2 + \sigma_{sys}^2)/(N-3)]^{0.5}$

~7000km N(pathfinder)~6-8, active simultaneously 3-4 $\sigma_{Pos} \sim 2.4 \deg$ if $\sigma_{CCF}, \sigma_{sys} \sim 1ms$

Goal for a real observatory (more units, longer baseline) $\sigma_{Pos(FC)} \sim 15 \operatorname{arcmin} if \sigma_{CCF}, \sigma_{sys} \sim 1ms$

Next steps

- Toward a sensitive all sky monitor during the 20':
- First phase: crash program to deploy in LEO 6-8 units (6-12U) in three **years** to provide a first all-sky monitor for Ligo/Virgo O5 events
- Second phase: deploy additional 6-10 units (6-12U) after ~2 years to boost monitoring and localization capabilities during Ligo/Virgo O5 - O6... ET!
- Third phase: deploy a few units in HEO or Moon orbits to boost localization capabilities

Next steps

- Toward a sensitive all sky monitor during the 20':
- First phase: crash program to deploy in LEO 6-8 units (6-12U) in three **years** to provide a first all-sky monitor for Ligo/Virgo O5 events
- Second phase: deploy additional 6-10 units (6-12U) after ~2 years to boost monitoring and localization capabilities during Ligo/Virgo O5 - O6... ET!
- Third phase: deploy a few units in HEO or Moon orbits to boost localization capabilities

Next steps

- Toward a sensitive all sky monitor during the 20':
- First phase: crash program to deploy in LEO 6-8 units (6-12U) in three **years** to provide a first all-sky monitor for Ligo/Virgo O5 events
- Second phase: deploy additional 6-10 units (6-12U) after ~2 years to boost monitoring and localization capabilities during Ligo/Virgo O5 - O6... ET!
- Third phase: deploy a few units in HEO or Moon orbits to boost localization capabilities

- INAF, ASI, PoliMi, UniCagliari, UniPalermo, UniUdine, INFN, UniTrieste, UniPavia, UniFedericoII, UniFerrara, FBK, FPM
- University of Tubingen (Germany)
- University of Eotvos Budapest, C3S (Hungary), MUNI (CZ)
- University of Nova Gorica, Skylabs, AALTA (Slovenia)
- Deimos (Spain)
- Institute of High Energy Physics, Chinese Academy of Science

HERMES PF Institutes

A flash in the dark: GRB and high-z galaxies cosmic blasts spotting distant galaxies

JWST luminosity functions and SFRd evolution

Bouwens+2022

Dusty winds clears up JWST galaxies

Fiore+2022

Dusty winds clears up JWST galaxies

Fiore+2022

