Probing high-z GRBs with X-ray spectroscopy

Luigi Piro IAPS/INAF collaborators: A.Thakur, A. Luminari, F. Nicastro

Luigi Piro

Outline

- GRB as beacons into the Dark high-z universe
- Early Universe: primordial (popIII) vs popII star populations and metal enrichment
- X-ray <u>absorption spectroscopy</u> as a probe
- Time variable photoionization codes
- What a popIII-GRB might look like
- Future perspectives with (new)Athena

The Brightest Beacons

Luigi Piro

The first stars, the first BH, the first metals

A dominant proportion of high-z star formation takes place in galaxies <u>beyond the reach of JWST (either</u> too faint or too distant) ; their nature will hardly be known, but **they will be GRB hosts**.

 There will likely be no direct detections of population III sources; pop III collapsars predicted to produce GRB-like events.

Luigi Piro

GRBs: pathways to "unvisible" protogalaxies

Luigi Piro

Pop III

- Z<Zcr $\approx 10^{-4}$ formation of clouds M>100 Msun
- the final mass popIII: gas accretion vs radiation feedback, typical ~40-50 Msun but [10-1000 Msun] possible

Schneider 2005

exiaps 💽 🛤

ightarrow

Luigi Piro

popIII-popII transition

• Chemical enrichment is highly inhomengenous: popIII and popII coexhists for a long period

Tornatore et al 2007

z=5

Luigi Piro

popIII vs popII

popII GRBs are expected to exist at redshifts $z\sim15-20$ and popIII are expected to form down to z<2.5

Bromm&Loeb 2006

😹 🧑 🎬

Luigi Piro

History of metal enrichment

Fractional metal enrichment by popIII stars

Jaacks et al 2019

Luigi Piro

Probing the history of metal enrichment with GRBs

popIII explosion in pristine environment

popIII and popII explosion in popIIIenriched environment

popII enrichment

popII explosion in popII-enriched environment

15-20<z<5 popIII and popII GRBs in popIII environment 15<z popII GRBs in popII environment

Luigi Piro

popIII vs popII metal enrichment

Luigi Piro

popIII vs popII metal enrichment

- the abundance pattern of ejecta following the evolution and explosion of metal-free stars with masses 10 100 M^o. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd- Z elements.
- The helium core dominates in determining the synthesis of abundant elements. Reducing the metallicity reduces the synthesis of odd-Z elements and neutron-rich isotopes because the neutron excess after helium burning depends on the initial abundance of C N O.
- Note that the odd/even effect is large (upto a factor of 10 in relative abundance odd/even elements).
- Heavier elements yields depends on the low mass cut off, paucity of heavier
 elements at M> 40 M^o that can be used to determine the IMF of popIII star
- Caveat: Model dependant (mixing/nomixing, explosion assumptions)

Determining Environments with GRBs

Afterglow spectroscopy can provide redshift, chemical abundances, dust, & molecular content

Luigi Piro

X-ray absorption in GRBs

Present sample (393) of SWIFT GRB with measured z

Luigi Piro

X-rays probe the close ionized environment

æiaps 🕠 🚟

Luigi Piro

Neutral absorption using the optical

Correct for ionisation fraction

Location of absorbers

TEPID: Code outline

Time-Evolving PhotoIonisation Device Work flow of TEPID:

1. Input quantities:

Lightcurve/Luminosity Gas density Initial ionic abundances

Temporal evolution of the ionisation and temperature of the surrounding ISM

Time-resolved optical to Xray spectra as a function of the ISM density and distance

Luminari et al, 2022

PopIII environment at the formation

- Density >1e4 cm-3
- Formation of AD
- Column densities
 >10²⁴ cm⁻²

Hosokawa et al 2016

density [/cc]

(right-half)

1.0e+10

3.2e+08

1.0e+07

3.2e+05

1.0e+04

22000 Al

High-z GRBs in the JWST era- Sesto Jan.10, 2023

M_{*} = 33.1 M_☉

PopIII environment at the explosion

- Radiation pressure may evacuate the circumstar region, depending on the halo mass (initial density)
- Density 1-10⁴ cm⁻³
 - Kitayama et al 2004

The case of a high-z GRB

NH=8 10²² cm-2, n=10-1000, constant density,

Lion=observed (typeII) GRB

😹 🧑 🕅

Luigi Piro

Ionization of the close environment for pristine, popIII and popII

🐹 aps 💽 🕅

Luigi Piro

Ionization of the close environment for pristine, popIII and popII

🔉 🔊 🔛

Luigi Piro

Caveat: overall absorption assume same dilution factor in various environs, not affecting line ratios diagnostics.

Luigi Piro

popIII vs popII metal enrichment

exiaps 💽

Luigi Piro

Follow-up of high-z GRB with (new)Athena Narrow & weak X-ray lines require new capabilities

🔉 💽 🍋

Luigi Piro

popIII GRBs

Suwa&Ioka 2011

🔉 🔅 🎬

Luigi Piro

Ultralong GRB: a popIII analogue?

Ultralong as proxy popIII GRBs

- Low metallicity Blue SuperGiant (Gendre et al. 13) => low mass rate, external stellar layers able to fuel central engine for
- t_{ff} ≈ 10⁴R₁₂^{3/2}M₅₀^{-1/2} s
 Evidence of afterglow with very low density wind and hot thermal cocoon associated to low metallicity BSG (LP et al 2014)
 Close (z<0.7) and few

Conclusions

- Identifying the size of formation of the first stars and metals in the Universe => Transformational science
- A few high-z events worth many thousands
- High-z GRBs and popIII GRBs and history of metal enrichment require high-resolution spectroscopy in Xrays =>new-Athena