

High-redshift long GRBs

Their rate and production efficiency from modelling and observations

> In collaboration with: Susanna D. Vergani Frédéric Daigne Ruben Salvaterra Jure Japelj

High-redshift Gamma-Ray Bursts in the JWST era 9th-13th of January 2023, Sexten, Italy

Outline

- 1. Long GRBs: a most promising probe of our Universe up to the highest redshifts
- 2. The issue of their progenitors and their production efficiency from stars
- 3. Deriving the rate and production efficiency of LGRBs by modelling their intrinsic population
- 4. Studying the factors driving this production efficiency through observations (at z < 2)

Outline

- 1. Long GRBs: a most promising probe of our Universe up to the highest redshifts
- The issue of their progenitors and their production efficiency from stars
- 3. Deriving the rate and production efficiency of LGRBs by modelling their intrinsic population
- 4. Studying the factors driving this production efficiency through observations (at z < 2)

GRBs: unique probes

- Produced up to highest redshift z = 8.2 confirmed spectroscopically, predicted up to first stars at z > 15
- Detected in hard X-rays / soft γ -rays
 - → prompt is largely unaffected by dust/hydrogen
- Bright, transient, fading afterglow
 - → benefit from time dilation at high redshift

LGRBs and massive stars

 Long GRBs are associated to the deaths of (certain) massive stars: <u>collapsar</u> model

LGRBs and massive stars

 Long GRBs are associated to the deaths of (certain) massive stars: <u>collapsar</u> model

GRBs: case-by-case probes

• GRB afterglows allow to exquisitely study individual sightlines (like quasars)

GRBs: case-by-case probes

- GRB afterglows allow to exquisitely study individual sightlines (like quasars)
- But also uniquely the gas <u>inside</u> star forming regions at high redshift (see talk by A. Saccardi)

- Populations/samples of GRBs can be used to study the Universe statistically
- Basic data: rate, sky position, duration, brightness/spectrum (in γ-rays)

- Populations/samples of GRBs can be used to study the Universe statistically
- Basic data: rate, sky position, duration, brightness/spectrum (in γ-rays)

- Populations/samples of GRBs can be used to study the Universe statistically
- Basic data: rate, sky position, duration, brightness/spectrum (in γ-rays)
- If successful optical/NIR follow-up: redshift/distance
 - → Crucial for full scientific potential of GRBs to be exploited

- Populations/samples of GRBs can be used to study the Universe statistically
- Basic data: rate, sky position, duration, brightness/spectrum (in γ-rays)
- If successful optical/NIR follow-up: redshift/distance
 - → Crucial for full scientific potential of GRBs to be exploited
- Statistically very powerful but <u>require</u> unbiasedness, completeness (See talks by G. Ghirlanda or N. Tanvir for good examples)
- Can be limited by sample size

Outline

- 1. Long GRBs: a most promising probe of our Universe up to the highest redshifts
- 2. The issue of their progenitors and their production efficiency from stars
- 3. Deriving the rate and production efficiency of LGRBs by modelling their intrinsic population
- 4. Studying the factors driving this production efficiency through observations (at z < 2)

LGRBs and star formation

- Long GRBs are associated to the deaths of (certain) massive stars: collapsar model
- Their rate is linked to the star-formation rate (SFR) since massive stars die rapidly (~1-10 Myr)
- By studying statistically the population of LGRBs and estimating their cosmic formation rate we could, in theory estimate the SFR
- But in order to do this we <u>must</u> understand this link (not trivial!)

Link between LGRB & SFR

- Properties of progenitor star:
 - mass range
 - initial rotation distribution
 - metallicity distribution
 - binarity
- Properties of the LGRB population:
 - luminosity evolution
 - spectrum evolution
 - jet opening angle

LGRB production efficiency

→ Fraction of core-collapses that give rise to an LGRB (pointing in our direction)

LGRB production efficiency

Production efficiency

$$\dot{n}_{\rm LGRB}(z) = \eta(z) \, \dot{n}_{\rm cc}(z)$$

$$[\mathrm{yr}^{-1}\,\mathrm{Mpc}^{-3}]$$

$$\dot{n}_{
m cc}(z) \propto \dot{
ho}_*(z)$$
 (see later for details)

→ Core-collapse rate density is proportional to cosmic SFR density

Outline

- 1. Long GRBs: a most promising probe of our Universe up to the highest redshifts
- 2. The issue of their progenitors and their production efficiency from stars
- 3. Deriving the rate and production efficiency of LGRBs by modelling their intrinsic population
- 4. Studying the factors driving this production efficiency through observations (at z < 2)

LGRB population model

Palmerio & Daigne 2021

- Overcome the limitations of biased or incomplete samples by modelling the underlying intrinsic population and fitting it to carefully selected observational samples
- Forward-folding approach, flexible but parametric (limited by parameter space exploration)
- It allows us to address questions such as:
 - What is the intrinsic redshift distribution of LGRBs?
 - What does this imply for the LGRB production efficiency?

Describing an LGRB

Temporal: T₉₀ C_{var}

Schechter function

$$\phi(L) \propto \begin{cases} \left(\frac{L}{L_*}\right)^{-p} \times \exp\left(-\frac{L}{L_*}\right) & L > L_{\min} \\ 0 & L \leq L_{\min} \end{cases}$$

Redshift evolution?

$$\propto (1+z)^{k_{\rm evol}}$$

Log-Normal

$$\text{Log-}\mathcal{N}(E_{p0}, \sigma_{\mathrm{E}_{\mathrm{p}}})$$

Intrinsic correlation

$$E_p = E_{p0} \left(\frac{L}{L_0}\right)^{\alpha_{\rm A}}$$

Luminosity: Liso

Spectrum:

 E_{peak}

 α β

Redshift:

2

Broken exponential

$$\dot{n}_{\rm LGRB}(z) \propto \begin{cases} e^{az} & z < z_m \\ e^{bz} e^{(a-b)z_m} & z \ge z_m \end{cases}$$

Schechter function

$$\phi(L) \propto \begin{cases} \left(\frac{L}{L_*}\right)^{-p} \times \exp\left(-\frac{L}{L_*}\right) & L > L_{\min} \\ 0 & L \leq L_{\min} \end{cases}$$

Redshift evolution?

$$\propto (1+z)^{k_{\rm evol}}$$

Luminosity: Liso

Spectrum:

 E_{peak}

 α β

Redshift:

2

Broken exponential

$$\dot{n}_{\text{LGRB}}(z) \propto egin{cases} e^{az} & z < z_m \ e^{bz} \, e^{(a-b)z_m} & z \geq z_m \end{cases}$$

Population

Luminosity: Liso

Spectrum: Epeak

 α β

Redshift: 2

Population

Mock sample

Real sample

(i.e. observational constraints)

Luminosity: Liso

Spectrum: Epeak

 α β

Redshift: 2

Population

Mock sample

Real sample

(i.e. observational constraints)

Luminosity: Liso

Spectrum: Epeak

 α β

Redshift: 2

Intensity
Spectral
Distance

• Intensity constraint: $\log N - \log P$

- Observed peak flux distribution based on ~3300 LGRBs detected by *CGRO*/BATSE over 9.1 years (on board trigger + offline search, Stern+01)

- Corrected for fraction of sky observed, live time of the search

and detection efficiency

• Intensity constraint: $\log N - \log P$

- Spectral constraint: E_{pobs}
 - Observed peak energy distribution of ~1000 bright LGRBs

with $N_{50-300\,\mathrm{keV}}^{\mathrm{pk}} \geq 0.9\,\mathrm{ph\,s^{-1}\,cm^{-2}}$ from $Fermi/\mathrm{GBM}$ (Gruber+14, Bhat+16)

• Intensity constraint: $\log N - \log P$

• Spectral constraint: E_{pobs}

- <u>Distance constraint:</u> z
 - Redshift distribution of extended BAT6 (Pescalli+16)
 - 82 LGRBs (82% completeness) with $N_{15-150\,\mathrm{keV}}^\mathrm{pk} \geq 2.6\,\mathrm{ph\,s^{-1}\,cm^{-2}}$ detected by *Swift/BAT* and favorable observing conditions

• Intensity constraint: $\log N - \log P$

• Spectral constraint: E_{pobs}

• Distance constraint: *z*

→ We fit these constraints using MCMC and a Bayesian framework for a variety of different scenarios

Results

- We tested 4 different "strengths" of redshift evolution of the luminosity function: $k_{\text{evol}} = 0, 0.5, 1, 2$
- All models can provide good fits to the data

Results

- We tested 4 different "strengths" of redshift evolution of the luminosity function: $k_{\text{evol}} = 0, 0.5, 1, 2$
- All models can provide good fits to the data
 - Strong degeneracy between cosmic evolution of the LGRB luminosity function and cosmic evolution of the LGRB rate

LGRB production efficiency

- Models suggest a higher production efficiency η at higher redshift (except for the case with strong luminosity evolution)
- Compare to the fraction of star-formation that occurs below a given metallicity threshold (Langer & Norman 2006)

$$\dot{n}_{\rm LGRB}(z) = \eta(z) \, \dot{n}_{\rm cc}(z)$$

$$\dot{n}_{
m cc}(z) \propto \dot{
ho}_*(z)$$

$$\dot{n}_{\mathrm{LGRB}}(z) = \eta(z) \, \dot{n}_{\mathrm{cc}}(z)$$

$$\dot{n}_{
m cc}(z) \propto \dot{
ho}_*(z)$$

$$\dot{n}_{\rm cc}(z) = \frac{p_{\rm cc}(z)}{\bar{m}(z)} \dot{\rho}_*(z)$$

Number of core-collapses per unit of stellar mass produced

$$\dot{n}_{\mathrm{LGRB}}(z) = \eta(z) \, \dot{n}_{\mathrm{cc}}(z)$$

$$\dot{n}_{
m cc}(z) \propto \dot{
ho}_*(z)$$

$$\dot{n}_{\mathrm{cc}}(z) = rac{p_{\mathrm{cc}}(z)}{\bar{m}(z)} \dot{
ho}_{st}(z)$$

$$p_{\rm cc}(z) = \int_{m_{\rm cc}}^{m_{\rm sup}} I(m, z) \, \mathrm{d}m$$

$$ar{m}(z) = \int_{m_{ ext{inf}}}^{m_{ ext{sup}}} m \, I(m,z) \, \mathrm{d}m$$

$$\dot{n}_{\mathrm{LGRB}}(z) = \eta(z) \, \dot{n}_{\mathrm{cc}}(z)$$

$$\dot{n}_{
m cc}(z) \propto \dot{
ho}_*(z)$$

→ Some evolution (but not all) could be due to the evolution of the IMF

High z LGRB rate

High z LGRB rate

High z LGRB rate

• Number of LGRB per year in whole sky at z > 6:

Limiting peak flux (4-120 keV)	$1 \mathrm{\ ph/s/cm^2}$	$0.1~\mathrm{ph/s/cm^2}$
Optimist ($k_{ m evol}=0$)	~ 10	~ 100
Pessimist ($k_{ m evol}=2$)	6^{+1}_{-2}	30^{+20}_{-10}

Outline

- 1. Long GRBs: a most promising probe of our Universe up to the highest redshifts
- 2. The issue of their progenitors and their production efficiency from stars
- Deriving the rate and production efficiency of LGRBs by modelling their intrinsic population
- 4. Studying the factors driving this production efficiency through observations (at z < 2)

Factors driving production efficiency

- To determine the main factors driving the LGRB production efficiency we can statistically study their environment (i.e. their host galaxies)
- We must pay careful attention to selection to avoid biases and ensure high completeness
- Our sample: BAT6 (Salvaterra+12) with a selection on peak flux of γ -ray prompt emission and unbiasing favorable observing conditions* (Jakobsson+06)
 - \Rightarrow 58 LGRBs with 97% redshift completeness extends up to z = 6
 - \implies We study the host galaxies of these LGRBs up to z = 2 (N=28)
 - → Hosts are not selected according to their flux and thus unbiased

• Deep medium resolution spectra and photometry for all 28 hosts to characterize their properties:

- Deep medium resort to characterize the
 - Stellar mass

 Deep medium resolution to characterize their presentation

- Stellar mass (from SED fi

- Star formation rate

• Deep medium resolution spectra and photometry for all 28 hosts

to characterize their prope

- Stellar mass (from SED fitting)

- Star formation rate (from d

- Metallicities

- Deep medium resolution spectra and photometry for all 28 hosts to characterize their properties:
 - Stellar mass (from SED fitting)

- Star formation rate (from dust-corrected Hα)

- Metallicities (from strong-line ratios)

Comparison sample

• MOSFIRE Deep Evolution Field (MOSDEF) is a deep (H \leq 24) near-infrared spectroscopic survey at medium z

Kriek+15 Shivaei+15 Sanders+18

• 133 galaxies at 1.37 < z < 1.7, with rest-frame optical emission lines

Image Credit: Ethan Tweedie

Methodology

- Similar redshift range
- Same cosmology
- Same stellar mass completeness
- Same stellar Initial Mass Function (IMF) for determining the stellar mass and SFR (Chabrier+03)
- Same SFR diagnostic (dust-corrected Hα)
- Same strong-line ratios to determine the metallicity (Maiolino+08) (using [OII]3727; [OIII]4059,5007; Balmer lines; [NII]6583)

Results at 1 < z < 2

 Compared CDF of LGRB hosts to SFR-weighted CDF of typical star-forming galaxies

Results at 1 < z < 2

• Bayesian approach coupled with Monte Carlo sampling to take into account measurement uncertainty

Results at 1 < z < 2

• Metallicity is a driving factor of the LGRB production efficiency (Kruehler+15, Japelj+16, Perley+16)

Conclusions

- LGRBs are not direct tracers of star formation at z < 2
- Applying a metallicity cut of 70% solar resolves the discrepancy implying metallicity is a driving factor behind the LGRB efficiency
- We therefore expect LGRBs to trace SF at z > 3-4
- Interpreted in the context of LGRB progenitors, the metallicity threshold is higher than expected from single star models $(Z < 0.7 Z_{\odot} \text{ vs } Z < 0.2 Z_{\odot})$
 - ⇒ Binary star LGRB progenitor? Multiple channels?

Discussion

- There is uncertainty on strong line calibrators absolute metallicity values (dependence on photoionisation models)
- Oxygen measured and Z obtained by assuming solar scaling
- Fe is driver of winds for WR in single star progenitor models. Young galaxies with [O/Fe] > 0.5 could reconcile high metallicity threshold (Hashimoto+18)
 - \rightarrow Absolute metallicity threshold (Z < 0.7 Z $_{\odot}$) is uncertain
 - → BUT same methodology means robust results for metallicity being driving factor of the LGRB efficiency

Discussion

• Discrepancy at z > 3-4 with metallicity as driver of production efficiency

Redshift distribution of intrinsic population requires additional break?

(hard to constrain with current samples/datasets)

- Other factors become dominant at this redshift?

 (sSFR, binarity, initial rotation...)
- IMF evolution?
- Underestimating cosmic SFRD?

Summary

- GRBs are powerful unique probes of the Universe, up to high redshift
- If we want to go beyond case-by-case studies, we need large-enough, unbiased, complete statistical samples. This is <u>hard</u> and requires well-designed, efficient follow-up (SVOM is expected to help)
- Rate of high redshift LGRBs remains uncertain because of degeneracies with the evolution of the luminosity function (SVOM, THESEUS?)
- LGRB production efficiency seems to evolve with redshift and (at least) at z < 2, metallicity is its main driving factor
- If this holds at higher *z* and other factors don't play a significant role, LGRB rate could be used to estimate the SFR at these redshifts

Extra slides

Benefit of fading at high z

Observing 1 day after the prompt emission on Earth corresponds to, in the source frame:

- 6h if the source is at z = 3
- 2h if the source is at z = 10

We are therefore catching the afterglow earlier in its light curve (and thus brighter since it is fading) as redshift increases

This almost compensates cosmological dimming

Lamb & Reichart+00

Population model extras

Separating into z bins

Separating into z bins

Peak flux/fluence cut mimics the effect of luminosity evolution

Separating into z bins

Using SHOALS

How to lift the degeneracy?

Spectral correlations eBAT6 observed Ep - L plane

Spectral correlations

Mock eBAT6 <u>predicted</u> Ep - L plane

Observed

$$k_{\text{evol}} = 0$$

$k_{\text{evol}} = 2$

Peak flux threshold for spectral constraint

Band spectral model

MCMC exploration

Challenges of statistical studies

Selection biases

Completeness

Sample size

LGRB host galaxies extras

Prompt/host correlation

Favorable observing conditions

- Burst was well localised by *Swift/XRT* and the information was distributed quickly
- Low galactic extinction (A_{ν} < 0.5)
- Burst declination is between -70° and +70°
- Its angular distance to the sun is greater than 55°
- No nearby bright stars

Metallicity gradients in nearby LGRB hosts

