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1. Long GRBs: a most promising probe of our Universe up to the
highest redshifts

2. The issue of their progenitors and their production efficiency
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3. Deriving the rate and production efficiency of LGRBs by
modelling their intrinsic population

4. Studying the factors driving this production efliciency through
observations (at )
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Outline

1. Long GRBs: a most promising probe of our Universe up to the
highest redshifts
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GRBSs: unique probes

e Produced up to highest redshift

z = 8.2 confirmed spectroscopically, predicted up to first stars at 2 > 15

e Detected in hard X-rays / soft y-rays
= prompt is largely unaffected by dust/hydrogen

e Bright, transient, fading afterglow
= benefit from time dilation at high redshift
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LGRBs and massive stars

- Long GRBs are associated to the deaths of (certain) massive
stars: collapsar model

GRB060505,
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LGRBs and massive stars

- Long GRBs are associated to the deaths of (certain) massive
stars: collapsar model

GRB060505,
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GRBSs: case-by-case probes

e GRB afterglows allow to exquisitely study individual sightlines gike quasars)

Forest IGM)

Ly-limit
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GRBSs: case-by-case probes

e GRB afterglows allow to exquisitely study individual sightlines gike quasars)

e But also uniquely the gas inside star forming regions at high redshift
(see talk by A. Saccardi)
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GRBs: statistical probes

e Populations/samples of GRBs can be used to study the Universe
statistically

e Basic data: rate, sky position, duration, brightness/spectrum (n y-rays)
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GRBs: statistical probes

e Populations/samples of GRBs can be used to study the Universe
statistically

e Basic data: rate, sky position, duration, brightness/spectrum (n y-rays)

2704 BATSE Gamma-Ray Bursts

Fluence, 50-300 keV (ergs cm™)
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GRBs: statistical probes

e Populations/samples of GRBs can be used to study the Universe
statistically

e Basic data: rate, sky position, duration, brightness/spectrum (n y-rays)
o If successful optical/NIR follow-up: redshift/distance

= Crucial for full scientific potential of GRBs to be exploited
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GRBs: statistical probes

Populations/samples of GRBs can be used to study the Universe
statistically

Basic data: rate, sky position, duration, brightness/spectrum (n y-rays)
If successful optical/NIR follow-up: redshift/distance
= Crucial for full scientific potential of GRBs to be exploited

Statistically very powerful but require unbiasedness, completeness
(See talks by G. Ghirlanda or N. Tanvir for good examples)

Can be limited by sample size
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Outline

2. The issue of their progenitors and their production efficiency
from stars
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LGRBs and star formation

e Long GRBs are associated to the deaths of (certain) massive
stars: collapsar model

e Their rate is linked to the ( ) since massive
stars die rapidly (~1-10 Myr)

e By studying statistically the population of LGRBs and estimating
their cosmic formation rate we could, in theory estimate the

e But in order to do this we must understand this link (not trivial!)
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Link between LGRB & SFR

e Properties of progenitor star:
- Inass range
- initial rotation distribution
- metallicity distribution
- binarity

e Properties of the LGRB population:
- luminosity evolution
- spectrum evolution
- jet opening angle

09/01/2023 Jesse T. Palmerio
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LGRB production efficiency

Production efficiency

LGRBs Core-collapses

N\ e

nLGRB ncc [yr_l Mpc—g]

N/

Comoving rate density

(number of events per year per comoving volume)

= Fraction of core-collapses that give rise to an LGRB (pointing in our direction)
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LGRB production efficiency

Production efficiency

7iLGRB (Z) — 77(2) hcc(z) [yr_l Mpc—g]

= Core-collapse rate density is proportional to cosmic density
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Outline

3. Deriving the rate and production efficiency of LGRBs by
modelling their intrinsic population
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e Overcome the limitations of biased or incomplete samples by
modelling the underlying intrinsic population and fitting it to
carefully selected observational samples

e Forward-folding approach, flexible but parametric (limited by
parameter space exploration)

e It allows us to address questions such as:
- What is the intrinsic redshift distribution of LGRBs?
- What does this imply for the LGRB production efficiency?
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Describing an LGRB

/ A

Luminosity: L.

o Spectrum:

o p
Redshift: 2

" ? Temporal: 79 C@

3 .._ - ‘. " .- - .' J ,,:. z .
credit : NASA/Swift/Mary Pat
Hrybyk-Keith and John Jones
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Population scheme

&(L) {(LL>p o (_LL) L> Lnin Log-N(Epo, 0E,)
0 L < Lin
A
(14 2 - pa (L)
0]

—

Guminosity: \

Broken exponential

Spectrum:

e?” z < Zm
ebz 6(a—b)zm z> 2

o nLeRB(2) {
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Population scheme

Schechter function

— Vangioni+15
_ * Behroozi+13
(L> g X exp (—L) L > Ly AP X Bouwens+14b
min PN
(/b(L) X = = B *(Oesch+14a
0 L S Lmin | F W

Redshift evolution?
ox (1+ z)kevol

Luminosity:
Broken exponential
Spectrum: " .
“ s () o {ebz oD >,

Redshift:
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Population scheme

Population

Guminosityz \

Spectrum:
a

@edshift: J
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Population scheme

Population ‘
Compare

(i.e. observational constraints)

Real sample J

Guminosity: \

Spectrum:
a

Q{edshift: j
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Population scheme

Population ‘
Compare

(i.e. observational constraints)

Guminosity: \ K Intensity \

Spectrum: Spectral
a

Real sample J

Q{edshift: J \ Distance J
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Observational constraints

e Intensity constraint: log V- log P
- Observed peak flux distribution based on ~3300 LGRBs detected
by CGRO/ BATSE over 9.1 YEAI'S (on board trigger + offline search, Stern+01)

- Corrected for fraction of sky observed, live time of the search
and detection efficiency Intensity constraint

-2 -1 T+
2.5F0.1phem™“s +

1071 ) 10V 10
pk 2 —1
N5y 300 kev phem™ s
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Observational constraints

e Intensity constraint: log V- log P

e Spectral constraint: Epobs

- Observed peak energy distribution of ~1000 bright LGRBs
with N2 . .oy > 0.9phs~' cm—2 Spectral constraint

from Fer mz/ GBM (Gruber+14, Bhat+16)
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Observational constraints

e Intensity constraint: log N-log P

e Spectral constraint: £pobs

Redshift constraint

e Distance constraint: =z
- Redshift distribution of extended BAT6

Z

(Pescalli+16) é

- 82 LGRBs (82% completeness) with :
k _ B =
Nis_150kev = 2-6phs fem™? i

detected by Swift/BAT and favorable
observing conditions
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Observational constraints

e Intensity constraint: log V- log P

e Spectral constraint: £pobs

e Distance constraint: 2

= We fit these constraints using MCMC and a Bayesian framework
for a variety of different scenarios

09/01/2023 Jesse T. Palmerio
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Results

e We tested 4 different “strengths” of redshift evolution of the
luminosity function: k..o = 0, 0.5, 1, 2

e All models can provide good fits to the data
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Results

e We tested 4 different “strengths” of redshift evolution of the
luminosity function: ke,o1 = 0, 0.5, 1, 2

e All models can provide good fits to the data

= Strong degeneracy between cosmic evolution of the LGRB
luminosity function and cosmic evolution of the LGRB rate

oo OO
o O
Ut

[N

—_
)
L

S
4o
o r—
p)
-
)
A

5 51 52 53
log Luminosity |erg/s|

4 6
Redshift (z)

09/01/2023 Jesse T. Palmerio 31



LGRB production efficiency

e Models suggest a higher production efficiency » at higher redshift

(except for the case with strong luminosity evolution)

e Compare to the fraction of star-formation that occurs below a given
metallicity threshold (Langer & Norman 2006)

Redshift (z)
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Limitations

NLGRB(2) = 1(2) Ncc(2)

Tee(2) X P (2)

09/01/2023 Jesse T. Palmerio
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Limitations

NLGRB(2) = 1(2) Ncc(2)

Tee(2) X P (2)

ij;((j)) pul2)

|

Number of core-collapses per
unit of stellar mass produced

Nee(2) =

09/01/2023 Jesse T. Palmerio



Limitations

NLGRB(2) = 1(2) Ncc(2)

Tee(2) X P (2)

TLCC(Z) B TTL(Z) IO*(Z) - 100 M,
\ m(z) :/ m I(m, z)dm
TN
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Limitations

NLGRB(2) = 1(2) Ncc(2)

Tee(2) X P (2)

pcc(z) — /msup I(m,z) dm
/ Mec
ec(2) = Pec(2) 5(2)
CC m(Z) X
\ m(z):/. pm[(m,z)dm

= Some evolution @ut not all) could be due to the evolution of the IMF
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High 2 LGRB rate

2-30 keV

4-120 keV
——— 15-150 keV
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High 2 LGRB rate

THESEUS kevol =0 2-30 keV
4-120 keV

—— 15-150 keV
SVOM/ECLAIRs — 50-300 keV

Swift/BAT

CGRO/BATSE
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High 2 LGRB rate

e Number of LGRB per year in whole sky at

Limiting peak flux (4-120 keV)| 1 ph/s/cm? | 0.1 ph/s/cm?

Optimist (kevot = 0) ~ 10 ~ 100

Pessimist (kevol = 2) 6J—r% 30t%8

THESEUS Kevol = 0 2-30 koV
4-120 keV

15-150 keV
SVOM/ECLAIRs 50-300 keV
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Outline

4. Studying the factors driving this production efliciency through
observations (at )
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Factors driving production efficiency

e To determine the main factors driving the LGRB production efficiency we
can statistically study their environment (i.e. their host galaxies)

e We must pay careful attention to selection to avoid biases and ensure high
completeness

e Our sample: BAT6 (salvaterra+12) with a selection on peak flux of y-ray prompt
emission and unbiasing favorable observing conditions* (jakobsson+06)

= 58 LGRBs with 97% redshift completeness extends up to
= We study the host galaxies of these LGRBs up to (N=28)

= Hosts are not selected according to their flux and thus unbiased

*see backup slide
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LGRB hosts sample

e Deep medium resolution spectra and photometry for all 28 hosts
to characterize their properties:

H-beta [OI11]4959 [OI11]5007

GRBO70306 2= 1.497 credit: S. D. Vergani
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LGRB hosts sample

¢ Deep medium resq —
to characterize the P

X2 = 2.48

AV UN 1

10*

Observed wavelength [A]
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LGRB hosts sample

e Deep medium resoluti giistinSeitites E———
tO CharaCterize their p | Flux = 39.3 &+ 1.2 x le-17 erg / (cm2 s)

GRB061121
- (from SED fi

V)

Flux [erg/s/cm?/A]

15200 15:

Wavelength [A]
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LGRB hosts sample

e Deep medium resolution spectra and photometry for all 28 hosts
to characterize their prope

GRB070306 — R23
—— OIlIb/Hb

. OIT/Hb

. —— OIIIb/OII

- (from SED ﬁttlng) NeIII//OII
NII/Ha

OITTh /NI

7 = 8.43+003
- from d ) - ,
( g AN 152704,

1 1
8.0 8.9

12 + log(O/H)
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LGRB hosts sample

e Deep medium resolution spectra and photometry for all 28 hosts
to characterize their properties:

= (from SED fitting)

- (from dust-corrected Ho)

- (from strong-line ratios)

09/01/2023 Jesse T. Palmerio
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Comparison sample

Kriek+15

e MOSFIRE Deep Evolution Field (MOSDEF) is a deep (H < 24) ...
near-infrared spectroscopic survey at medium 2 Sanders+18

e 133 galaxies at 1.37 < z < 1.7, with rest-frame optical emission lines

Image Credit: Ethan Tweedie
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Methodology

Similar redshift range
Same cosmology
Same completeness

Same stellar Initial Mass Function (IMF) for determining

the and (Chabrier+03)
Same diagnostic (dust-corrected Ha)
Same strong-line ratios to determine the (Maiolino+08)

(using [OII]3727; [OIII]4059,5007; Balmer lines; [NII]6583)

Jesse T. Palmerio
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Results at

e Compared CDF of LGRB hosts to
star-forming galaxies
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Resultsat1<z<?2

e Bayesian approach coupled with Monte Carlo sampling to take
Into account measurement uncertainty
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Resultsat1<z<?2

o is a driving factor of the
(Kruehler+15, Japelj+16, Perley+16)
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Conclusions

e [.GRBs are not direct tracers of star formation at

e Applying a cut of 70% solar resolves the discrepancy
implying metallicity is a driving factor behind the LGRB efficiency

e We therefore expect LGRBs to trace SF at

e Interpreted in the context of LGRB progenitors, the metallicity
threshold is higher than expected from single star models
(Z<0.7Z0VSZ<0.27Zc)

= Binary star LGRB progenitor? Multiple channels?
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Discussion

e There is uncertainty on strong line calibrators absolute metallicity
values (dependence on photoionisation models)

e Oxygen measured and Z obtained by assuming solar scaling

e Fe is driver of winds for WR in single star progenitor models. Young

galaxies with EO/ll;“e] > (0.5 could reconcile high metallicity threshold
Hashimoto+18)

= Absolute threshold (Z < 0.7 Z») is uncertain

= BUT same methodology means robust results for
being driving factor of the LGRB efficiency
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Discussion

Discrepancy at with as driver of production efficiency

Redshift distribution of intrinsic population requires additional break?

(hard to constrain with current samples/datasets)

Other factors become dominant
at this redshift?

(sSFR, binarity, initial rotation...)

IMF evolution?

Underestimating cosmic SFRD?

Redshift (z)
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Summary

GRBs are powerful unique probes of the Universe, up to high redshift

If we want to go beyond case-by-case studies, we need large-enough,
unbiased, complete statistical samples. This is hard and requires well-
designed, efficient follow-up (SVOM is expected to help)

Rate of high redshift LGRBs remains uncertain because of degeneracies
with the evolution of the luminosity function (SVOM, THESEUS?)

LGRB production efficiency seems to evolve with redshift and (at least)
at , is its main driving factor

If this holds at higher 2z and other factors don’t play a significant role,
LGRB rate could be used to estimate the at these redshifts
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Benefit of fading at high 2

Observing 1 day after the prompt emission on Earth corresponds to,
in the source frame:
- 6h if the sourceis at 2 =3
- 2h if the source is at 2 =10

We are therefore catching the
afterglow earlier in its light
curve (and thus brighter since it
is fading) as redshift increases
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This almost compensates - gy ()
cosmological dimming
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Separating into 2 bins

- - - No evolution

0<z<1
— ] <2 <2
— )< 2 <3
—_— 3 < 2 <10

52 H4
log L |erg/s]
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Separating into 2 bins

k 2 k

52 54
log L lerg/s| log L |erg/s| log L lerg/s]

09/01/2023

Peak flux/fluence cut mimics the effect of luminosity evolution
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Separating into 2 bins

k k
NI sorev = 2.6 ph/s/cm? NI sorev = 2.6 ph/s/cm?

C
C
C
C

| | |
W N = O

52 ‘ 54 50 52‘ 54
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Using SHOALS

4
Redshift (z)

Jesse T. Palmerio

Kevol = 0

Kevol = 0.5

Kevol = 1

Kevol = 2

SHOALS observed

- - - Entire intrinsic population
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How to lift the degeneracy?
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Spectral correlations
eBATG6 observed Ep - L plane
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Spectral correlations

Mock eBAT6 pred

ted Ep - L plane
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Peak flux threshold for spectral constraint

-+ Stern et al. 2001
<+ GBM [50-300 keV]

' 10V 10
D 9 1
N, 50—300 keV [Ph il =5 ]
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MCMC exploration

+0.13
Llnﬂl\ ) = 52.89 h%l

l ' Slope = 14702
ml op = 03125

0.03
' |I X Amati = 0511—004

X Amati
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Challenges of statistical studies

e Selection biases
e Completeness

e Sample size
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Prompt/host correlation

-1.5-1.0 -0.5 010 0.5 1.0 1.5 20 25 3.0 35 4.0
log(L"f‘,iso [1001 erg S_l ]) log(E"Y.-.peak [keV])
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Favorable observing conditions

e Burst was well localised by Swift/XRT and the information
was distributed quickly

e Low galactic extinction (4, <0.5)
e Burst declination is between -70° and +70°
e Its angular distance to the sun is greater than 55°

e No nearby bright stars
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Metallicity gradients in nearby LGRB hosts

N2S2 metallicity map
7h10m31.3s
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