

SEXTEN CENTER For ASTROPHYSICS RICCARDO GIACCON

Cosmic GRB formation rate studied on the largest homogeneous sample of bursts detected over a broad energy band

> Anastasia Tsvetkova University of Cagliari

HIGH REDSHIFT GAMMA-RAY-BURSTS IN THE JWST ERA Sexten, Italy 09-13 January 2023

Motivation

- ~450 GRBs with reliable z by 2023;
- The unbiased comparison between GRBs;
- Collapsar model implies that the GRB formation rate should in principle trace the cosmic star formation rate (SFR)
- Possibility to test GRB progenitor and emission models;

Luminosity and energy release functions

Without loss of generality, the total luminosity function (LF; number of bursts per unit luminosity) $\Phi(L_{iso}, z)$ can be rewritten as

$$\begin{split} \Phi(L_{\rm iso},z) &= \rho(z)\phi(L_{\rm iso}/g(z),\alpha_s)/g(z) & \text{Lloyd-Ronning (2002)} \\ \rho(z) - \text{GRB formation rate (GRBFR)} \\ \phi(L_{\rm iso}/g(z)) - \text{local LF} \\ g(z) &= (1+z)^{\delta} - \text{luminosity evolution (Lloyd-Ronning 2002)} \\ \alpha_s - \text{shape of the LF (Yonetoku 2004)} \end{split}$$

Examples of evolving astrophysical objects:

- Galaxies: the local luminosity function varies for early- and late-type galaxies (Marzke et al. 1994)
- Quasars: L ~ (1+z)³, z<1.5 (Boyle 1993; Hewett, Foltz, & Chaffee 1993);
- $L \sim (1+z)^{1.5}, z < 3$ (Hewett et al. 1993)

Luminosity (energy release) evolution

$$\tau = \frac{\sum_i (R_i - E_i)}{\sqrt{\sum_i V_i}}$$
$$E_i = (N_i + 1)/2$$
$$V_i = (N_i^2 - 1)/12$$

Luminosity evolution $g(z) = (1+z)^{\delta}$

Local (non-evolving) luminosity

$$L' = L/g(z)$$

Local LF (in the comoving frame)

 $\psi(L')(1+z)^{\delta_{\mathrm{L}}}$

$$L_{iso}: \tau_0 = 1.7 \quad \delta_L = 1.7^{+0.9}_{-0.9} (1\sigma \text{ CL})$$
$$E_{iso}: \tau_0 = 1.6 \quad \delta_E = 1.1^{+1.5}_{-0.7}$$

green squares: $S_{lim} = 4.3 \times 10^{-6} \text{ erg cm}^{-2}$.

GRBs were brighter in the past

Non-parametric statistical techniques for a truncated data sample

Associated sets:

$$\begin{array}{ll} \textbf{\textit{M}}_{i}: & J_{i}' = \{j | z_{j} < z_{i}, L_{j} > L_{\lim,i}, L_{i} > L_{\lim,j}\} \\ & L_{j} > L_{i}^{\lim} \iff z_{j}^{\lim} > z_{i} \end{array}$$

Cumulative GRB number

$$\ln \psi(z_i) = \sum_{j=2}^{i} \ln \left(1 + \frac{1}{M_j}\right)$$

 $N_{i}: J_{i} = \{j | L_{j} > L_{i}, L_{i} > L_{\lim,j}\}$ $\hat{J}_{i} = \{j | L_{j} \stackrel{\text{(i)}}{>} L_{i}, z_{j} < z_{\lim,i}\}$

$$\ln \psi(L'_i) = \sum_{j=2}^i \ln \left(1 + \frac{1}{N'_j}\right)$$

5

- The cosmic background temperature was higher;
- The metallicity was lower, which implies lower cooling rates and therefore higher temperatures on average;
- The heating rates were probably higher in the past because the SFR per unit volume was higher, leading to more intense radiation fields at high redshifts.

Main past, present, and future space-based missions for GRB science

Swift/BAT, Fermi/GBM, Konus-WIND

Table 1. Comparison of Konus-Wind, Swift-BAT, and Fermi-GBM properties.

	KW	BAT	GBM	
Crystal	NaI(Tl) CdZnTe		NaI(Tl)/BGO	
Number of detectors	2	_ a	12/2	
Diameter (cm)	12.7	-	12.7/12.7	
Thickness(cm)	7.5	-	1.27/12.7	
Approx. max. eff. area (cm ²)	160	5200	120/110	
Energy range	20 keV–20 MeV ^b	14–150 keV ^c	8 keV–40 MeV	
Approx. sensitivity (erg cm ^{-2} s ^{-1})	$5 imes 10^{-7}$	$1 imes 10^{-8}$	$5 imes 10^{-8}$	
FoV (sr)	4π	1.4 ^d	> 8	
Operation time (yrs)	27	17	13	
SGRB-to-LGRB rate	1:5	1:9	1:5	

^a: BAT is an assembly of 32,768 planar CdZnTe detectors (4 × 4 mm² large, 2 mm thick) to form a 1.2 m × 0.6 m sensitive area; ^b: Drifts with time; ^c: For coded FoV and up to 350 keV with no position information; ^d: For >50% coded FoV; \sim 2.2 sr for >10% coded FoV.

Tsvetkova et al., Universe, 8, 373 (2022)

Konus-Wind experiment

- The Konus-Wind (KW) is aimed primarily at GRB and SGR studies;
- · Launched on November 1, 1994: 28 years of continuous operation;
- Now in orbit near L₁, up to 2.1 million km (~7 light s) from Earth;
- Observation statistics (triggers):
 2900 GRBs (Fermi ~1500, BATSE ~2700, Swift ~1150), 260 SGRs, 1000 SFs.

Advantages

- Wide energy band;
- Exceptionally stable background;
- The orbit of s/c excepts interferences from radiation belts and the Earth occultation;
- Continuous observations of all sky;
- Duty circle 95%;
- Observes almost all bright events (>10⁻⁶ erg cm⁻² s⁻¹).

Konus-Wind experiment

- Two Nal detectors (S1 and S2) are located on opposite faces of spacecraft, observing correspondingly the southern and northern celestial hemispheres;
- ~100-160 cm² effective area;
- Light curves (LCs) in three energy windows:
 - G1 (~20-80 keV, at present);
 - G2 (~80–300 keV);
 - G3 (~300–1200 keV);
- Two modes:
- Waiting mode: G1, G2, G3 @ 2.944 s resolution;
- Triggered mode:
- LC res. is 2 ms –256 ms, from T₀-0.512 s to T₀+230 s; 128-ch spectra (20 keV – 20 MeV).

The KW burst sample

- 171 triggered GRBs (1997 Feb to 2018)
 14 Type I (the merger-origin, typically short/hard) GRBs
- 167 waiting-mode GRBs simultaneously detected by Swift/BAT 4 short GRBs, 3 XRFs
- $0.04 \le z \le 9.4$
- 317 collapsar-origin GRBs

$$\begin{array}{ll} 3\cdot 10^{49} \mbox{ erg } &< E_{iso} < 6\cdot 10^{54} \mbox{ erg } \\ 2\cdot 10^{48} \mbox{ erg } s^{-1} < L_{iso} < 5\cdot 10^{54} \mbox{ erg } s^{-1} \end{array}$$

Hardness-duration distribution

Hardness-duration distribution

z<1.7

Hardness-duration distribution

z<1.0

Selection effects

Dependence of the limiting KW energy flux on E_p

Trigger threshold: 9σ in G2: ~80 – 300 keV Solid line: CPL (α = -1) Dashed line: Band (α = -1, β = -2.5) Incident angles: 60°

Band (2003)

Selection effects: triggered mode

Selection effects: waiting mode

 $S_{lim} \sim 1.6 \times 10^{-6} \text{ erg cm}^{-2}$, $F_{lim} \sim 1.7 \times 10^{-7} \text{ erg cm}^{-2} \text{ s}^{-1}$

Black symbols show triggered bursts. Red symbols show the waiting-mode sample. The observer-frame flux limits Fpeak are shown by a dashed line (triggered bursts) and a solid line (the full KW sample).

Selection effects and luminosity (energy release) evolution

Green squares: Energy release.

GRB formation rate: triggered mode

The low-z GRBFR excess over SFR is in agreement with the results reported in Yu et al. (2015) and Petrosian et al. (2015).

SFR: Hopkins (2004), Bouwens et al. (2011), Hanish et al. (2006), Thompson et al. (2006), Li (2008).

 L_{iso} : red open circles: no luminosity evolution; red filled circles: δ_L = 1.7; E_{iso} : green open squares: no energy evolution; green filled squares: δ_E = 1.1.

GRB formation rate: waiting mode

Preference of long GRBs for low-mass galaxies and lowmetallicity environments, which are not unbiased tracers of the starformation rate at low redshifts (Lloyd-Ronning et al. 2019).

Presence of selection effects based on the incompleteness of the sample: it is easier to measure the redshifts of nearest GRBs thereby creating a bias toward them, which, in turn, will lead to the relative excess of low-z bursts over the rest of the unbiased sample (Pescalli et al. 2016)

GRB formation rate: modeling

SFR: Hopkins (2004), Bouwens et al. (2011), Hanish et al. (2006), Thompson et al. (2006), Li (2008).

The present-time GRB luminosity and energy release functions

Cumulative luminosity function: $\ln\psi$

$$v(L'_i) = \sum_{j=2}^{i} \ln\left(1 + \frac{1}{N'_j}\right)$$

The existence of a sharp cutoff of the isotropic energy distribution of KW and *Fermi*/GBM GRBs around ~ $1-3\times10^{54}$ erg was suggested recently by Atteia et al. (2017).

The present-time GRB luminosity and energy release functions: waiting mode

BPL:

CPL:

$$\psi(x) \propto \begin{cases} x^{\alpha_1}, & x \le x_b \\ x_b^{(\alpha_1 - \alpha_2)} x^{\alpha_2}, & x > x_b \end{cases}$$

 α_1 , α_2 – PL indices at the dim and bright distribution segments, x_b – breakpoint of the distribution. α – PL index,

 $\psi(x) \propto x^{\alpha} \exp(-x/x_{\rm cut})$

 x_{cut} – cutoff luminosity (or energy).

LF and EF Fits with BPL	and Cutoff PL
-------------------------	---------------

Data	Evolution	Model	$lpha_1$	$lpha_2$	$\log x_{b,52}$
	(PL index)				$(\log x_{\rm cut,52})$
$\overline{\psi(L')}$	$\delta_L = 1.2$	BPL	$-0.28\substack{+0.04 \\ -0.07}$	$-1.01\substack{+0.10\\-0.28}$	$0.21\substack{+0.28 \\ -0.18}$
$\psi(L')$	$\delta_L = 1.2$	CPL	$-0.45\substack{+0.08\\-0.04}$	•••	$1.67\substack{+0.19 \\ -0.49}$
$\psi(E')$	$\delta_E = 1.1$	BPL	$-0.29\substack{+0.01\\-0.09}$	$-1.01\substack{+0.02\\-0.44}$	$0.80\substack{+0.44\\-0.06}$
$\psi(E')$	$\delta_E = 1.1$	CPL	$-0.35\substack{+0.03\\-0.04}$	•••	$1.74\substack{+0.07\\-0.11}$
$\psi(L_{\rm iso})$	no evolution	BPL	$-0.26\substack{+0.02\\-0.05}$	$-0.99\substack{+0.05\\-0.17}$	$0.78\substack{+0.17 \\ -0.08}$
$\psi(L_{\rm iso})$	no evolution	CPL	$-0.38\substack{+0.04\\-0.03}$	•••	$2.02\substack{+0.11 \\ -0.19}$
$\psi(E_{\rm iso})$	no evolution	BPL	$-0.26\substack{+0.01\\-0.08}$	$-0.97\substack{+0.03\\-0.44}$	$1.24\substack{+0.46\\-0.08}$
$\psi(E_{\rm iso})$	no evolution	CPL	$-0.32\substack{+0.02\\-0.04}$		$2.21\substack{+0.06 \\ -0.09}$

Summary

- For the large sample of 317 long GRBs detected in a wide energy range, the luminosity and energy release functions and the GRB formation rate were computed using a non-parametric approach;
- The influence of instrumental selection:
- in the triggered mode: the regions above the limits, corresponding to the bolometric fluence S_{lim} ~3×10⁻⁶ erg cm⁻² (in the E_{iso} z plane) and bolometric peak energy flux F_{lim} ~1×10⁻⁶ erg cm⁻² s⁻¹ (in the L_{iso} z plane)may be considered free from the selection biases
- In the waiting mode: $S_{\text{lim}} \sim 1.6 \times 10^{-6} \text{ erg cm}^{-2}$, $F_{\text{lim}} \sim 1.7 \times 10^{-7} \text{ erg cm}^{-2} \text{ s}^{-1}$;
- The GRB luminosity evolution (is present @ ~1.6\sigma), LF and EF, and the evolution of the GRBFR were estimated accounting for the instrumental bias;
- The derived luminosity evolution and isotropic-energy evolution indices $\delta L \sim 1.2$ and $\delta E \sim 1.1$ are more shallow than those reported in previous studies

Summary

- The shape of the derived LF is best described by a broken PL function with low- and high-luminosity slopes ~-0.3 and ~-1, respectively.
- The EF is better described by an exponentially cut off PL with the PL index ~-0.3 and a cutoff isotropic energy ~10⁵⁴ erg.
- The derived GRBFR features an excess over the SFR at *z* < 1 and nearly traces the SFR at higher redshifts.

The talk is based on the papers Tsvetkova et al. (2017,2021)

Thank you!