Tev emission from GRB

Tsvi Piran

Evgeny Derishev, Shotaro Yamasaki

High Redshift GRBs, Sexten 2023

Outline

- General considerations of SSC in the Klein-Nishina regime in GRBs
- Analytic vs. full numerical modeling
- Application to GRB 190114c and the "pair balance" model
- Some remarks on GRB 221009a

Blazars

A Gamma-Ray Burst Model

Numerous attempts to reveal the conditions within the emitting regions of the Afterglow - but degeneracy hampers these efforts

The Single Zone Model

- Blast wave into wind or ISM
- Single Zone

n(γ)

Parameters: External: Γ , n, (t) Internal $\varepsilon_e = e_e/e$; $\varepsilon_B = e_B/e$; p

The electron distribution (Synchrotron)

Slow Cooling

 v_{c} ν_{m}

The Synchrotron Spectrum

 \mathcal{V}

Unknown Γ, n, $ε_e$, $ε_B$, p**Observables** ν_{c} , $F(\nu_{c})$, ν_{m} , $F(\nu_{m})$ + slope Degeneracy unless all are known

SSC in GRBs (with no Klein-Nishina) Sari & Esin 02 νF_{ν}

SSC with Klein-Nishina Nakar et al., 09

hv=γm_ec² ν $\hat{\gamma}$ γ No Inverse Compton on the electron with γ by Synchrotron photons produced by electrons above $\hat{\gamma}$

New break frequencies **n(**γ) No IC for a given γ \mathcal{V} $hv = \gamma m_e C^2$ $\gamma_{self} = \gamma_{self}$ $\gamma_{self} = \sqrt[3]{B_{sch}/B}$ $\hat{\gamma}_m$; $\hat{\gamma}_c$ $\nu_{self} = \hat{\nu}_{self}$

 $\nu_m \to \hat{\nu}_m \quad \nu_c \to \hat{\nu}_c$

New break frequencies

 $\gamma_0^2 \nu_0$

New break frequencies

Y(γ₀)=1 Fast Cooling γ

Y decreases as γ increases \rightarrow F ν increases even though F ν (synch) decreases.

New break frequencies

Additional effects

Self Absorption: γγ Secondary Synch Emission:

Varying y_m

From Fast to Slow Cooling

From Synch to IC

190114c

- Z=0.4245 (Some TeV absorption)
- Lpeak, iso \simeq 1.6 x10⁵³ erg/sec
- $E_{iso} \simeq 3x10^{53} erg$
- @ 70 sec $L_{x,iso} \simeq 6 \ x 10^{49} \ erg/sec$
- $E_{TeV} \simeq 350 \text{ GeV}$ (peak below 200 GeV; flat* up to 1 TeV)
- $y=L_{Tev,iso}/L_{x,iso} \simeq 0.25$

First guesses 190114c

- $\gamma \Gamma m_e c^2 > E_{IC} (\sim TeV) => \gamma \Gamma \simeq 10^6$
- @ 70 sec and longer Γ cannot be too large ($\Gamma \simeq 100$) => $\gamma \gtrsim 10^4$
- > Tev is Inverse Compton of X-rays (Consistent with a comparable X-ray luminosity) at the KN limit

Detailed modeling (Derishev & TP 2021)

• Conditions at the emitting region are determined by Γ , B, γ_m , ϵ_{e/ϵ_B}

Early - 90 sec

late - 145 sec

Best Fit Parameters

The fit didn't take into account the "pair balance" model however, the results are fully consistent with it and are inconsistent with standard afterglow modeling

		-
parameter	$t_{\rm obs} = 90 \ \rm s$	t _{ob}
Γ	161 (109)	→ 1
B	4.4 G (5.7 G)	2.0
$\epsilon_{\rm e}/\epsilon_{\rm B}$	20 (21)	
γm	6500 (5700)	→ 167
p	2.5	
Ekin	3×10^{53} erg	3 >
$\epsilon_{ m B}$	0.0061 (0.0062)	→ 0.00
$\epsilon_{\rm e}$	0.12 (0.13)	0.0
M (wind)	$1.4 \times 10^{-6} \frac{V_w}{3000 km/s} M_{\odot}/yr$	1.4×10^{-6}
n (ISM)	2 cm ⁻³	

- $_{00} = 145 \text{ s}$ 43 (91) G (3.1 G) 36 (41) 00 (14400) 2.5 $\times 10^{53}$ erg 27 (0.0026) 96 (0.107) M_{\odot}/yr 3000km/s 2 cm^{-3}
- Fast Cooling
- On the edge of KN regime
- $\gamma^{3}B = (1.2 9) 10^{12}$

 $\gamma_{\rm m} \propto \Gamma$ doesn't hold

- $\tau_{\gamma\gamma} \approx 1$ for the IC photons (25% of IC power is self absorbed)
- $\epsilon_{\rm B} = 0.006 -> 0.003$ (Varies)
- Somewhat surprisingly large Γ (large energy, low external density)

ϵ_{B} must vary with time

The Pair Balance model Derishev & TP 2016

Pairs produced in the upstream They are strongly accelerated once crossing the shock

I) Accelerate the flow2) Produce magneticfield via WeibelInstability

Modified structure

A STATE AND THE MARK THE PARTY AND A STATE AND A ST

Decaying magnetic field, in the downstream, accelerates particles

Pairs from the upstream increase the multiplicity of the downstream

Some basic features of the Pair-Balance model Derishev & TP 2016

- Saturation at the Klein-Nishina limit $= \gamma^3 B \approx B_{sch}$
 - $\Rightarrow \gamma_m \propto \Gamma$ doesn't hold
- $\tau_{\gamma\gamma} \lesssim 1$ for the IC photons

GRB 221009a

- E_{iso} (prompt) ~3 x10⁵⁴ erg; T₉₀ > 600 sec
- z = 0.151 (Extremely close for a long GRB)
- Fermi-LAT E > 100MeV, flat spectrum, highest at 99.3 GeV 💐 🐳
- LHASSO: More than 5000 photons at E>500GeV, highest at 18 TeV
 within 2000 sec; E_{TeV,iso} ~ 2 x10⁵² erg
- Swift Observations only after ~3000 sec & & $E_{x,iso}$ ~ 4 x10⁵¹ erg *
 - * As implied from the observations at T>3000 sec

Optical Depth and the 18 TeV photon

Figure 4. The optical depth by photon-photon collision as a function of the photon energy for sources Fig. 2 Probability of predicting that LHAASO observes at least one photon from GRB 221009A within 2000 seconds. The vertical dotted line denotes 18 TeV. The coloring of curves located at z = 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 4, from bottom to top. The fast rise at the is consistent with that of Fig. 1. high τ and E_{γ} values is due to the large volume density of CMB photons. The graph is based on the model by [82].

From: Francesini 2021

From: Zhao et al., 2022

- The error in the energy estimate of the LHASSO 18 TeV photon is 40%.
- At 18-6=11 TeV EBL absorption is insignificant. At 18+6=25 TeV it implies "new physics".

 $=>18\pm40\%$ TeV from z=0/151 is insufficient evidence for new physics.

Based on the analysis of Zhao et al., 2022

- observe 221009a for the first 3000 sec.
- phase.
- much lower redshift.
- A flat spectrum in the GeV range (Fermi) may hints of KN corrections to SSC spectrum?
- and $\gamma \sim 10^{4-5}$, on the edge of Klein- Nishina?

221009a vs 190114c

• Unfortunately the critical $E_{TeV,iso}/E_{x,iso}$ ratio for 221009a is not clear. Swift couldn't

• An estimate suggests that both GRBs have $E_{TeV,iso} \sim E_{x,iso}$ during the early afterglow

• Higher energy photons are observed in 221009a. This is expected in view of the

• Can we exclude in 221009a SSC with $\Gamma \sim a$ few hundred @ a few hundred seconds

Summary

- expected.
- that it seems (at first sight) that the peak flux is not in the KN regime.
- to require modification of the simple afterglow model (constant equipartition) parameters and $\gamma_{\rm m} \propto \Gamma$).
- A model independent fits for both early and late 190114c observations lead to Balance model".
- (Awaiting LHASSO data and predicting that the 18 TeV photon wasn't late)?

Klein-Nishina (KN) suppression makes SSC much reacher and more complicated than

• KN can influence the low energy synchrotron spectrum (and lightcurve) even in cases

• TeV observations of both early (90 sec) and late (145 sec) phases of 190114c seems

parameters and evolutionary behavior that are (surprisingly) consistent with the "Pair

• 221009a seems similar to (but stronger than) 190114c. Can it be explained by SSC

Open positions for PhD/postdocs with ERC "MultiJets" starting Oct 2023

