

CaloMan:

Fast generation of calorimeter showers with density estimation on learned manifolds

Humberto Reyes-González University of Genoa (DiFi UniGe)

In collab with:

M. Letizia (MaLGa UniGe), J. Cresswell, B. Ross, G. Loaiza-Ganem, A. Caterini (Layer 6 AI)

Introduction.

- CHALLENGE: Develop fast and accurate ML models for high dimensional calorimeter shower generation.
- •OUR APPROACH: Density estimation on learned Manifolds with CaloMAN arXiv:2211.15380.
- •WE PRESENT RESULTS ON: Photons1 and Pions1 datasets.

Generative Networks.

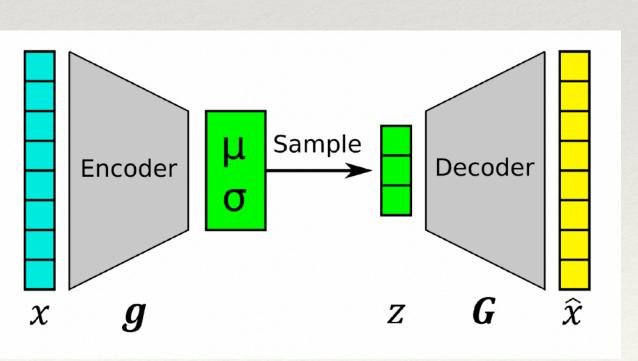
Generalized auto encoders (GAE)

- Implicitly learns PDF
- Useful only for sampling
- Map data to a latent space
- Not so stable training
- Efficient sampling in high dimension

Examples:

- Autoencoders (AE)
- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

• ...



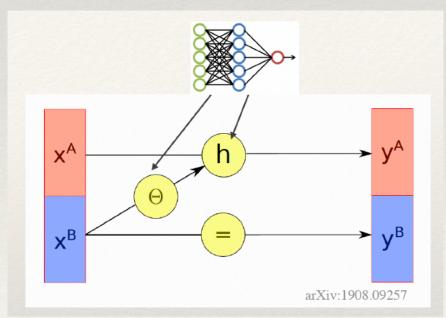
Density estimators (DE)

- Explicitly learns PDF
- Mappings can be bijective
- •Usually, more stable learning
- •Learnable, but very heavy models in HD.

Examples:

- Normalizing Flows (NF)
- Score-based models
- Diffusion models

• ...



Manifold Hypothesis

Manifold Hypothesis states that high dimensional real-world data is supported in a low dimensional sub-manifold $\mathcal{M} \subset \mathbb{R}^D$

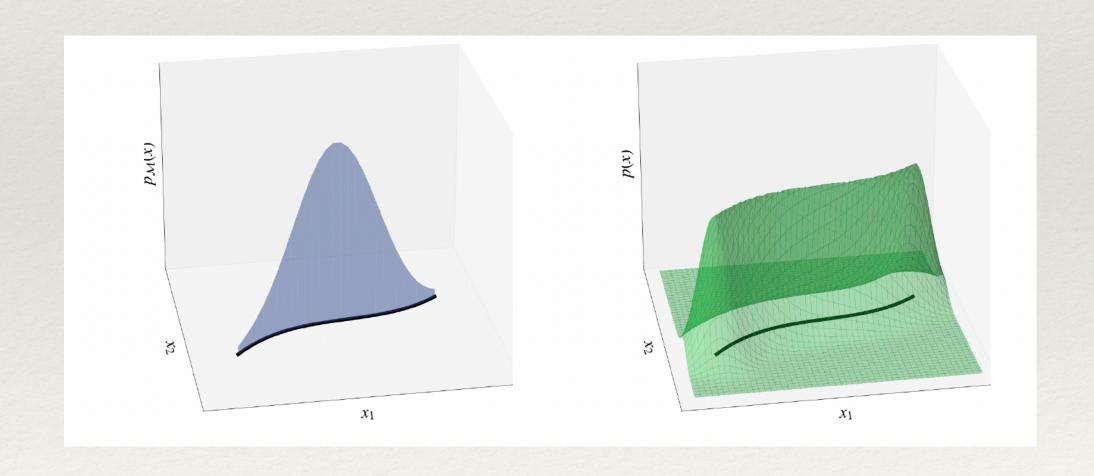
In principle, calorimeter showers are governed by simple laws of physics and must have a much lower dimensional structure.

Manifold overfitting arXiv:2204.0717:

When trying to model a target distribution **T**, suported on \mathcal{M} , with a DE that learns $p_{\theta}(x)$ on \mathbb{R}^D , MLE can fail when the dimensions of **T** and $p_{\theta}(x)$ differ.

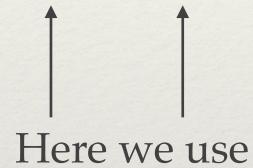
Solution:

First learn the data ${\mathcal M}$ and estimate the distribution on ${\mathcal M}$



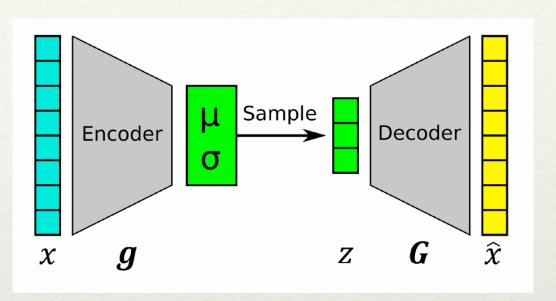
Two-step models

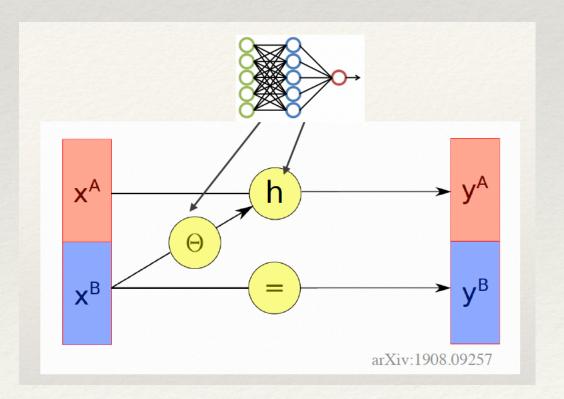
STEP 1: Learn *M* with a generalized autoencoder. This may be an **AE**, **VAE**, GAN, Wasserstein AE, bi-GAN, etc.



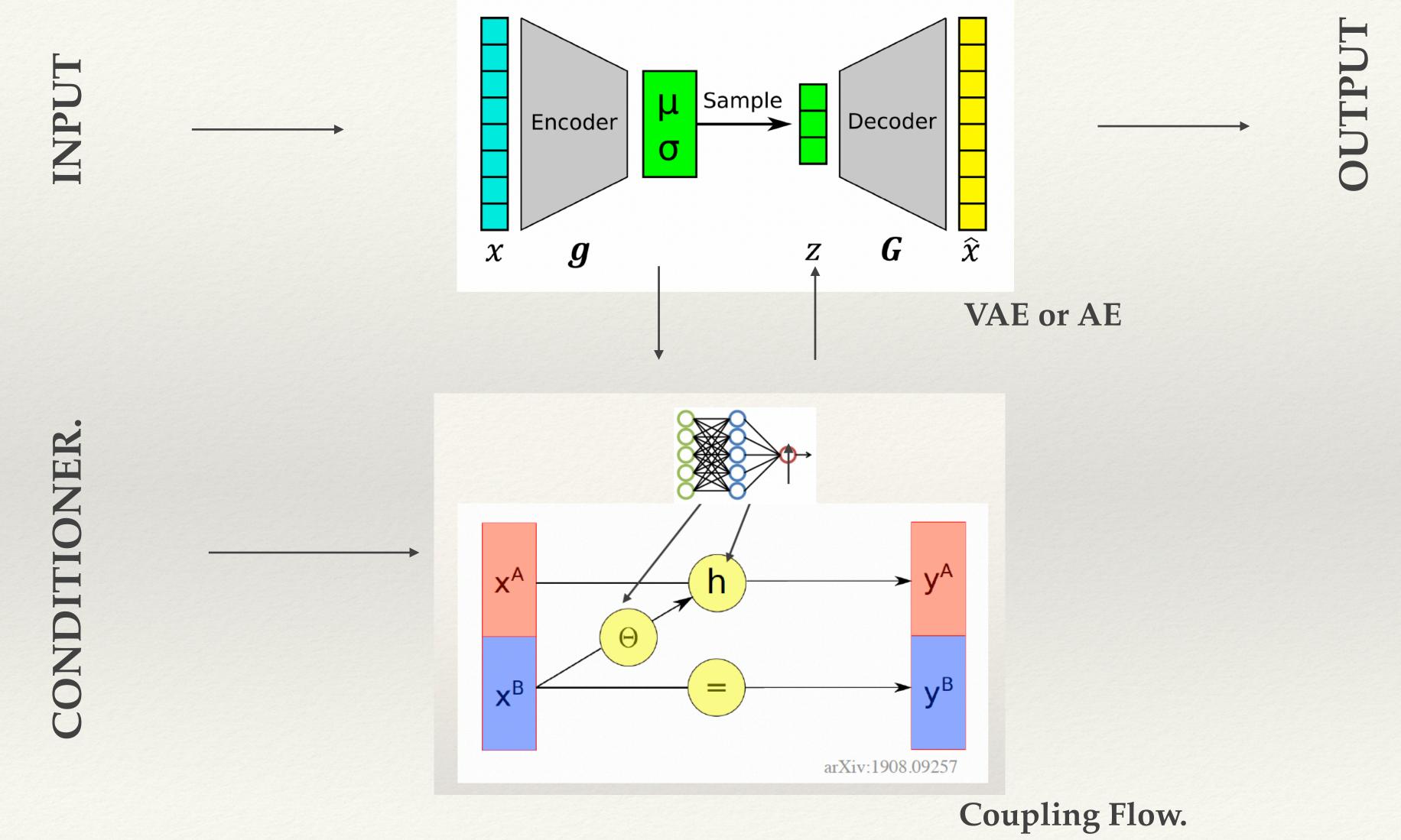
STEP 2: Perform density estimation on the manifold, with **NFs**, autoregressive, score-based, diffusion models

Here we use (Coupling) NFs





Two-step models: Chosen scheme



Estimating latent space dimensionality

A GAE will learn a manifold with fixed dimensionality d.

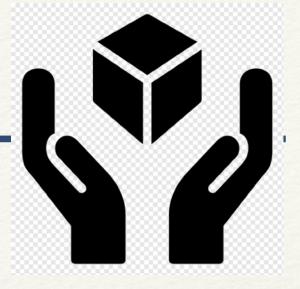
Estimating d is up to us!

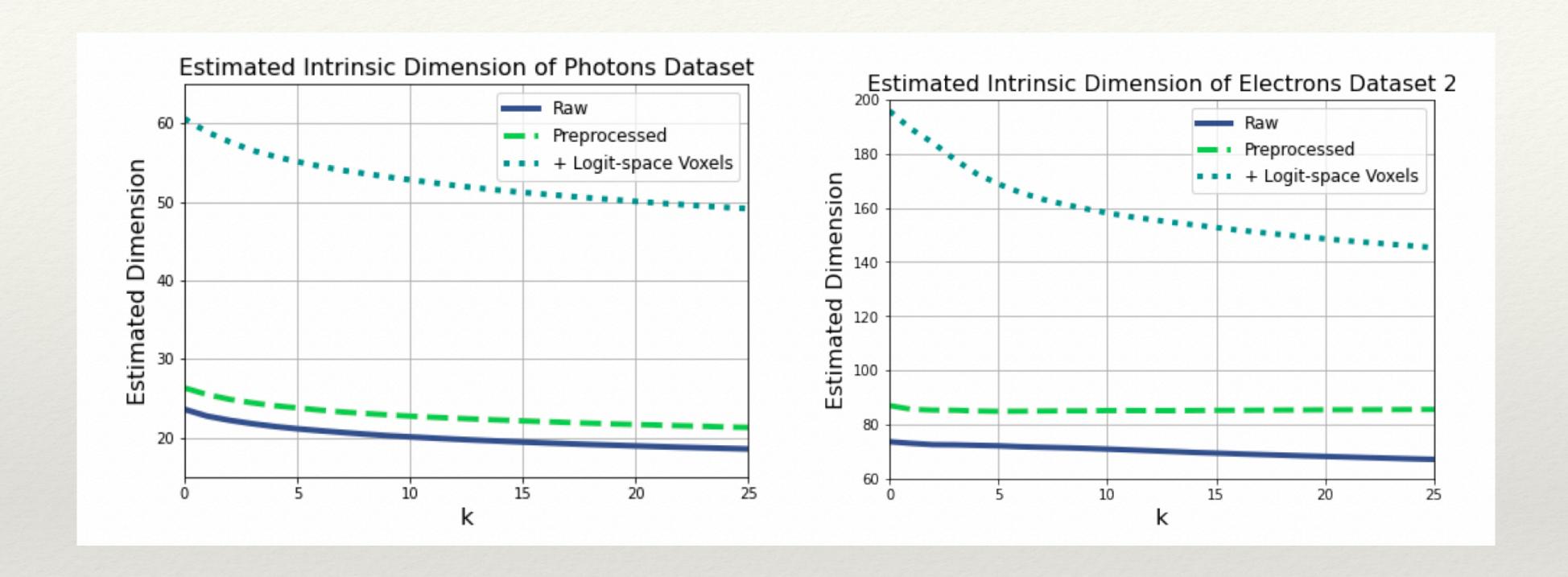
We used the Levina-Bickel statistical intrinsic estimator derived from the expected number of neighbours per unit volume as dimension increases:

$$\hat{d}_k = \left(\frac{1}{n(k-1)} \sum_{i=1}^n \sum_{j=1}^{k-1} \log \frac{T_k(x_i)}{T_j(x_i)}\right)^{-1}$$

Where $T_k(x_i)$ is the Euclidean distance between x_i and its kth nearest neighbour.

Estimating latent space dimensionality





	Raw	Preprocess	Preprocess +log
Photons1	20	23	55
Electrons2	70	82	160

PREPROCESSING STRATEGY (A LA CALOSCORE arXiv:2106.05285):

Energy per voxel:

$$E'_{vox} = \frac{E_{vox}}{fE_{inc}} \qquad f = 3.1$$

Incident energy (conditioner)

$$E'_{inc} = \frac{E_{inc} - E_{min}}{E_{max} - E_{min}}$$

ARCHITECTURE

VAE

Encoder: [512,512,512]

Decoder: [512,512,512]

Learning Rate: .001

Max epochs: 200

LR scheduler:

Early stopping: None

COUPLING FLOW

Bijector: Rational Quadratic Spline (RQS)

N bins: 8

Tail bound: 1

NF layers: 4

(Residual) hidden layers: [256,256,256]

Learning rate: .001 LR scheduler: None

Early stopping: mean histogram difference

Max epochs: 200

LATENT SPACE DIMENSIONS: 20

RESULTS

Separation power:

 E_{tot}/E_{inc} : 0.0483

 E_{layers} : 0.023

 EC_{η} : 0.0323

 EC_{ϕ} : 0.0227

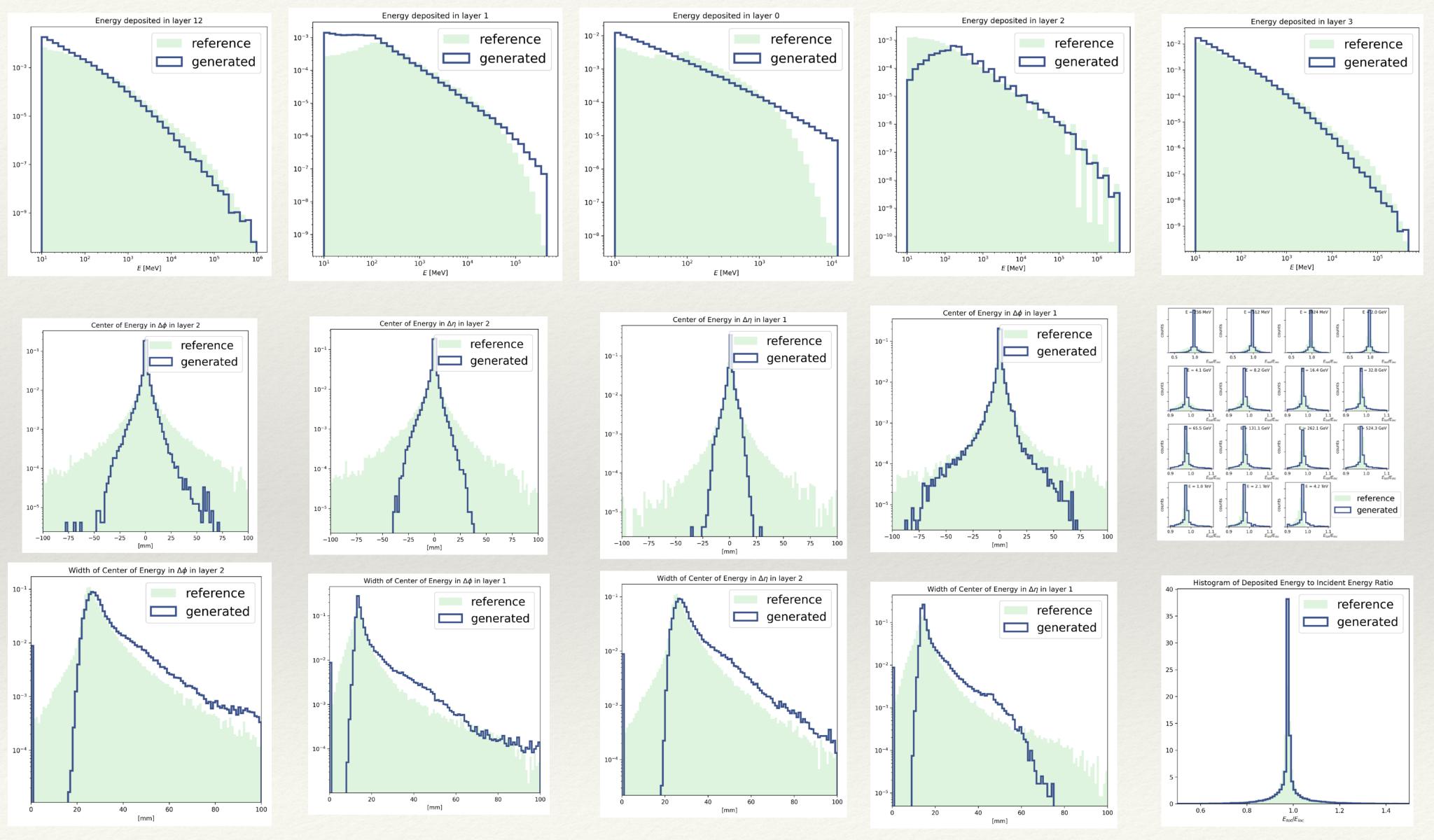
 $Width_{\eta}$: 0.1043

 $Width_{\phi}$: 0.09277

Average: 0.0539

Time:

batch_size:500, num_samples:500: 0.2208s,
batch_size:500, num_samples:100000: 0.4056s
batch_size:1000, num_samples:1000: 0.22418s
batch_size:1000, num_samples:100000: 0.2973s
batch_size:5000, num_samples:5000: 0.202905s
batch_size:5000, num_samples:100000: 0.22263s
batch_size:10000, num_samples:10000: 0.20490s
batch_size:10000, num_samples:100000: 0.21063s
batch_size:50000, num_samples:50000: 0.221610s
batch_size:50000, num_samples:100000: 0.2080s



PREPROCESSING STRATEGY (A LA CALOFLOW arXiv:2206.11898):

STEP 1: Learning E_{layer}

$$u_0 = \frac{\sum E_{layer}}{E_{inc}}, \quad u_1 = \frac{E_0}{\sum E_{layer}}, u_2 = \frac{E_1}{\sum E_{layer} - E_0}, \dots$$

$$u = \log \frac{x}{1 - x}$$
; $x = \alpha + (1 + 2\alpha)u$; $\alpha = 10^{-6}$

STEP 2:

$$E_{vox}^{'i} = \frac{E_{vox}^{i}}{E_{layer}^{i}} \qquad E_{vox} = \log \frac{x}{1-x}; x = \alpha + (1-2\alpha)E_{vox}$$
(a) (b)

Conditioners:

$$E_{inc} = \log_{10}(\frac{E_{inc}}{33.3 \text{GeV}})$$

$$E_{inc} = \log_{10}(\frac{E_{inc}}{33.3 \text{GeV}})$$

$$E'_{layer} = \log_{10}(\frac{E_{layer} + 1\text{keV}}{100\text{GeV}})$$

ARCHITECTURE.

STEP 2:

AE

Encoder: [512,512,512]

Decoder: [512,512,512]

Learning Rate: .001 Max epochs: 200

LR scheduler:

Early stopping: None

COUPLING FLOW

Bijector: RQS

N bins: 8

Tail bound: 1

NF layers: 4

(Residual) hidden layers: [128,128,128]

Learning rate: .001

LR scheduler: None

Early stopping: -log(L)

Max epochs: 200

STEP 1:

COUPLING FLOW

Bijector: RQS

N bins: 8

Tail bound: 1

NF layers: 4

(Residual) hidden layers: [128,128,128]

Learning rate: .001

LR scheduler: None

Early stopping: -log(L)

Max epochs: 200

LATENT SPACE DIMENSIONS: 30

RESULTS

STEP 1:

 E_{tot}/E_{inc} : 0.00248 E_{layers} : 0.000214

Average: 0.00135

STEP 2:

 E_{tot}/E_{inc} : 0.1112 E_{layers} : 0.002

 EC_n : 0.0302

 EC_{ϕ} : 0.01211

 $Width_{\eta}$: 0.13938

 $Width_{\phi}$: 0.246974

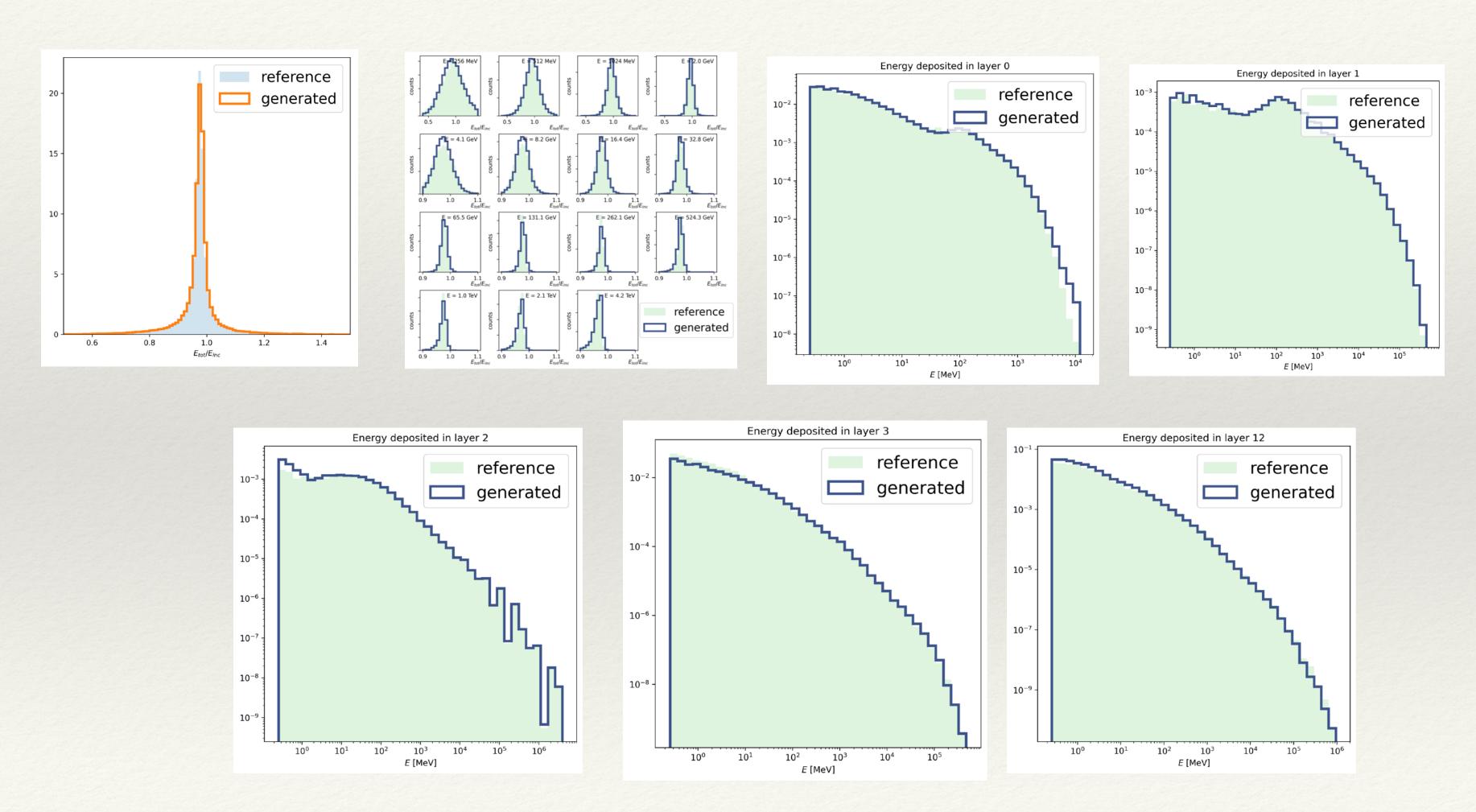
Average: 0.09033

121000 E_{layer} samples generated

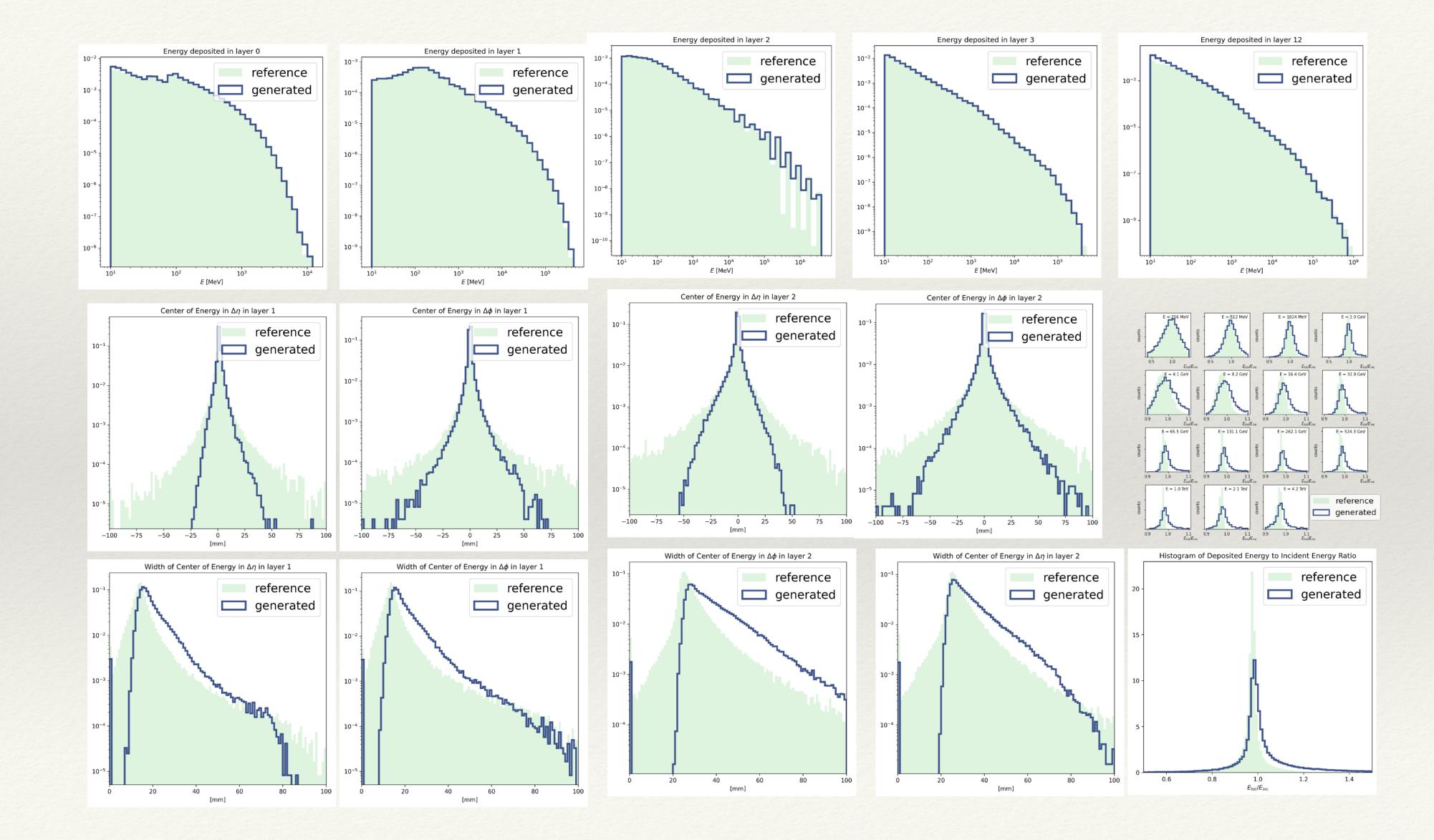
in 1.59596 seconds

121000 shower samples generated in 3.7 seconds

STEP 1:



STEP 2:



PIONS

Preprocess: A la CaloFlow, no log

STEP 2:

AE

Encoder: [512,512,512]

Decoder: [512,512,512]

Learning Rate: .001

Max epochs: 200

LR scheduler:

Early stopping: L2 error

COUPLING FLOW

Bijector: RQS

N bins: 8

Tail bound: 1

NF layers: 4

(Residual) hidden layers: [64,64,64]

Learning rate: .001

LR scheduler: None

Early stopping: -log(L)

Max epochs: 200

STEP 1:

AUTOREGRESSIVE FLOW

Bijector: RQS

N bins: 8

Tail bound: 1

NF layers: 8

(Residual) hidden layers: [128,128,128]

Learning rate: .0001

LR scheduler: None

Early stopping: -log(L)

Max epochs: 200

LATENT SPACE DIMENSIONS: 20 (Estimated: 12)

RESULTS

STEP 1:

 E_{tot}/E_{inc} : 0.00187 E_{layers} : 0.00028

Average: 0.00107

STEP 2:

 E_{tot}/E_{inc} : 0.03681

 E_{layers} : 0.00056

 EC_n : 0.03688

 EC_{ϕ} : 0.0367

 $Width_{\eta}$: 0.229

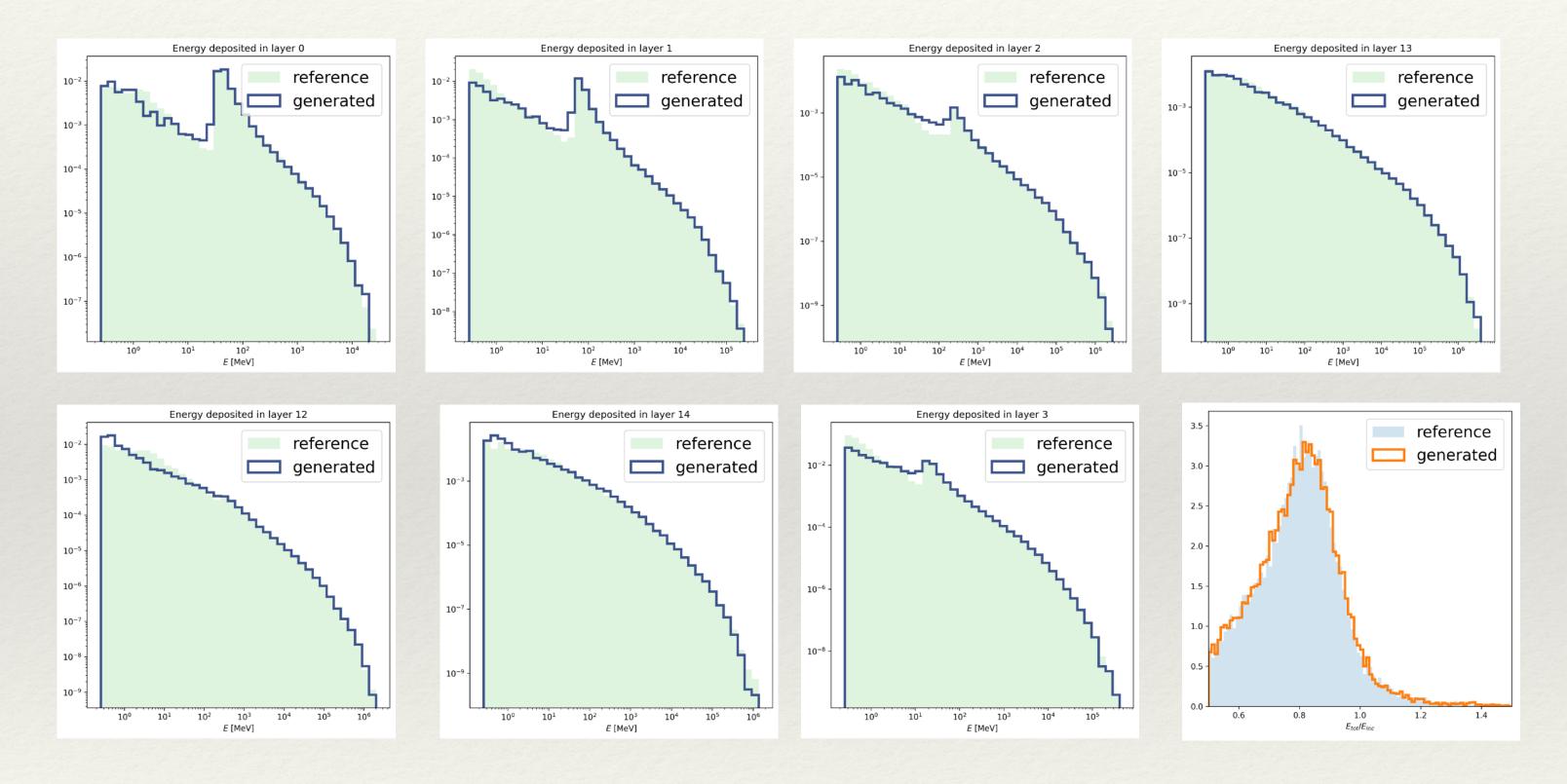
 $Width_{\phi}$: 0.2317

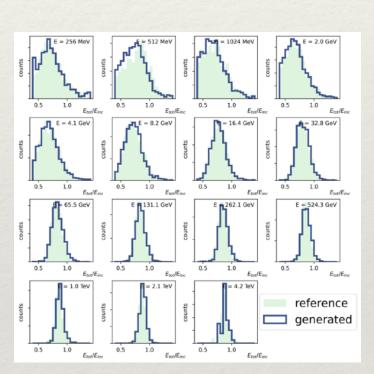
Average: 0.09534

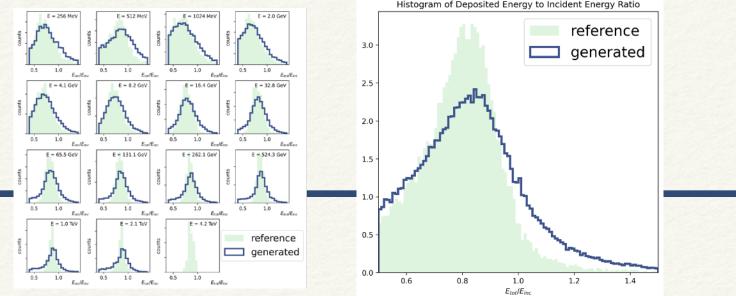
24046 E_{layer} samples generated in 9.71327 seconds

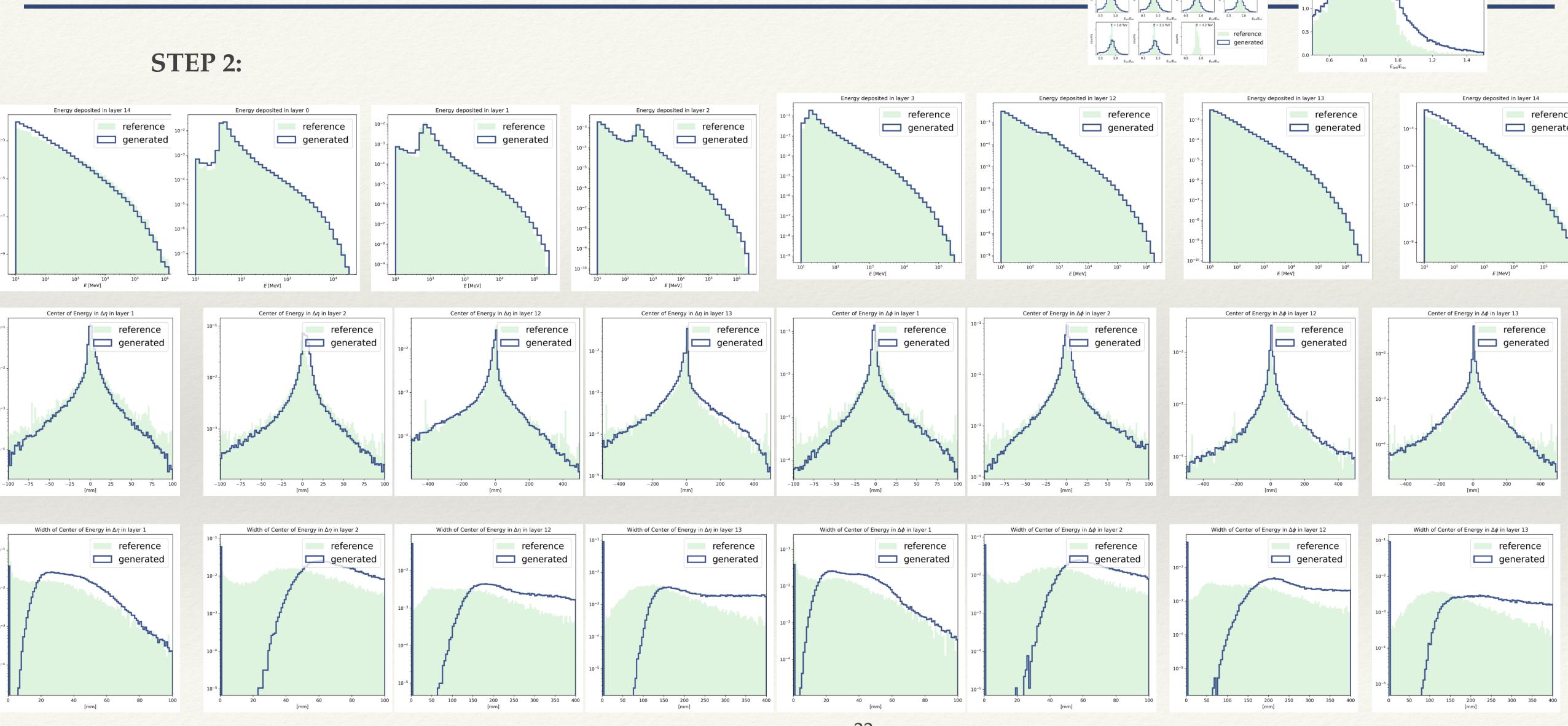
120230 shower samples generated in 3.53365 seconds

STEP 1:









Many things left to try:

- To log or not to log
- Fine tuning the preprocessing strategy
- Regularization.
- Divide and conquer
- Many architectures / hyperparameters to explore
- We are going slowly... but we will get there.

Conclusions

- Density estimation of latent space is a very promising approach:
- We see potential to accurately describe high dimensional Calorimeter showers
- As a highlight we obtain compact and very fast generative network systems.
- We plan to test it scalability tackling the rest of the datasets.
- Very much worth exploring more applications in HEP.
- EXTRA: Interesting to harvest Academia+Private sector synergies.

BACKUP

Attempt 2 (b)

STEP 2:

AE

Encoder: [256,256,256]

Decoder: [256,256,256]

Learning Rate: .001

Max epochs: 200

LR scheduler:

Early stopping: None

COUPLING FLOW

Bijector: RQS

N bins: 8

Tail bound: 1

NF layers: 4

(Residual) hidden layers: [256,256,256]

Learning rate: .001

LR scheduler:

Early stopping: -log(L)

Max epochs: 1000

LATENT SPACE DIMENSIONS: 80

Attempt 2 (b)

RESULTS*

Separation power:

 E_{tot}/E_{inc} : 0.2525

 E_{layers} : 0.0037

 EC_{η} : 0.0137

 EC_{ϕ} : 0.01407

 $Width_n$: 0.1969

 $Width_{\phi}$: 0.15099

Average: 0.10533

Timing:

batch_size:500, num_samples:500: 0.10954332s, batch_size:500, num_samples:100000: 0.138106s batch_size:1000, num_samples:1000:0.0443694s batch_size:1000, num_samples:100000: 0.08901s batch_size:5000, num_samples:5000: 0.0365597s batch_size:5000, num_samples:100000: 0.04129s batch_size:10000, num_samples:10000: 0.033784s batch_size:10000, num_samples:100000: 0.03680s batch_size:50000, num_samples:50000: 0.033s batch_size:50000, num_samples:100000: 0.03157s

Attempt 2 (b)

RESULTS

