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Motivation
Normalizing Flows are great but hard to scale

• Directly trainable by max. likelihood 

• Fast and stable convergence


• CaloFlow passes classifier test


• Invertible property leads to  scaling 
where  is the number of input dimensions

𝒪(n2)
n

CaloFlow from Krause et al.:

[2106.05285 ]
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https://arxiv.org/abs/2106.05285


Motivation
Overcoming  scaling𝒪(n2)

• Different possible routes


• Learn layer by layer (L2LFlows [2302.11594] / Inductive CaloFlow [2305.11934]) 

• Reduce voxelized calorimeter to point clouds


• Point cloud advantages


• Calorimeter showers are sparse  lower 


• Learn each point separately 


• Applicable to complex geometries

→ n

n = 4
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https://arxiv.org/abs/2302.11594
https://arxiv.org/abs/2305.11934


CaloPointFlow
Approach

• Interpret calorimeter showers as point clouds


• Generate shower shape information first


• Generate each point independently conditioned on the shower shape


• Inter-point-correlations ignored


• Based on PointFlow [1906.12320]
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model has been published at 
NeurIPS ML4PS


and evaluated on a different 
dataset


https://arxiv.org/abs/1906.12320
https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_77.pdf


CaloPointFlow
Preprocessing
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• Get rid of empty cells


• Each hit is represented as point


• One shower equals to one point 
cloud
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CaloPointFlow
Preprocessing
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Switch to  scaled

cartesian coordinates

r

y = r sin(α)

x = r cos(α)

} Scale to [0,1)
Logit transform

Normalize
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CaloPointFlow
Learn each point separately
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• Point Flow transforms each point independently 


• 


• The flow is independent of the source of the points, and therefore, the 
shower from which they come

g−1(xi) = yi
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CaloPointFlow
Learn each point separately
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•Latent variable z contains the shower information
•Point Flow is conditioned on z

z
How we get ?z



CaloPointFlow
Learn each point separately
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• Latent vector  is output of encoding all points 
from shower.
•Encoded by a permutation invariant encoder 

.

z

qφ

How to sample ?z



CaloPointFlow
Learn each point separately
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Encoder qφ

Point Flow g

yi ∼ 𝒩(0, 𝕀14)

f −1 w ∼ 𝒩(0, 𝕀1m)

Latent Flow f
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CaloPointFlow
Encoder qφ
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+

Encoder qφ
• Encoder  is permutation invariant


• Transform each point to a higher dim. space


• Average over all points in higher space


• Transform averaged higher space  
to latent space 


• Based on Deep Sets [arxiv:1703.06114]

qφ

z

z

https://arxiv.org/abs/1703.06114


CaloPointFlow
Flows
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• Both flows are rational quadratic spline autoregressive flows


• Latent flow  is conditioned on 


• Point flow  is conditioned on  

f Ein, nhits, Esum

g z, Ein, nhits, Esum

f −1

Latent Flow f

Point Flow g

g−1
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ℒ = 𝔼qφ(z|X) ∑
xi∈X

ln pθ(g(x, z)) + ln det
∂g(x, z)

∂x
+ 𝔼qφ(z|X) [ln pθ( f(z)) + ln det

df(z)
dz ] − ℋ(qφ(z |X))

ℒ = ℒpoint + ℒlatent + ℒentr

Loss Function

Point Flow loss ℒpoint

Latent Flow loss ℒlatent

entropy loss  ℒentr

Can be derived from the ELBO



Sampling
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x1

+

x2 x3

+ . . .

Two problems

•Number of points not defined by CaloPointFlow
•Multiple generated points can belong to the same calorimeter cell



Sampling
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• Sample  from latent flow  conditioned on 


• Sample points from point flow  conditioned on 


• Post-process points to cell coordinate and 


• Continue sampling until we have  different hit cells


• Overwrite previously hit cells


• Scale energy back 
 

z f Ein, nhits, Esum

g z, Ein, nhits, Esum

Ef

nhits

E =
Esum ⋅ Ef

∑ Ef



Evaluation

• We show results for CaloChallenge Dataset 3


• All results for Dataset 2 are in the appendix and are very similar


• Dataset 1 pions and photons has been generated  
but there are no evaluations ready

16



17

Average shower images

Geant4 CPF

thanks to Claudius for the nice visualization
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Cell Energy Distribution

• Agreement in high  
statistics area


• Differences in tails
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Energy Distribution in different layer areas

• Overall good agreement


• Also problems in tails
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Shower profiles

• To low energy in center 


• To high energy in tails
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Shower profiles in 2D
• No structural differences


• High density too low


• Low density too high
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Shower means

• Agreement wit in  and  with small differences.


• Huge shift in . Overall the shower have a too large radial distributions.

z α

r
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Shower means in 2D

• Same features


• structural morphing
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Eigenvalues of covariance matrix

• Calculated unbiased energy weighted sample covariance matrix 
for each shower 
 

 with 


• Eigenvalue decomposition of  give as the widths of the shower base on the 
principal components of the shower 
 
 

C =
1

∑n
i=1 Ei − 1

n

∑
i=1

Ei(xi − μ*)T(xi − μ*) μ* =
1

∑n
i=1 Ei

n

∑
i=1

Eixi

C



25

Eigenvalues of covariance matrix

• Structural agreement between Geant and CPF


• Shifts and differences visible
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Eigenvalues of covariance matrix 2D

• Same sub-distributions 
visible


• Structural morphing 
visible


• Good proxy look of the  
differences between  
CPF and G4 
shower



• CaloPointFlow does not pass Claudius classifier test


• Relativ fast sampling time (including multiple sampling due to double hits)


• Also fast training time ( )≈ 5min/epoch

27

Classifier Scores and Sampling Time

number showers sampling time time per shower

50,000 548.26s 10.9652ms

CaloChallenge Classifier low low-normed high
AUC 0.9868 0.9854 0.9664
JSD 0.8006 0.7765 0.6656
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Conclusion & Outlook
• Interpret calorimeter showers as point clouds


• Tested the possibilities of a linear model without point-to-point relations


• Can handle high granular datasets


• Shower structure is overall good resembled


• Their are some structural deviations


• Possible future research areas are


• including point to point correlations


• refine the output with a model that introduces point to point relations


• Next steps


• Analyse results of dataset 1
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BACKUP
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DATASET 2 PLOTS 
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CPF

thanks to Claudius for the nice visualizationAverage shower images

Geant4
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Cell Energy Distribution

• Agreement in high  
statistics area


• Differences in tails
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Energy Distribution in different layer areas

• Overall good agreement


• Also problems in tails
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Shower profiles

• To low energy in center 


• To high energy in tails
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Shower profiles in 2D
• No structural differences


• High density too low


• Low density too high
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Shower means

• Agreement wit in  and  with small differences.


• Huge shift in . Overall the shower have a too large radial distributions.

z α

r
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Shower means in 2D

• Same features


• structural morphing
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Eigenvalues of covariance matrix

• Structural agreement between Geant and CPF


• Shifts and differences visible



39

Eigenvalues of covariance matrix 2D

• Same sub-distributions 
visible


• Structural morphing 
visible


• Good proxy look of the  
differences between  
CPF and G4 
shower



VAE
Variational Autoencoders

ELBO 


• If we assume that the data is gaussian distributed the first 
term is the MSE and the last term is a regularisation that 
keeps the latent gaussian


• The Encoder predicts 


• To a differentiable point is sampled by . 


here   (reparametrization trick)


ℒ = 𝔼qφ(z|x)[ln pθ(x |z)] − DKL(qφ(z |x) | |pθ(z))

(μ, σ)

z = μ + ϵ ⊙ σ

ϵ ∼ N(0,1)
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Durk Kingma PhD Thesis

-> Ali Ghodsi, Lec : Deep Learning 2017 Youtube

https://www.youtube.com/watch?v=uaaqyVS9-rM


Encoding

ELBO 


Bijective transformation (NF)  with 


ℒ = 𝔼qφ(z|X)[ln pθ(X |z)] − DKL(qφ(z |X) | |pθ(z)) = 𝔼qφ(z|X)[ln pθ(X |z) + ln pθ(z) − ln qφ(z |X)]

w = f(z) w ∼ N(0,1)

ℒ = 𝔼qφ(z|X) [ln pθ(X |z) + ln pθ(z) − ln qφ(z |X)]
= 𝔼qφ(z|X) [ln pθ(X |z) + log pθ( f(z)) + log det

df(z)
dz

− ln qφ(z |X)]
= 𝔼qφ(z|X) [ln pθ(X |z)] + 𝔼qφ(z|X) [log pθ( f(z)) + log det

df(z)
dz ] − ℋ(qφ(z |X))
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VAE with an NF Prior
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(NF)  with 


ln pθ(X |z) = ln∏
xi∈X

pθ(xi |z) = ∑
xi∈X

ln pθ(xi |z)

yi = g(xi, z) yi ∼ N(0,1)

ln pθ(X |z) = ∑
xi∈X

ln pθ(xi |z)

= ∑
xi∈X

ln pθ(g(xi, z)) + log det
∂g(xi, z)

∂x

Decoding 
Using a second Normalizing Flow
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for  do 

  where  is the dimension of  


and  is a  point cloud sample





         (Reparametrization)








t = 1,2,...,T

μ, σ ← qφ(Xt) d μ

Xt

ℒentr =
d
2

(1 + ln(2π)) +
d

∑
i=1

ln σi

z = ϵ ⊙ σ + μ

w ← f(z)

ℒprior = N(w; 0,I) + ln det
df(z)
dz

The Algorithm
How to tame the beast

 

for  do 

 

 

 

 end for 










end for 

L ← 0

xi ∈ Xt

yi ← g(xi, z)

Li ← log N(yi; 0,I) + log det
∂g(xi, z)

∂x
L ← L + Li

ℒrecon =
L
nXt

ℒ = ℒrecon + ℒprior + ℒentr

Adam(−ℒ)


