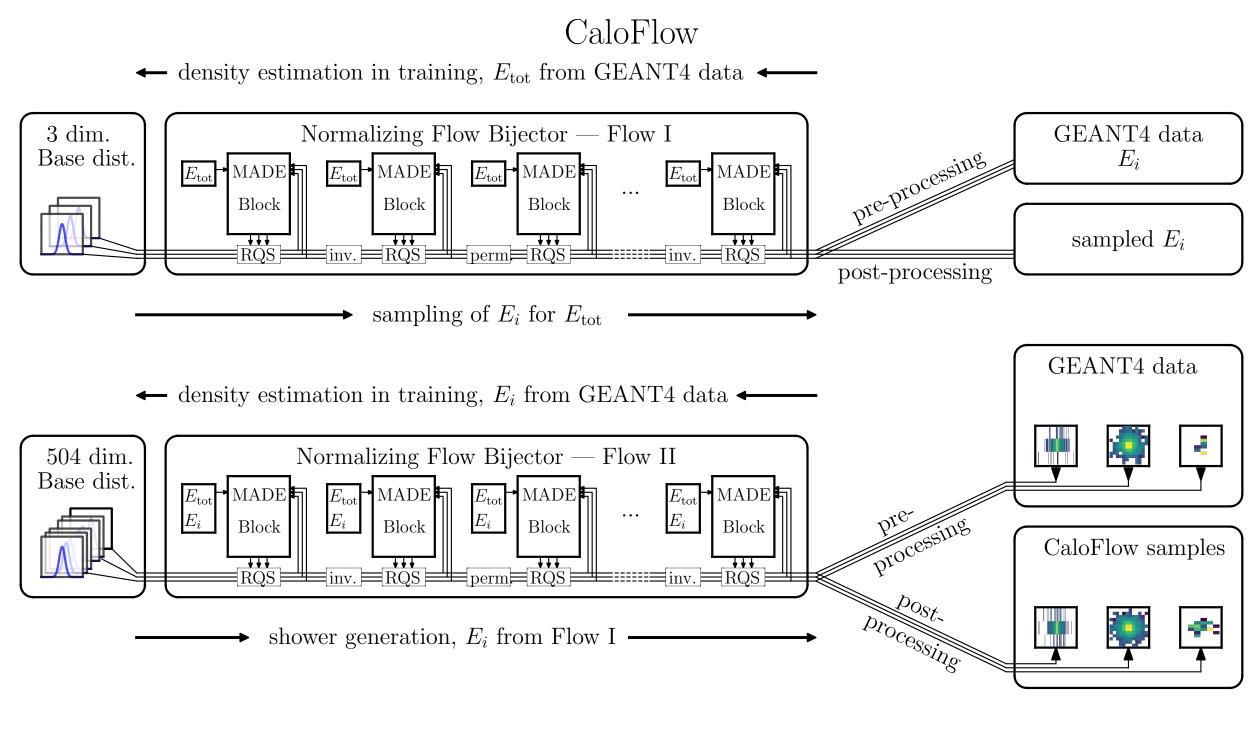
CaloPointFlow **Results for the CaloChallenge Datasets**

Kerstin Borras, Dirk Krücker, Simon Schnake 31.05.23 **CaloChallenge Workshop**

Motivation Normalizing Flows are great but hard to scale

- Directly trainable by max. likelihood
- Fast and stable convergence
- CaloFlow passes classifier test
- Invertible property leads to $\mathcal{O}(n^2)$ scaling where *n* is the number of *input dimensions*



CaloFlow from *Krause et al.*: [2106.05285]

Motivation **Overcoming** $\mathcal{O}(n^2)$ scaling

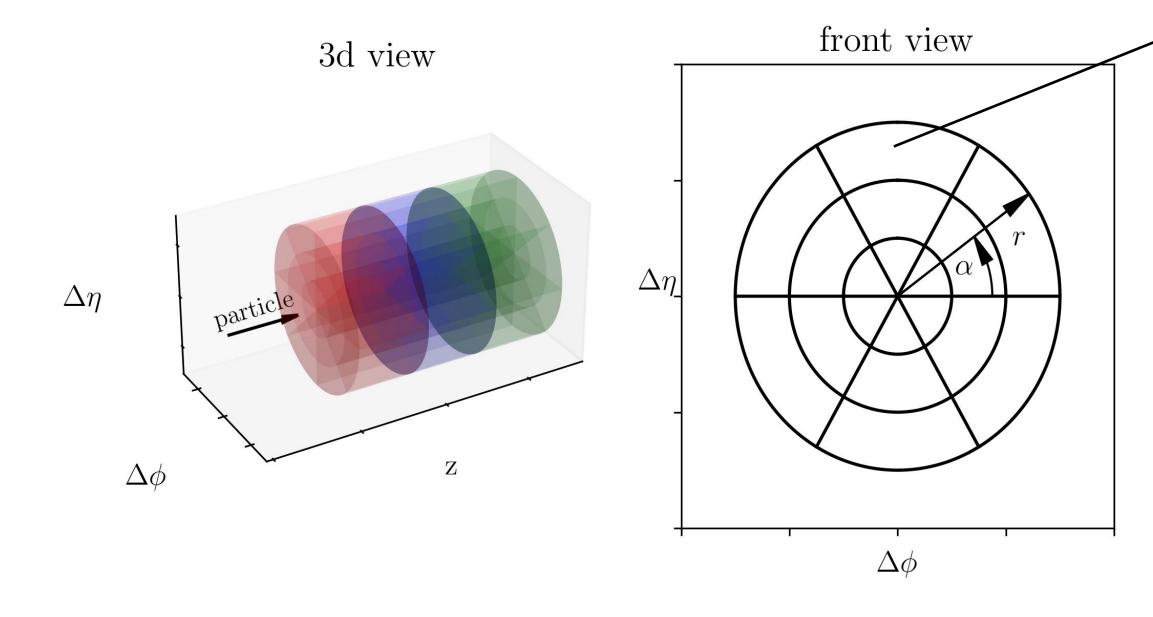
- Different possible routes \bullet
- Learn layer by layer (L2LFlows [2302.11594] / Inductive CaloFlow [2305.11934]) \bullet
- Reduce voxelized calorimeter to point clouds \bullet
- Point cloud advantages
 - Calorimeter showers are sparse \rightarrow lower *n* \bullet
 - Learn each point separately n = 4lacksquare
 - Applicable to complex geometries \bullet

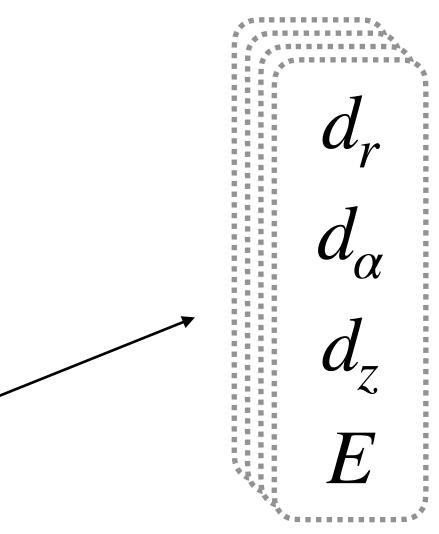
CaloPointFlow Approach

- Interpret calorimeter showers as point clouds \bullet
- Generate shower shape information first \bullet
- Generate each point independently conditioned on the shower shape \bullet
- Inter-point-correlations ignored \bullet
- Based on PointFlow [1906.12320] \bullet

model has been published at **NeurIPS ML4PS** and evaluated on a different dataset

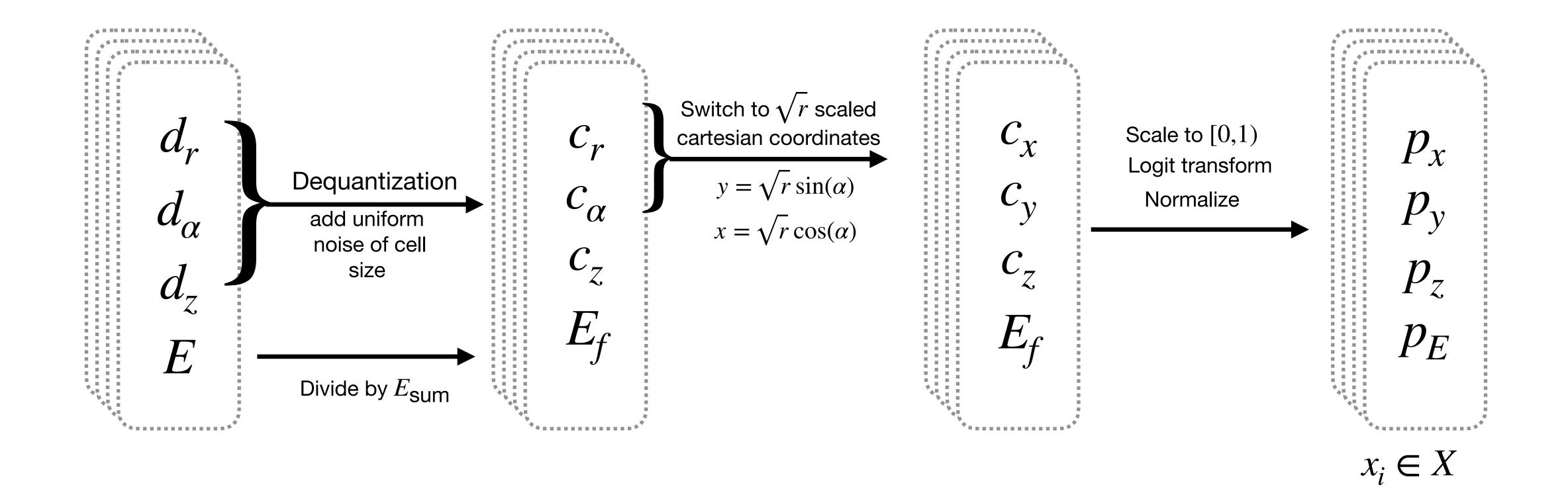
CaloPointFlow Preprocessing





- Get rid of empty cells
- Each hit is represented as point
- One shower equals to one point cloud

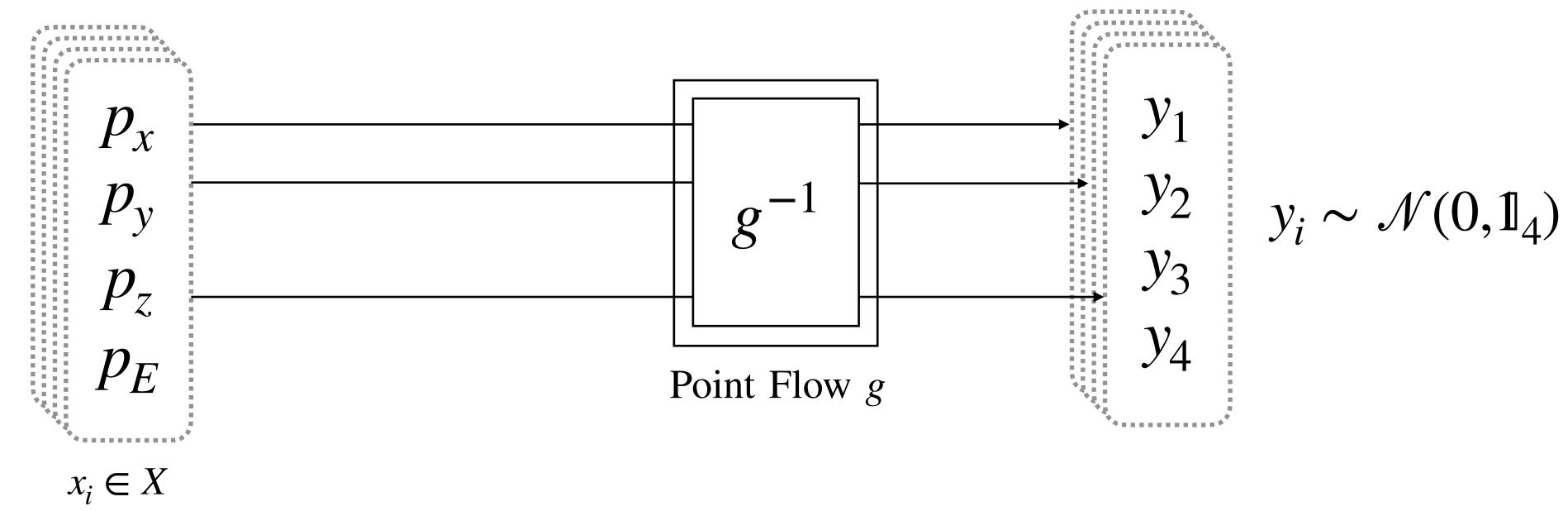
CaloPointFlow Preprocessing



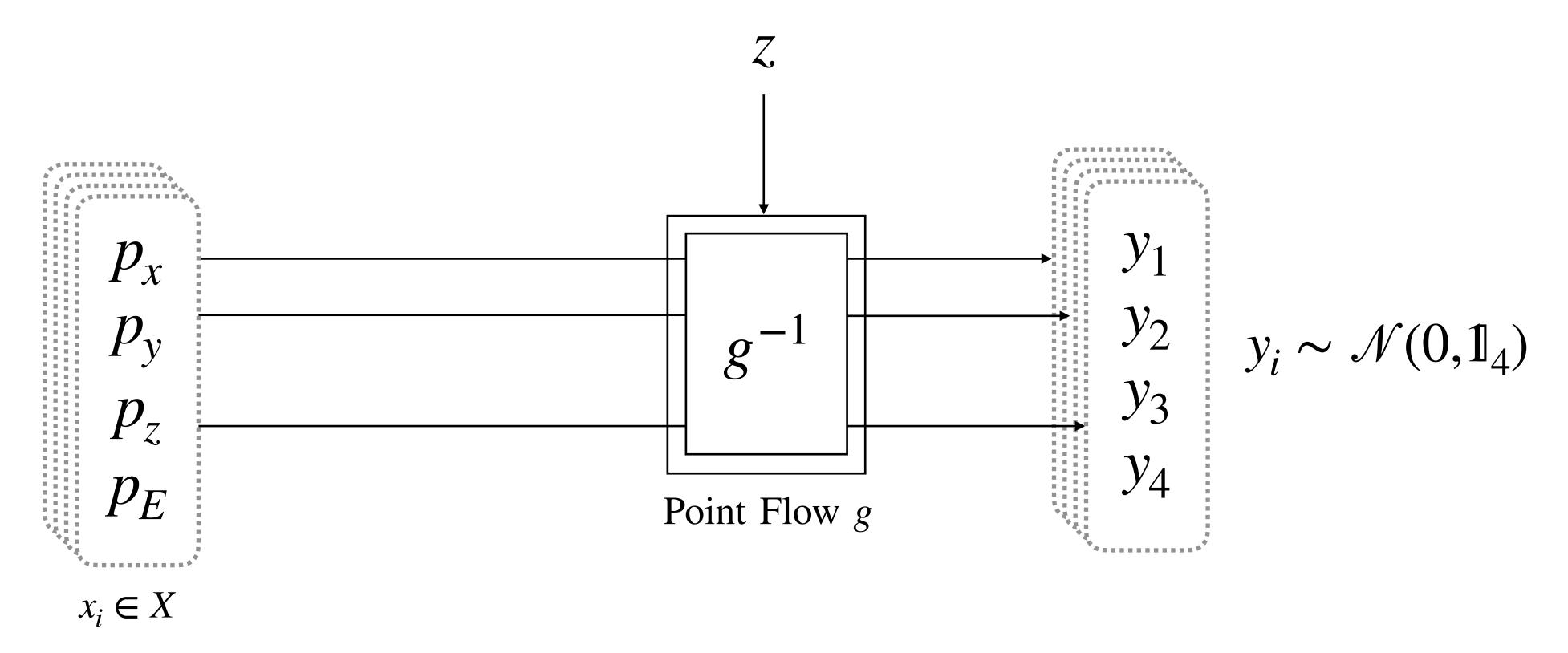
Point Flow transforms each point independently

•
$$g^{-1}(x_i) = y_i$$

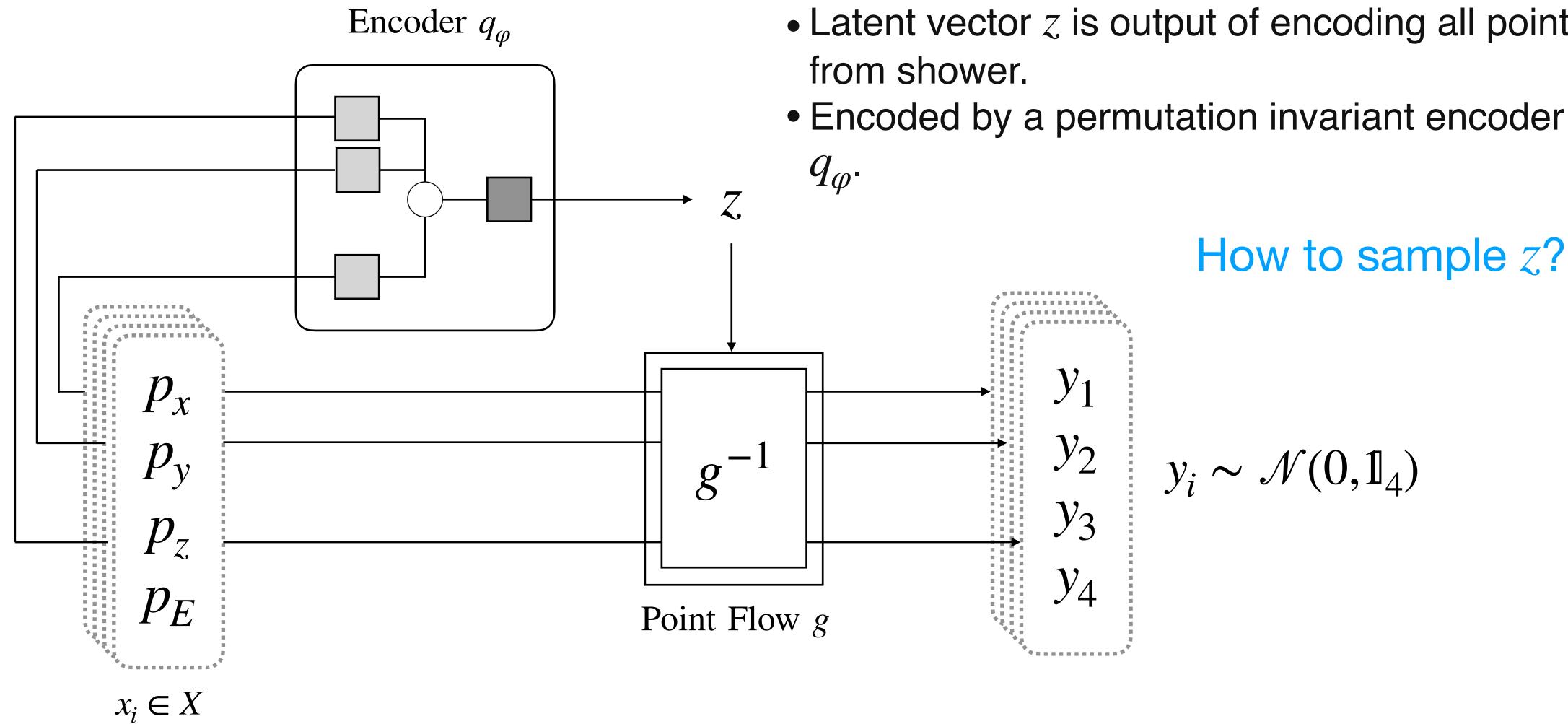
• The flow is independent of the source of the points, and therefore, the shower from which they come



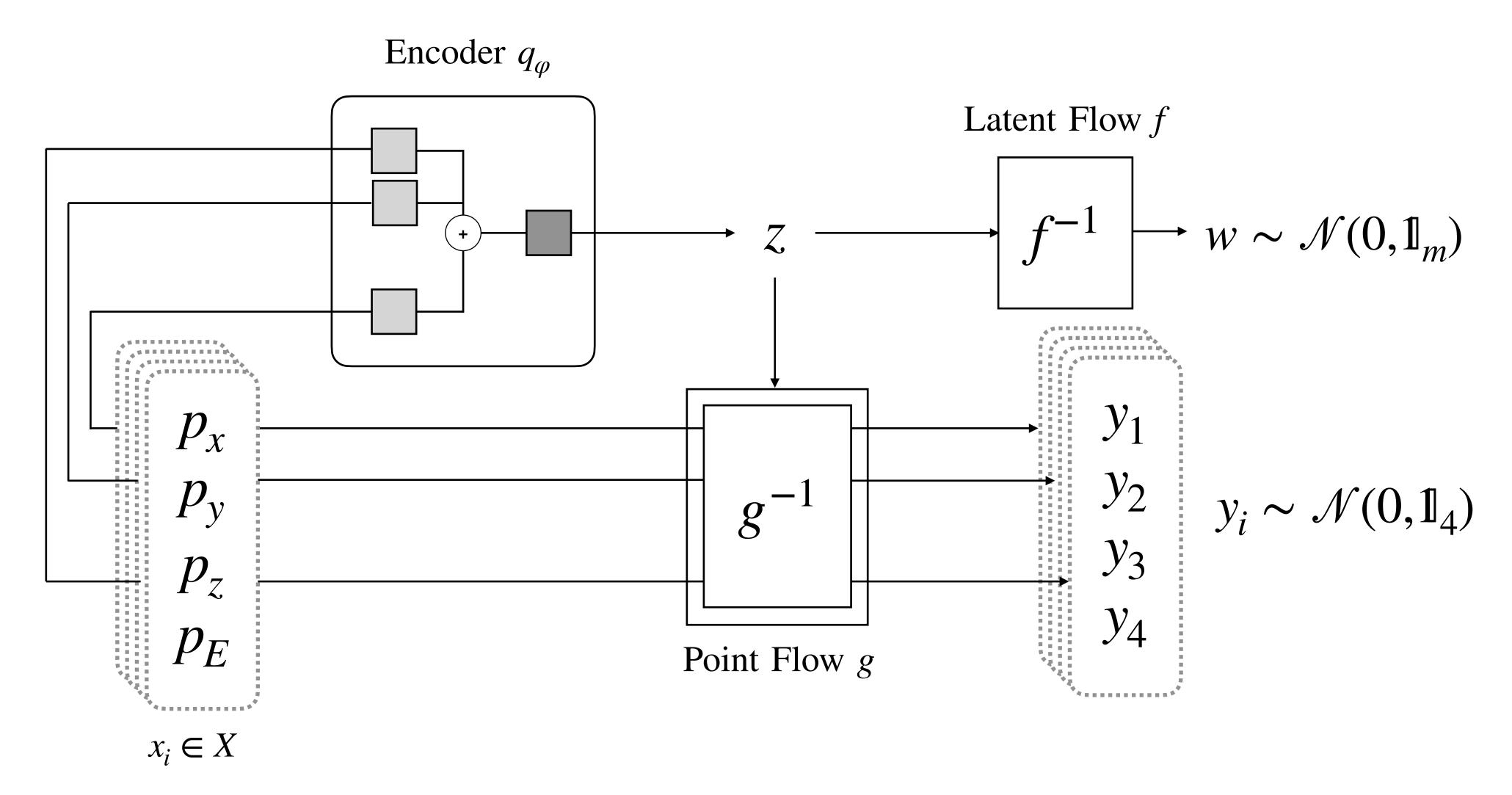
 Latent variable z contains the shower information Point Flow is conditioned on z



How we get *z*?

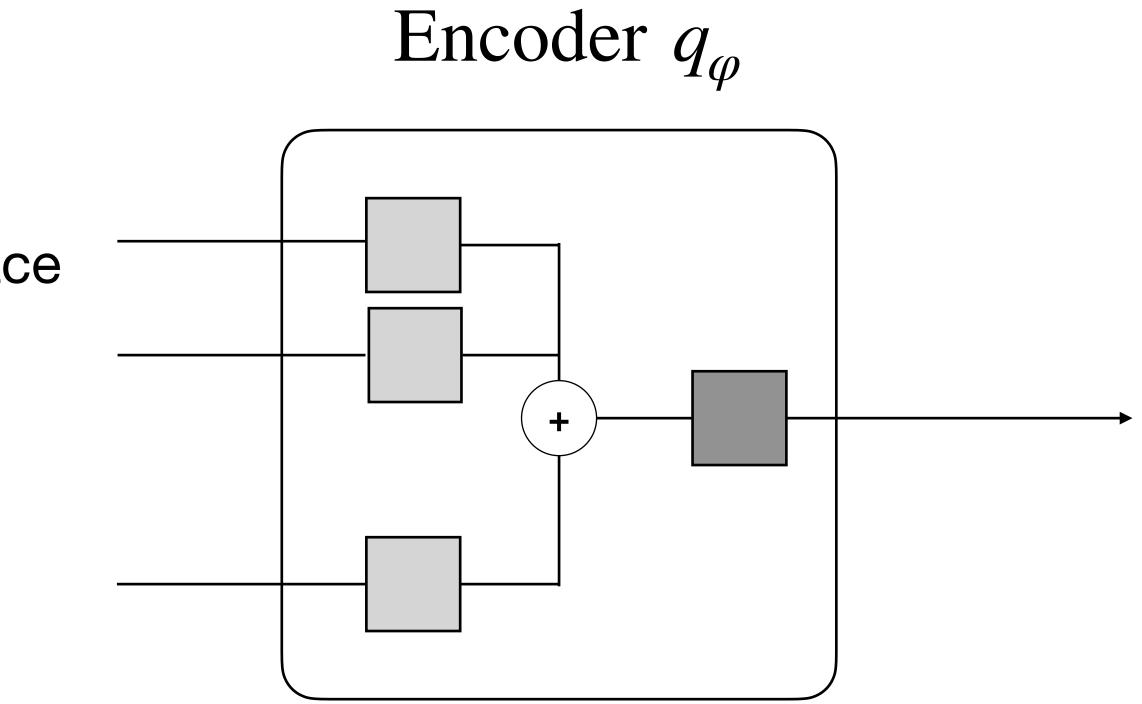


- Latent vector z is output of encoding all points
- Encoded by a permutation invariant encoder



CaloPointFlow Encoder q_{φ}

- Encoder q_{φ} is permutation invariant
- Transform each point to a higher dim. space
- Average over all points in higher space
- Transform averaged higher space to latent space *z*
- Based on Deep Sets [arxiv:1703.06114]

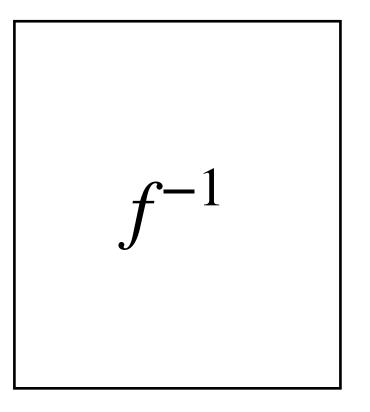


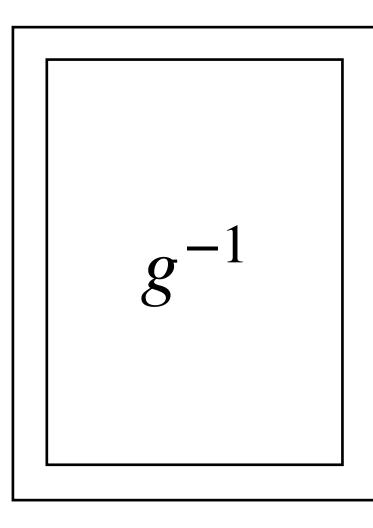
11

CaloPointFlow Flows

- Both flows are rational quadratic spline autoregressive flows
- Latent flow f is conditioned on E_{in} , n_{hits} , E_{sum}
- Point flow g is conditioned on $z, E_{in}, n_{hits}, E_{sum}$

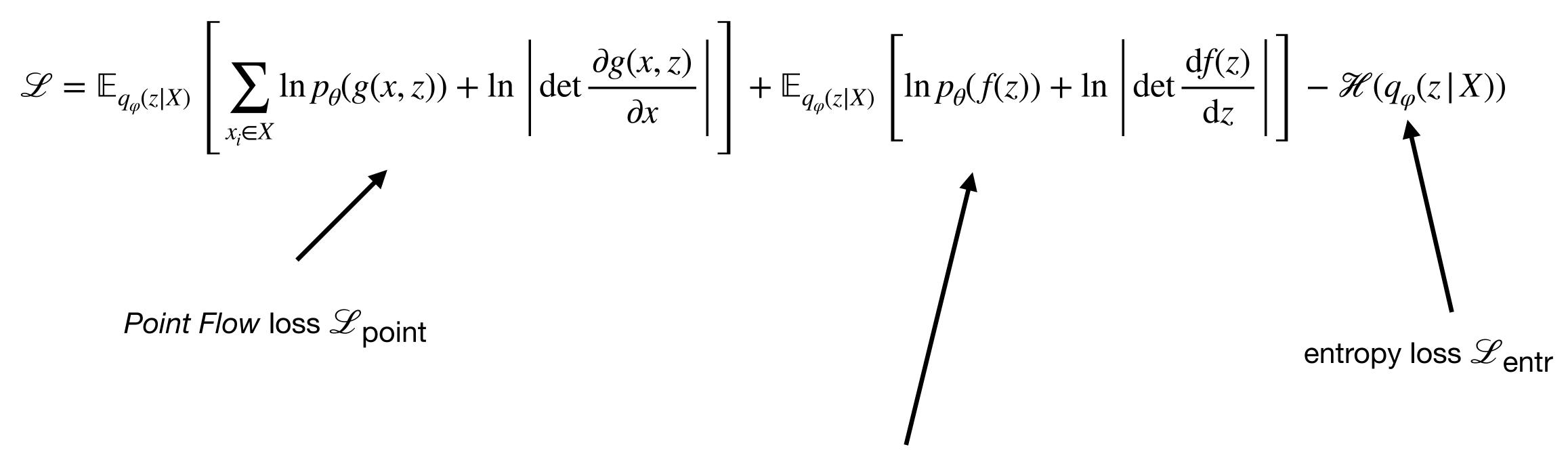
Latent Flow f





Point Flow g

Loss Function Can be derived from the ELBO

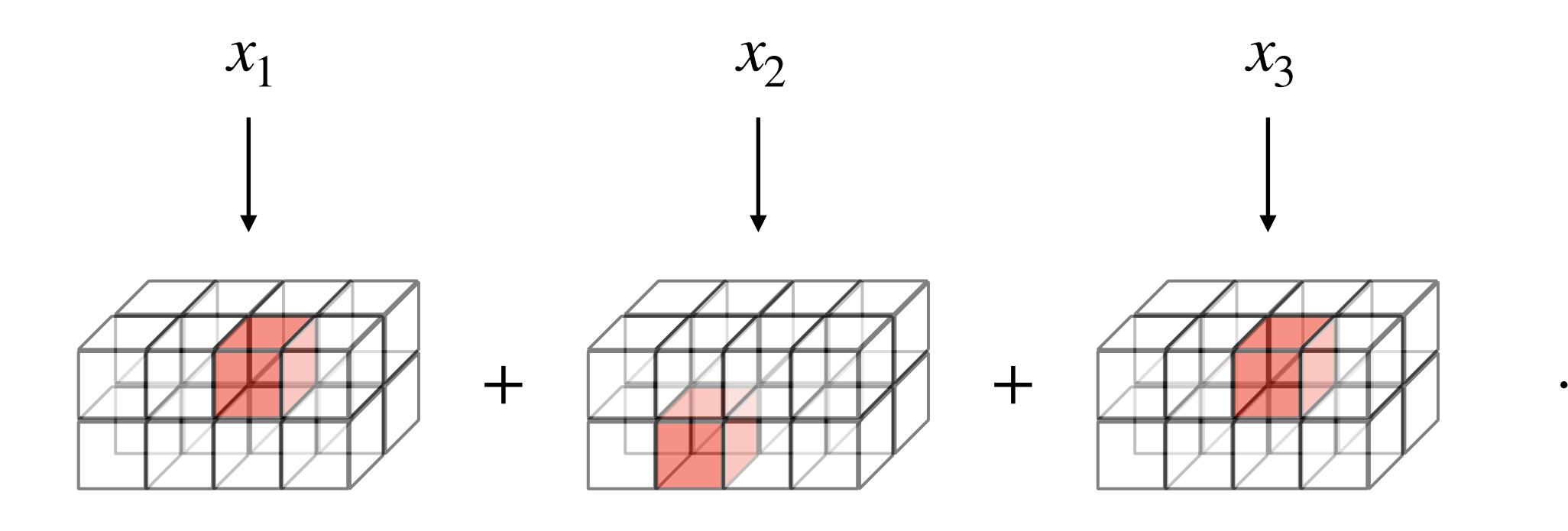


 $\mathscr{L} = \mathscr{L}_{\text{point}} + \mathscr{L}_{\text{latent}} + \mathscr{L}_{\text{entr}}$

Latent Flow loss \mathscr{L} latent

Sampling **Two problems**

- Number of points not defined by CaloPointFlow
- Multiple generated points can belong to the same calorimeter cell



Sampling

- Sample z from latent flow f conditioned on E_{in}, n_{hits}, E_{sum} • Sample points from point flow g conditioned on $z, E_{in}, n_{hits}, E_{sum}$ • Post-process points to cell coordinate and E_f
- Continue sampling until we have n_{hits} different hit cells
- Overwrite previously hit cells
- Scale energy back

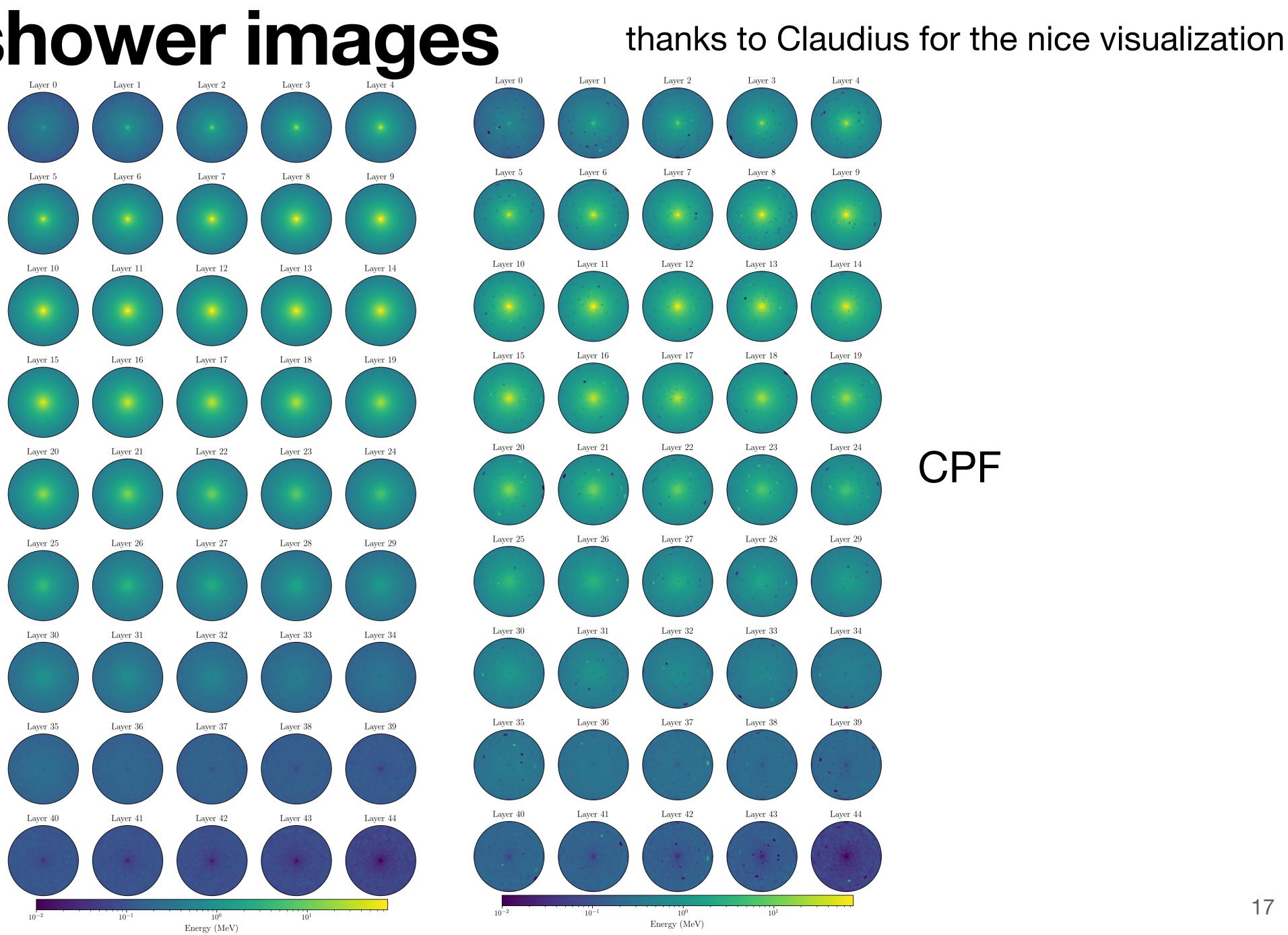
$$E = \frac{E_{\text{sum}} \cdot E_f}{\sum E_f}$$

Evaluation

- We show results for CaloChallenge Dataset 3
- All results for Dataset 2 are in the appendix and are very similar
- Dataset 1 pions and photons has been generated but there are no evaluations ready

Shower average reference dataset

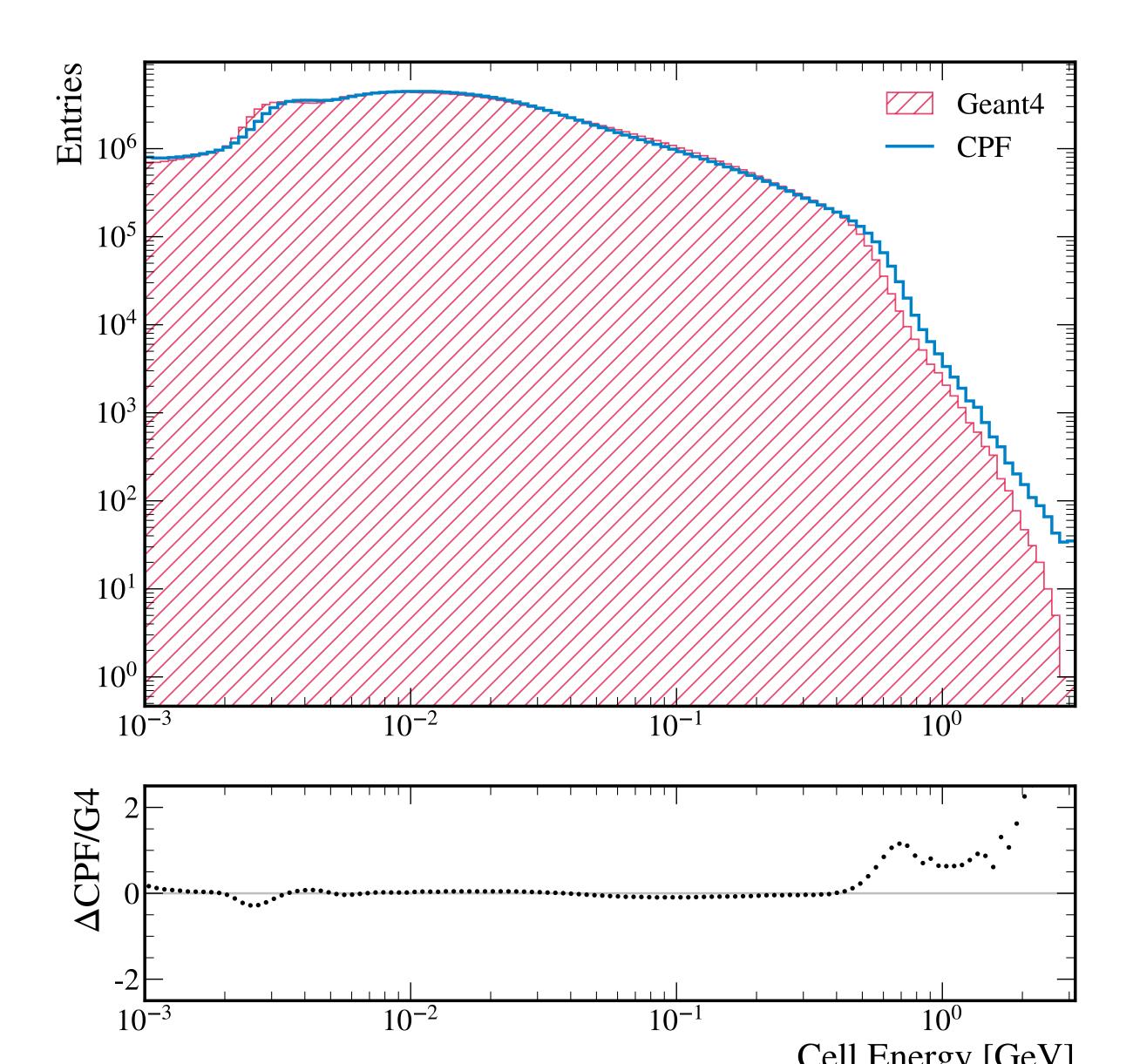
Average shower images



Geant4

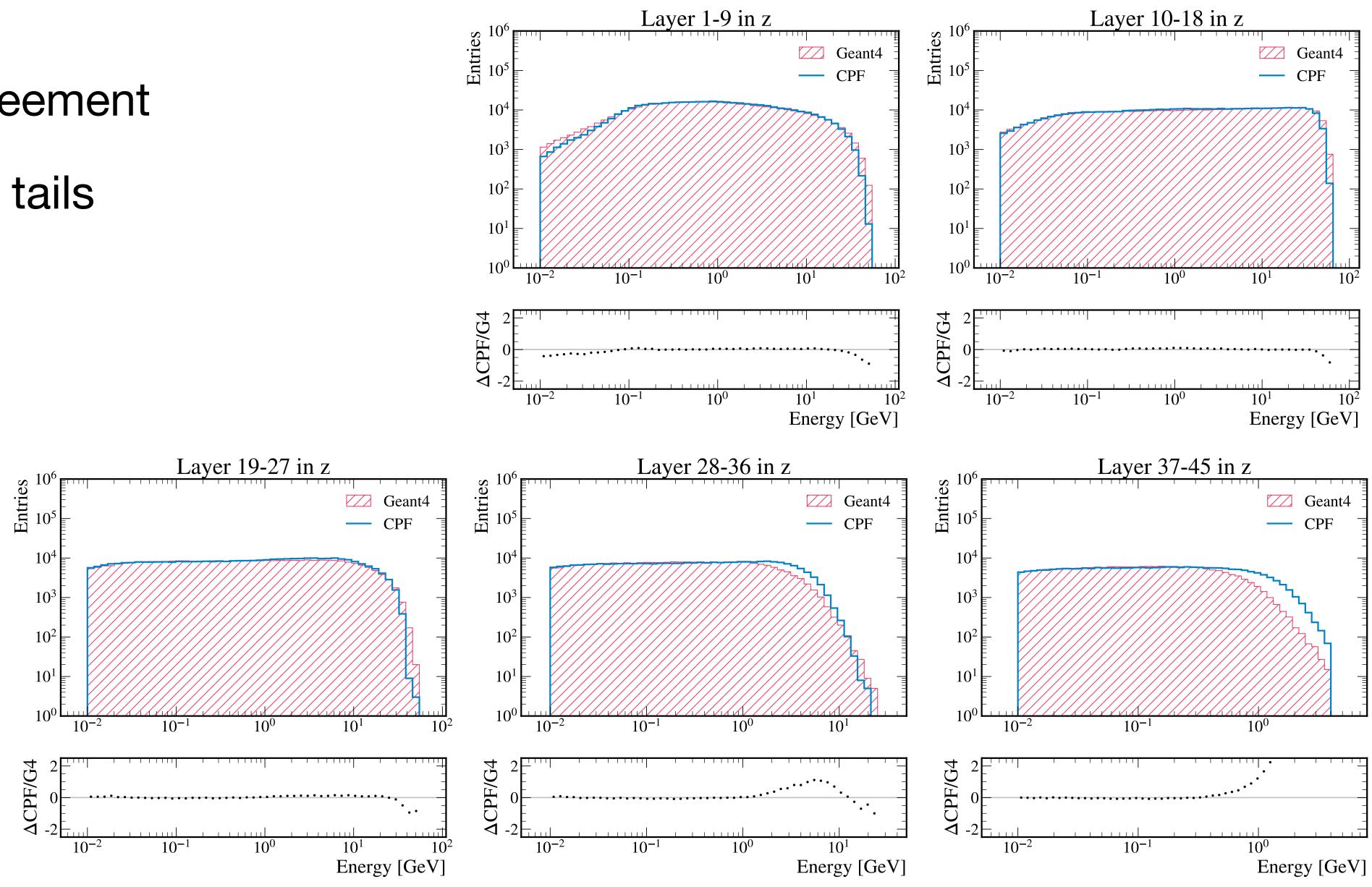
Cell Energy Distribution

- Agreement in high statistics area
- Differences in tails



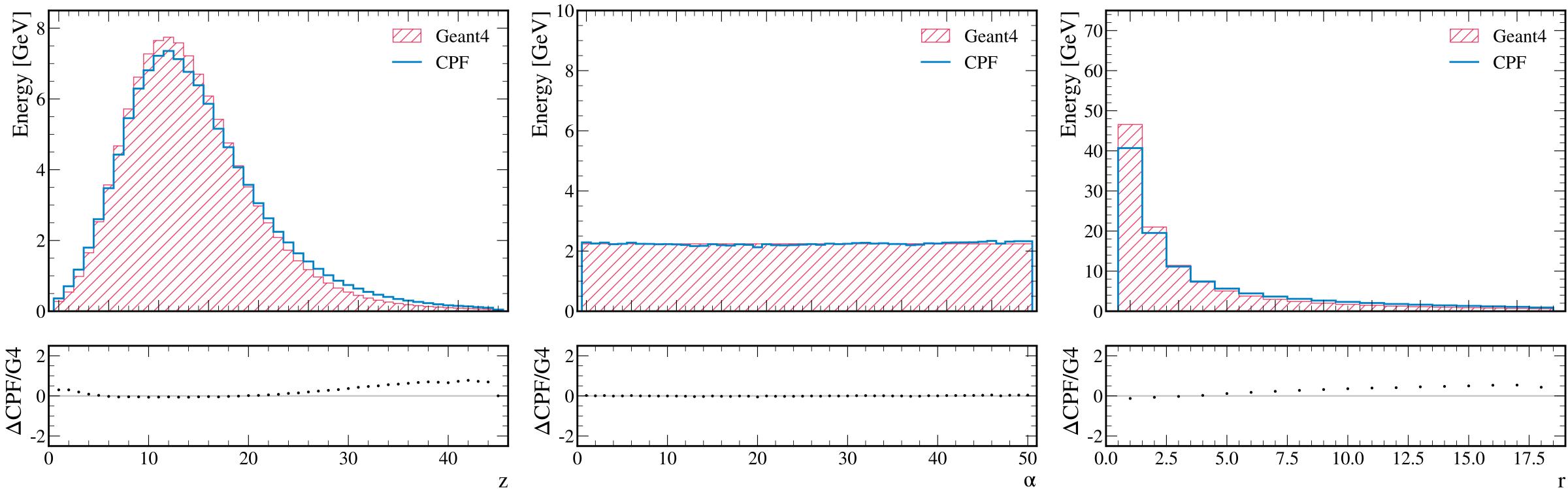
Energy Distribution in different layer areas

- Overall good agreement
- Also problems in tails



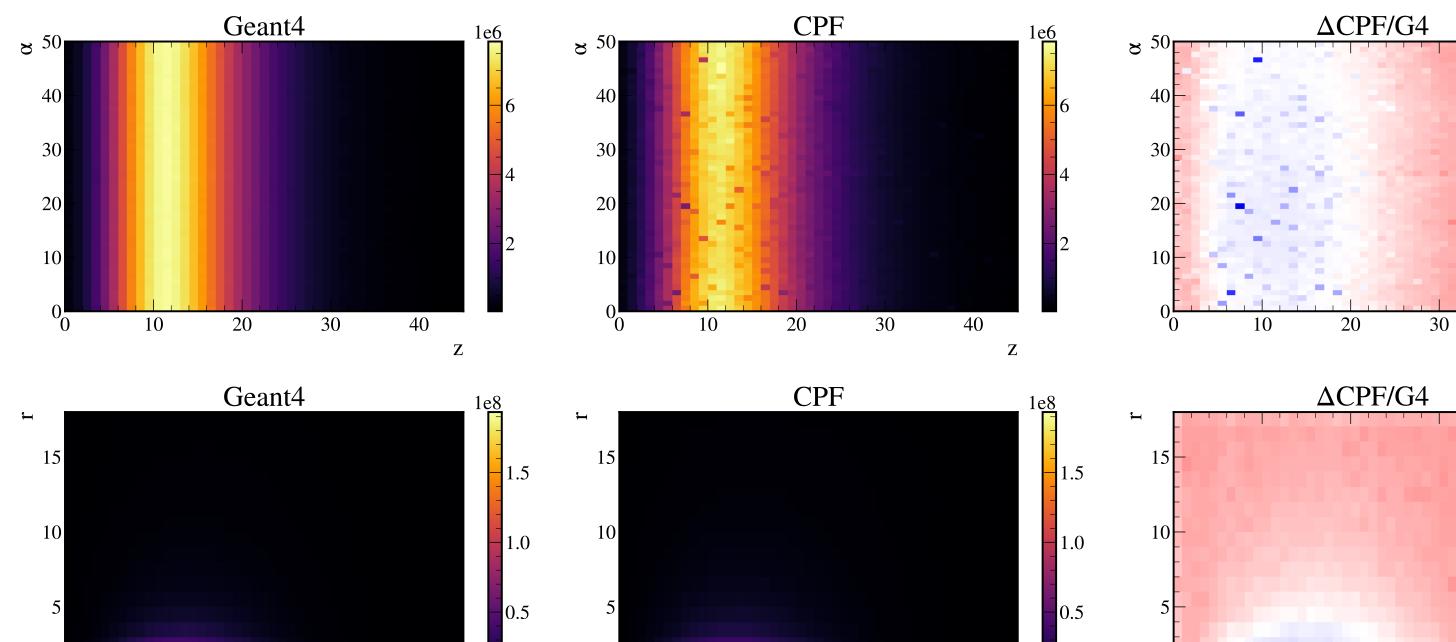
Shower profiles

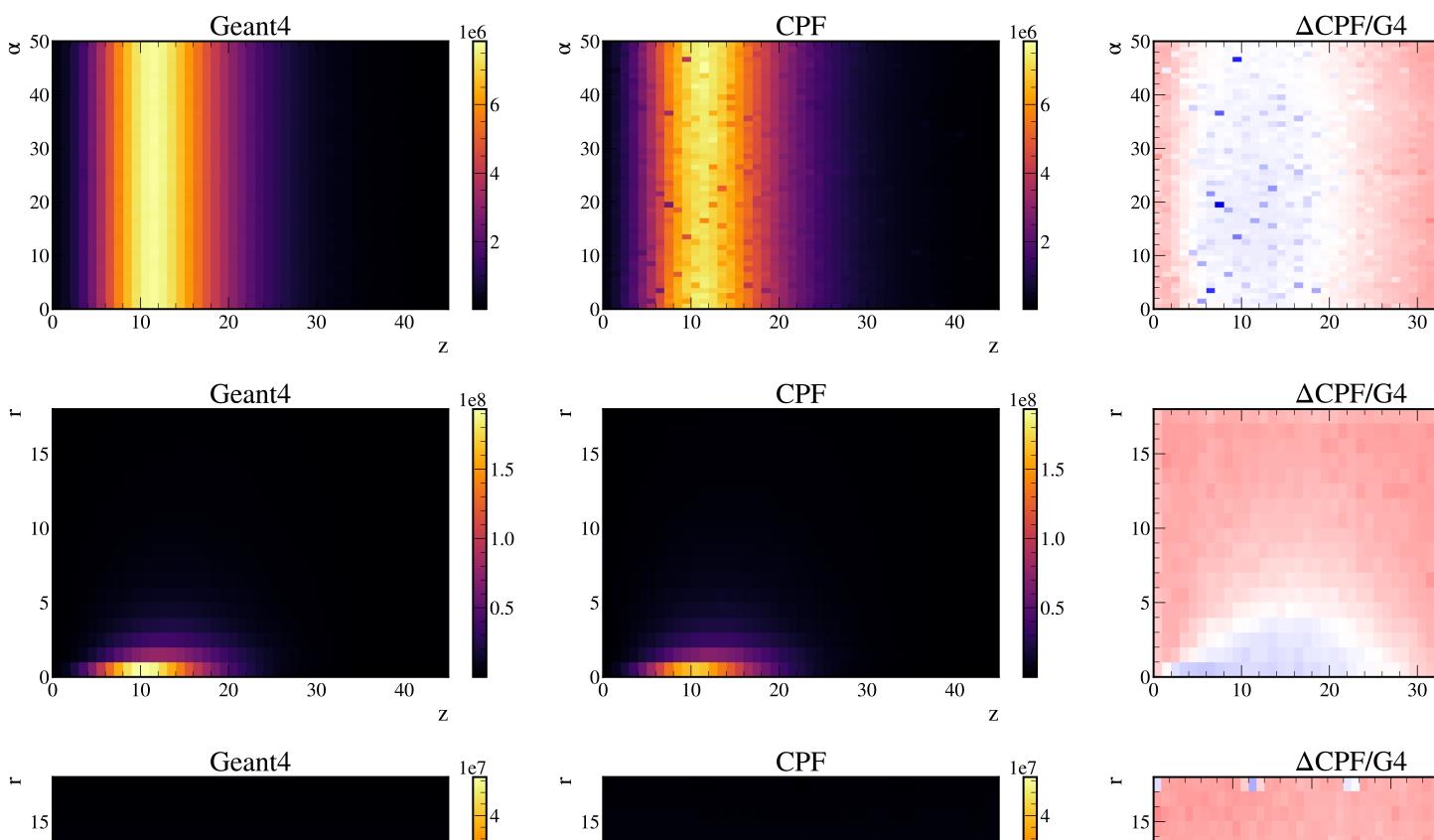
- To low energy in center
- To high energy in tails



Shower profiles in 2D

- No structural differences
- High density too low
- Low density too high





10

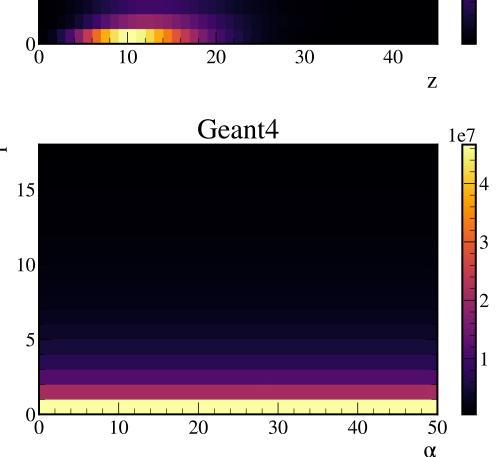
20

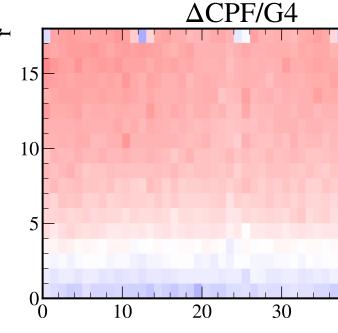
30

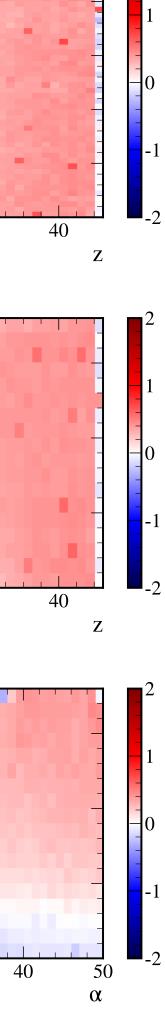
40

50

α

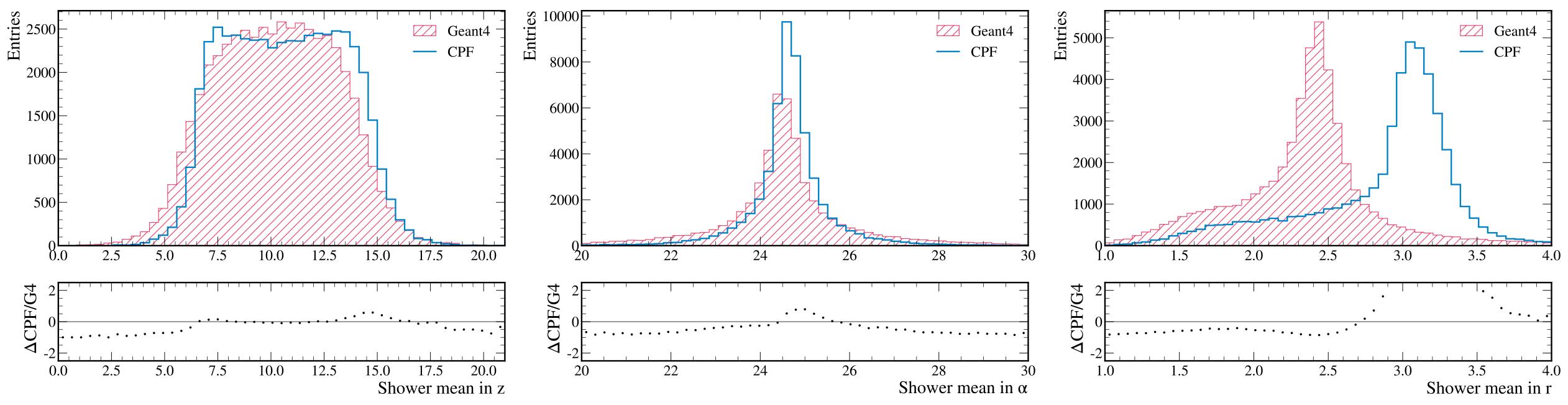






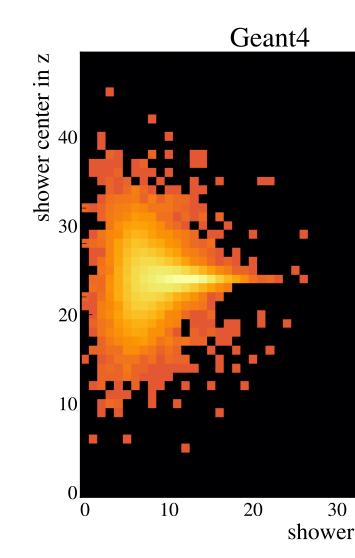
Shower means

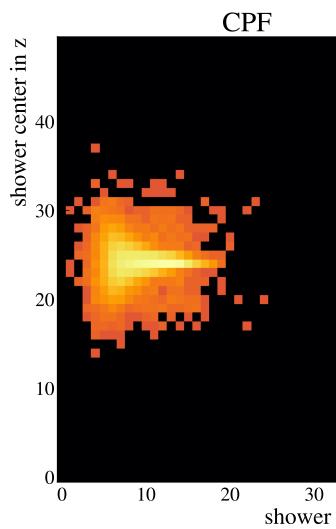
- Agreement wit in z and α with small differences.
- Huge shift in r. Overall the shower have a too large radial distributions.

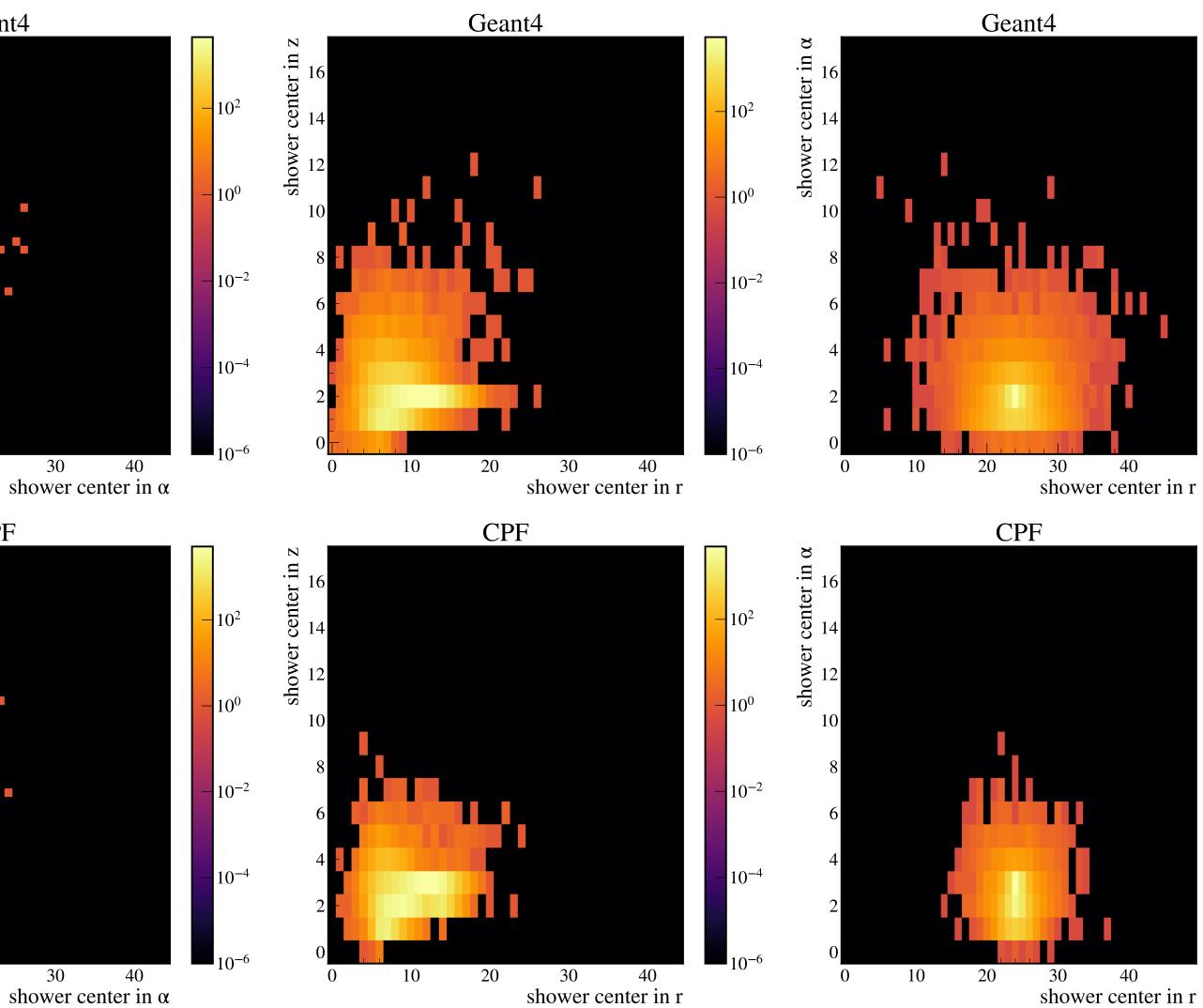


Shower means in 2D

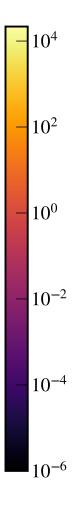
- Same features
- structural morphing

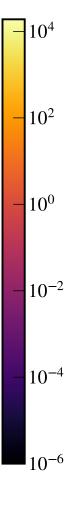






shower center in α





Eigenvalues of covariance matrix

 Calculated unbiased energy weighted sample covariance matrix for each shower

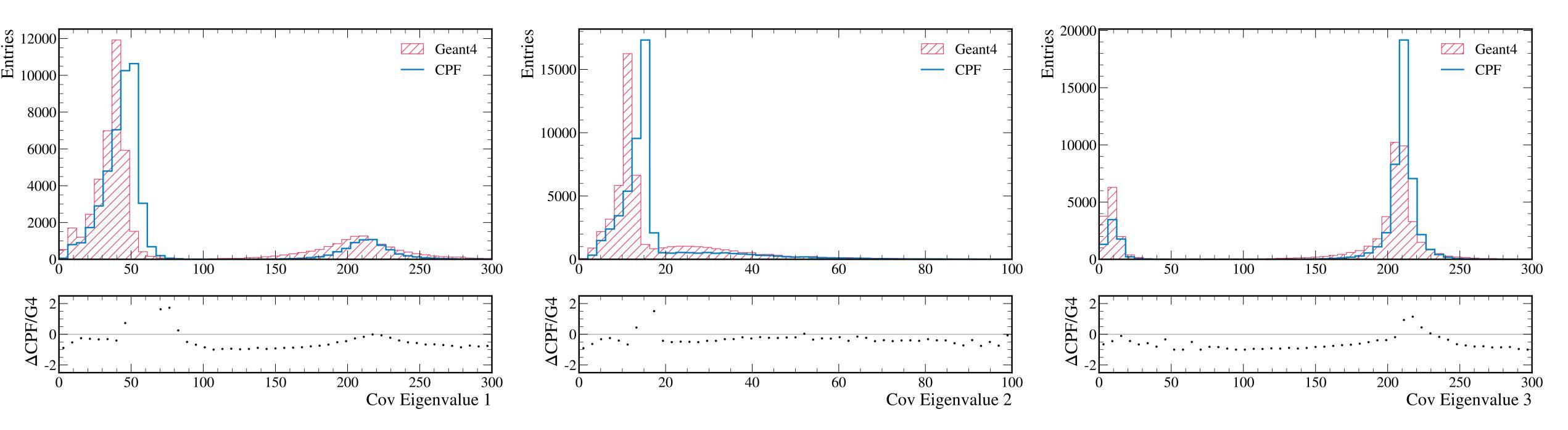
$$C = \frac{1}{\sum_{i=1}^{n} E_i - 1} \sum_{i=1}^{n} E_i (x_i - \mu^*)^T (x_i - \mu^*) \text{ with } \mu^* = \frac{1}{\sum_{i=1}^{n} E_i} \sum_{i=1}^{n} E_i x_i$$

principal components of the shower

• Eigenvalue decomposition of C give as the widths of the shower base on the

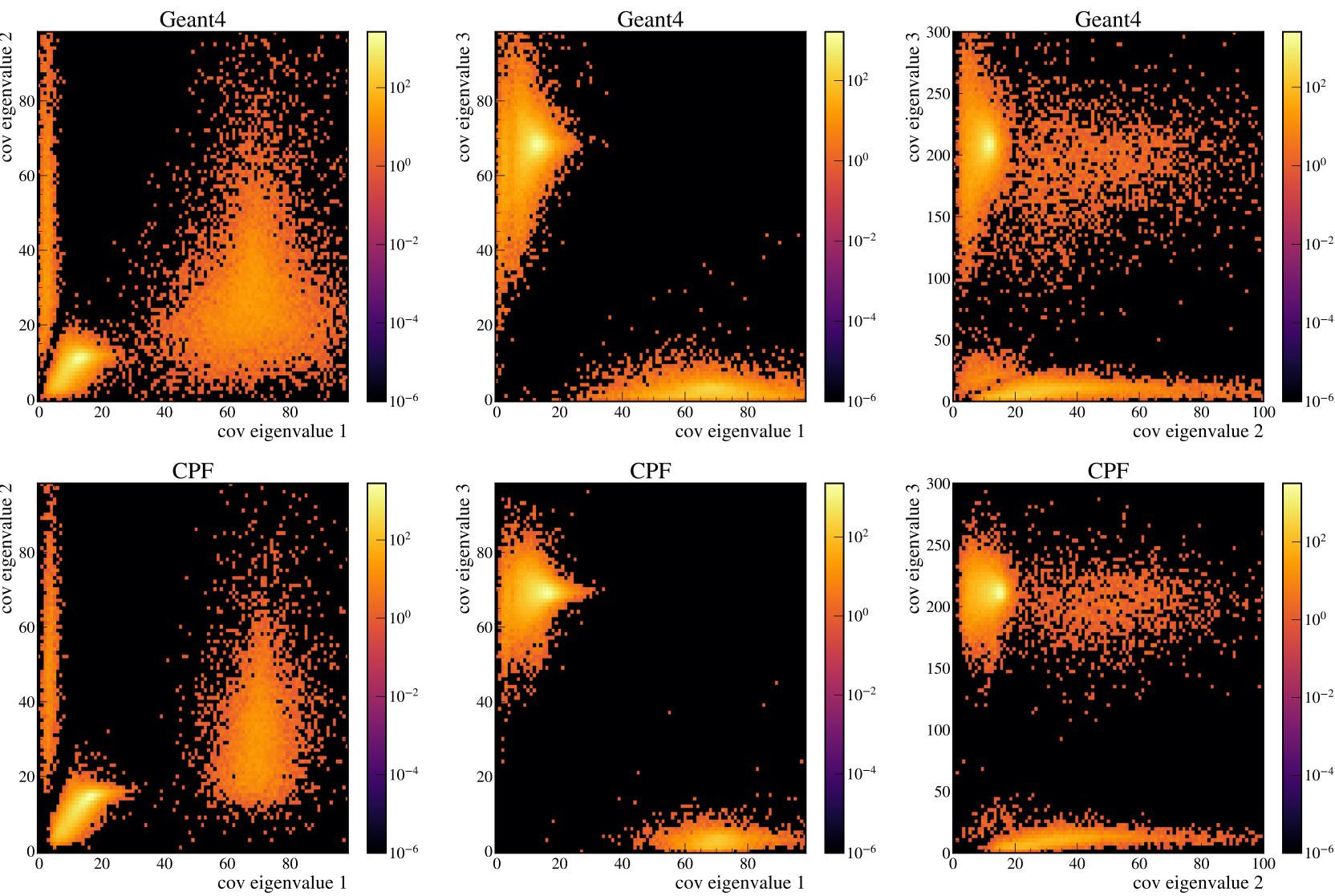
Eigenvalues of covariance matrix

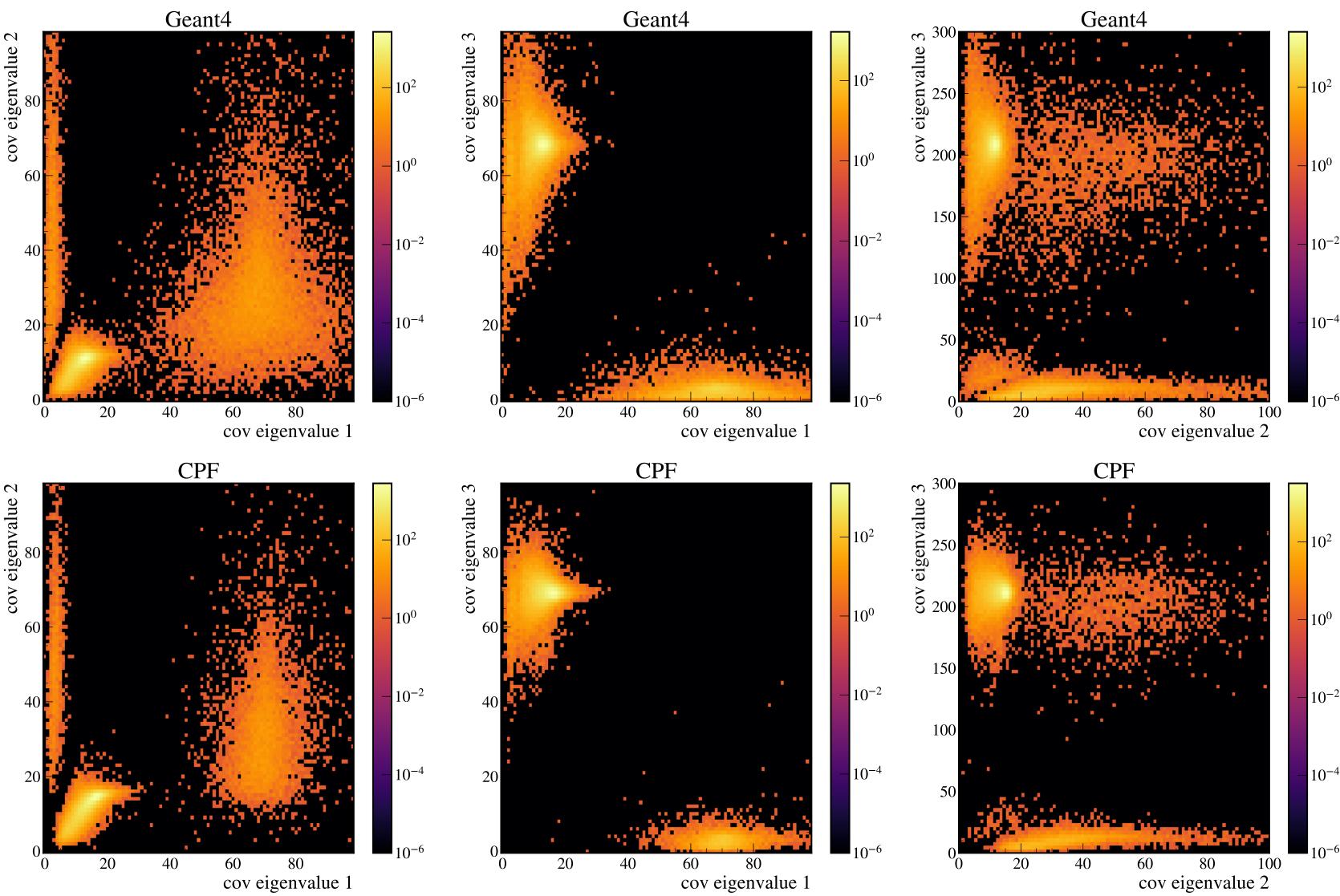
- Structural agreement between Geant and CPF
- Shifts and differences visible



Eigenvalues of covariance matrix 2D

- Same sub-distributions visible
- Structural morphing visible
- Good proxy look of the differences between CPF and G4 shower





Classifier Scores and Sampling Time

CaloPointFlow does not pass Claudius classifier test \bullet

CaloChallenge Classifier	low	low-normed	high
AUC	0.9868	0.9854	0.9664
JSD	0.8006	0.7765	0.6656

 \bullet

number showers	sampling time	time per shower
50,000	548.26s	10.9652ms

• Also fast training time ($\approx 5 \text{min/epoch}$)

Relativ fast sampling time (including multiple sampling due to double hits)

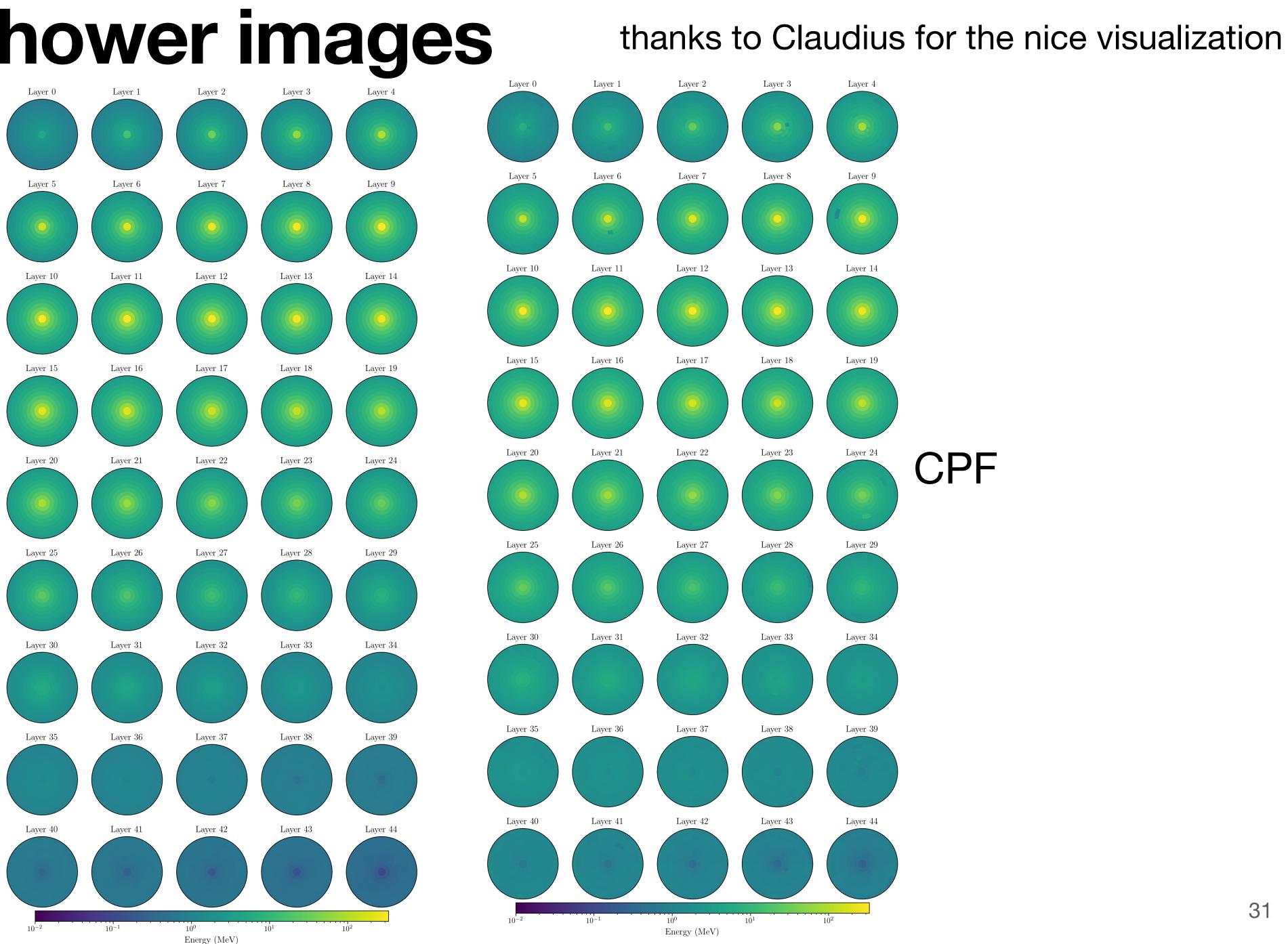
Conclusion & Outlook

- Interpret calorimeter showers as point clouds
- Tested the possibilities of a linear model without point-to-point relations
- Can handle high granular datasets
- Shower structure is overall good resembled
- Their are some structural deviations
- Possible future research areas are
 - including point to point correlations
 - refine the output with a model that introduces point to point relations
- Next steps
 - Analyse results of dataset 1

DATASET 2 PLOTS

Shower average reference dataset

Average shower images

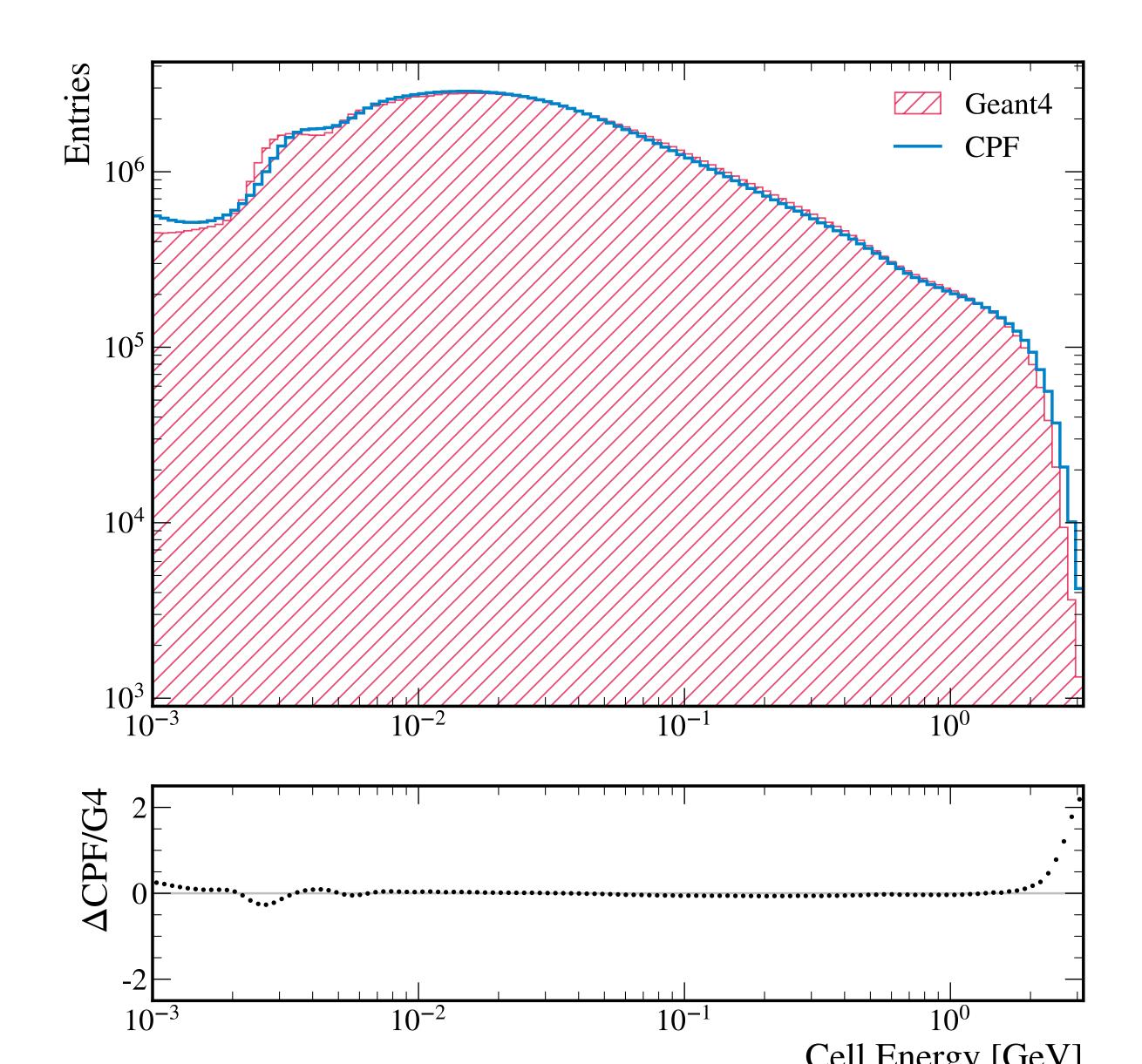


Geant4

Shower average

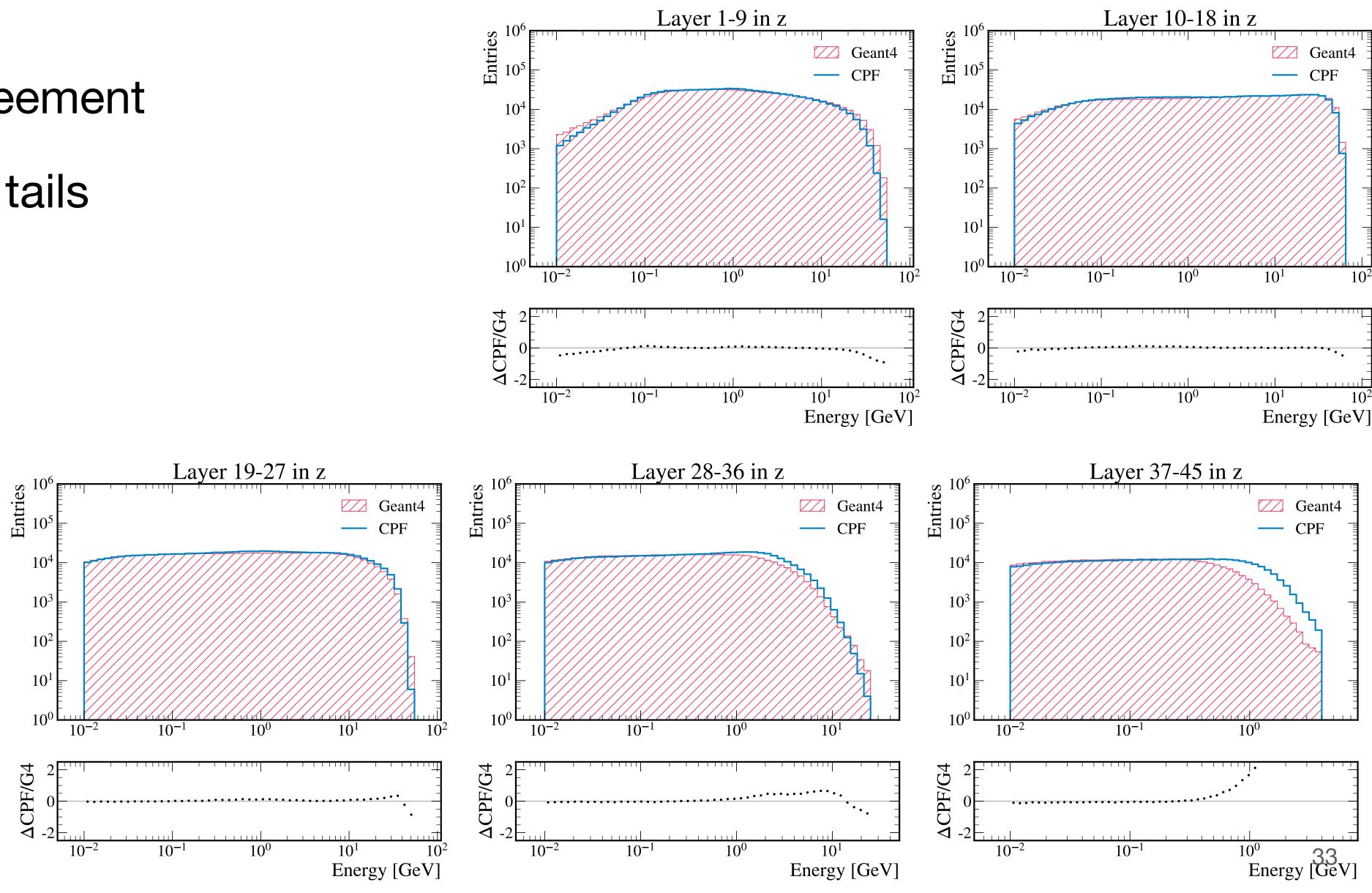
Cell Energy Distribution

- Agreement in high statistics area
- Differences in tails



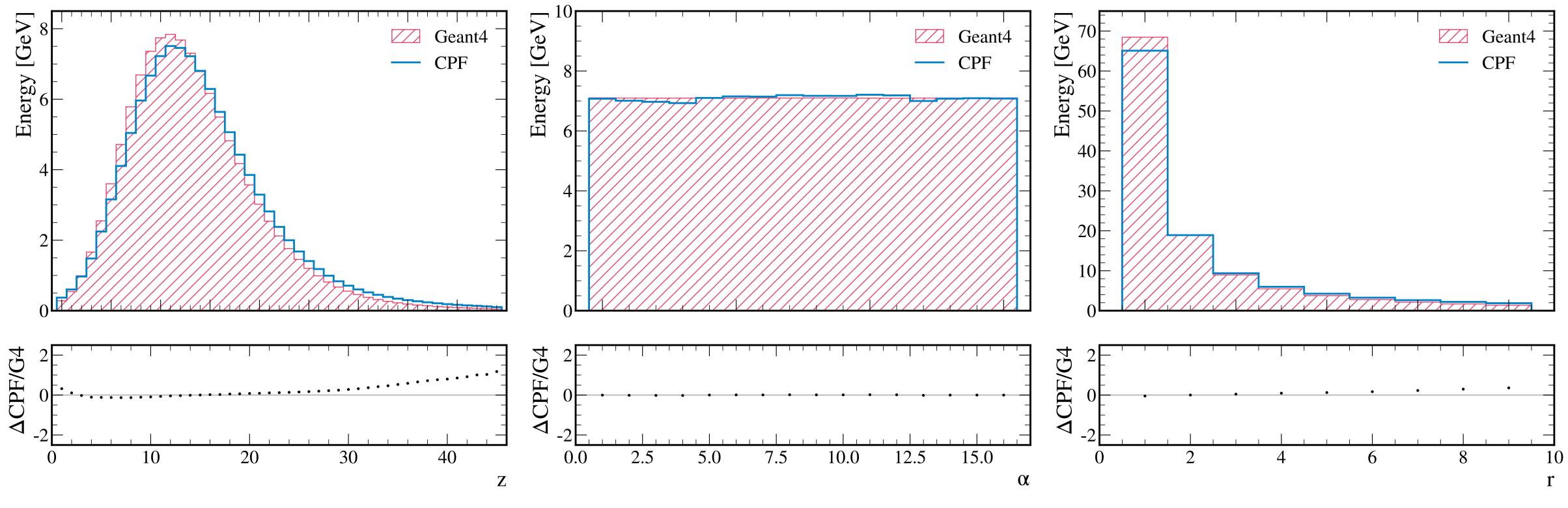
Energy Distribution in different layer areas

- Overall good agreement
- Also problems in tails



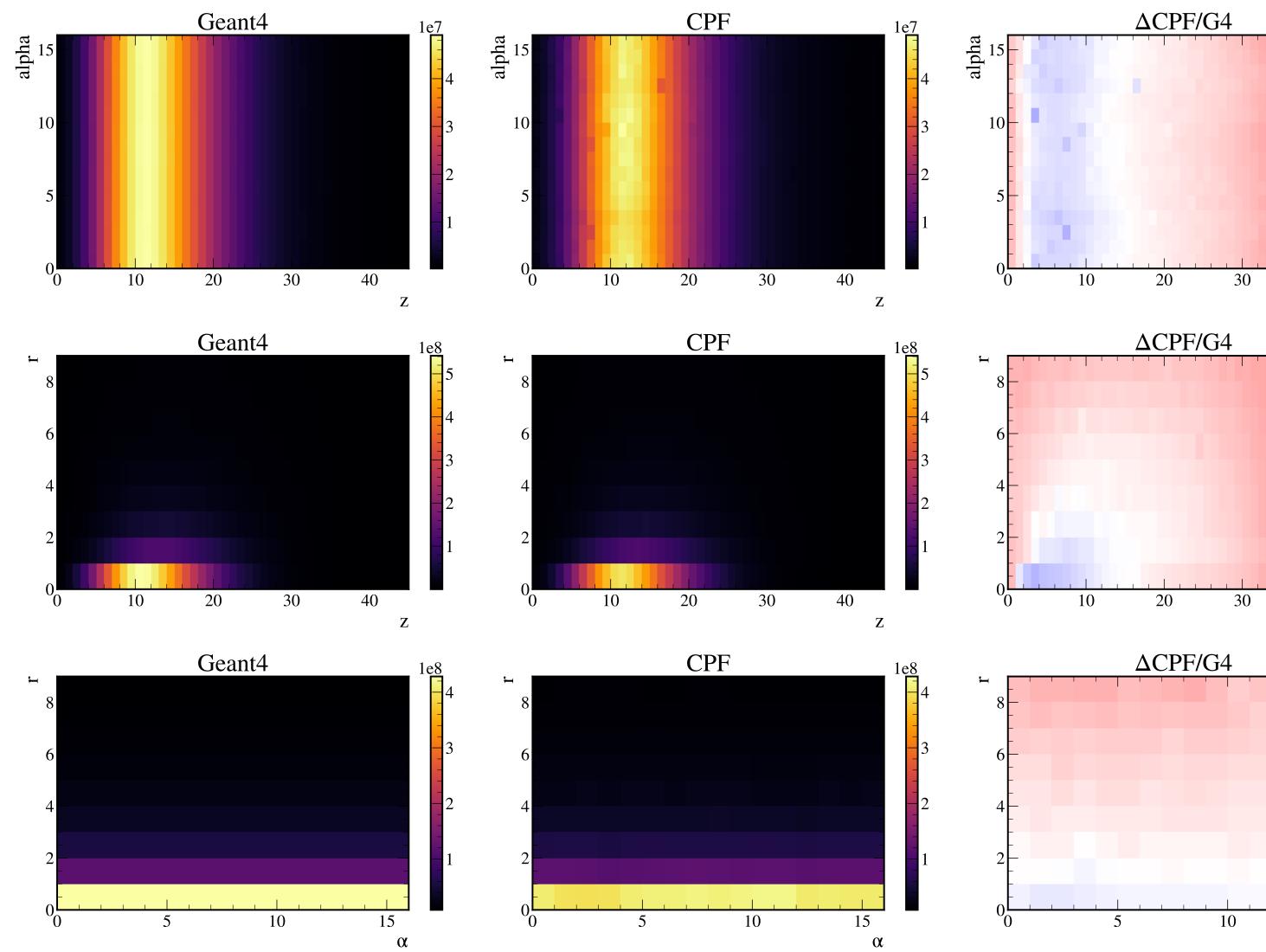
Shower profiles

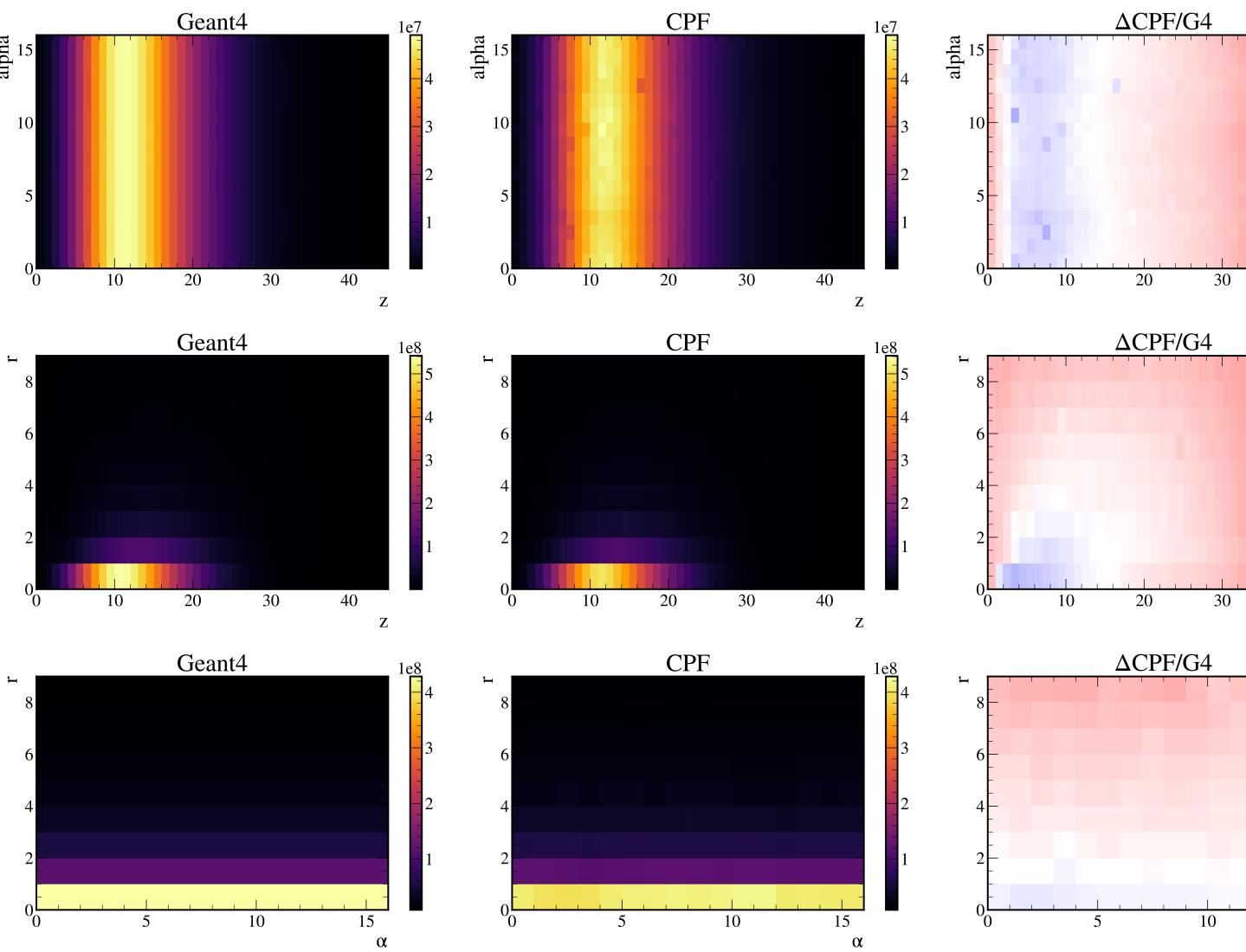
- To low energy in center
- To high energy in tails

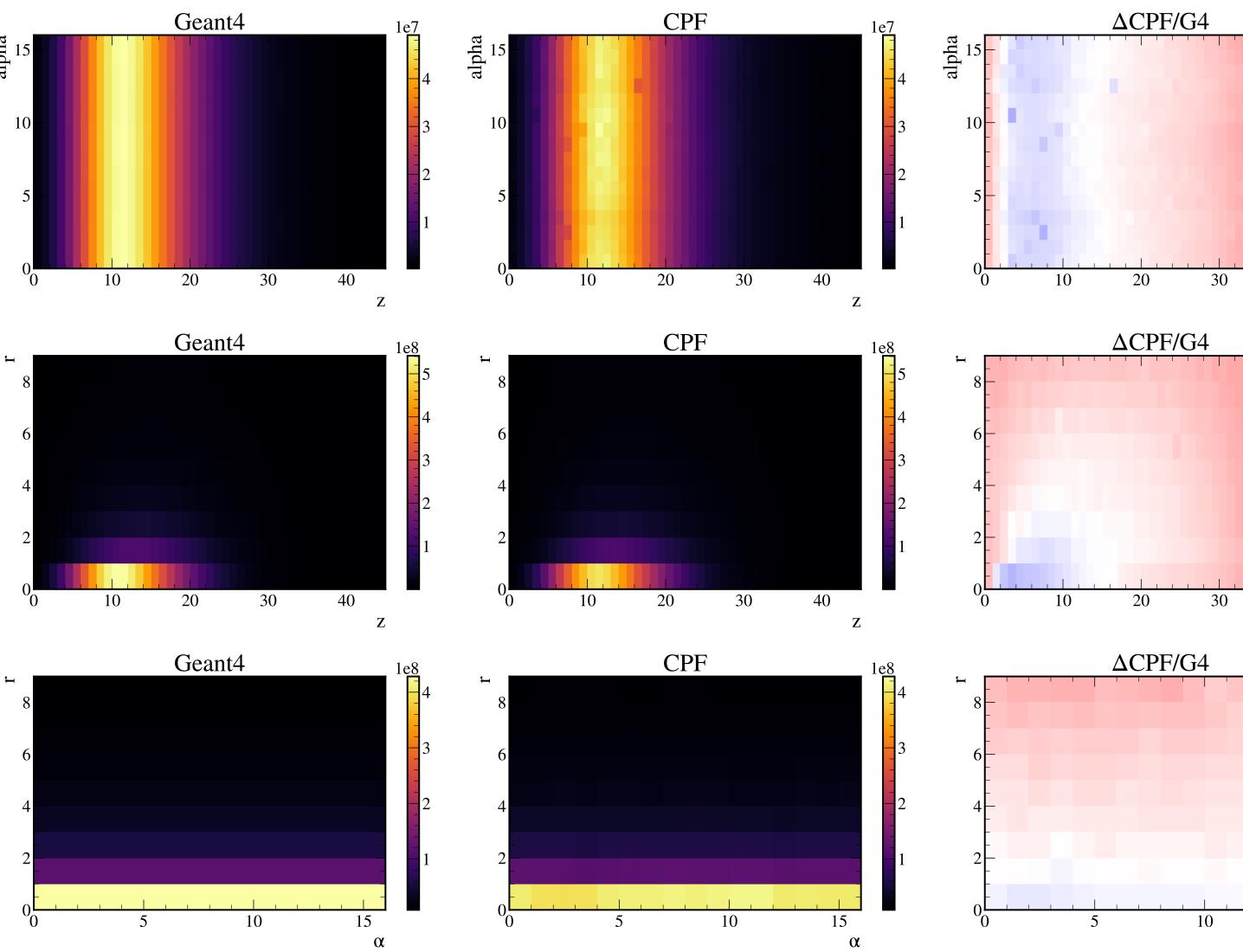


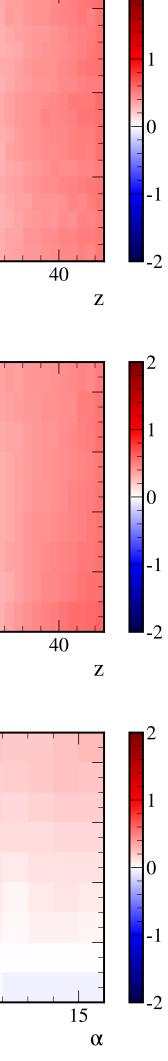
Shower profiles in 2D

- No structural differences
- High density too low
- Low density too high



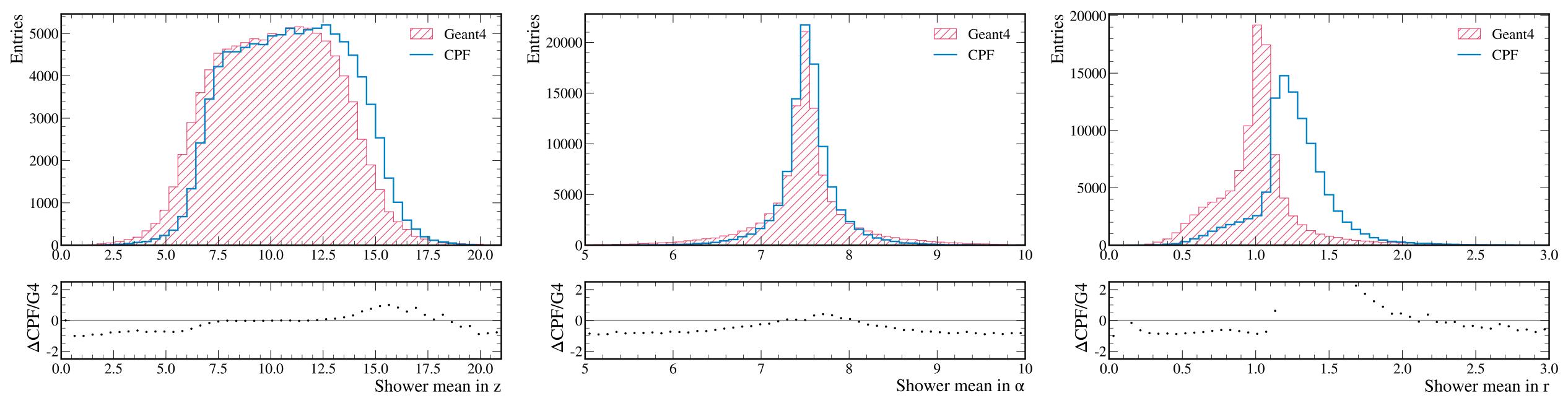






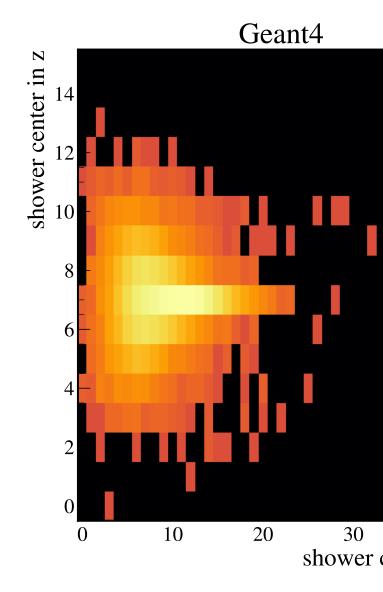
Shower means

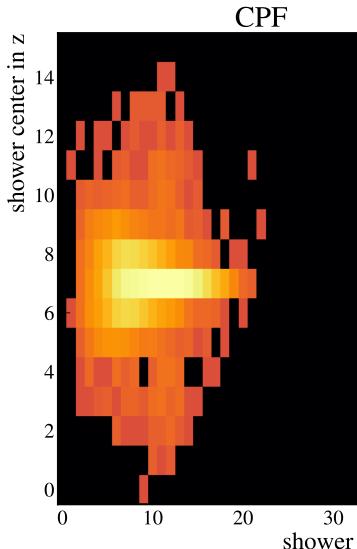
- Agreement wit in z and α with small differences.
- Huge shift in r. Overall the shower have a too large radial distributions.

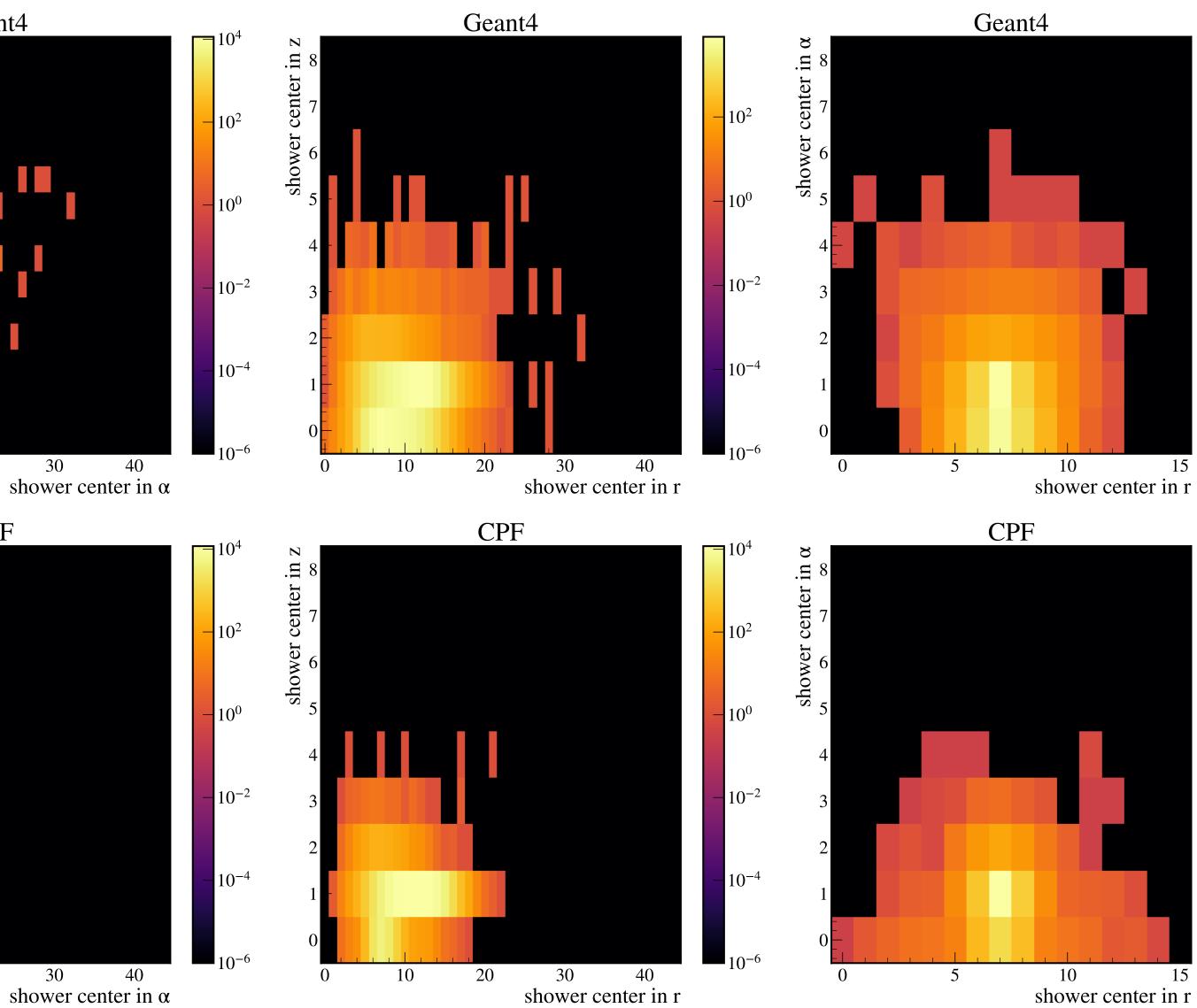


Shower means in 2D

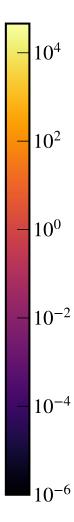
- Same features
- structural morphing

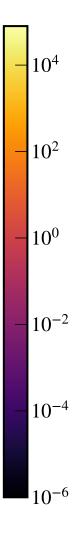






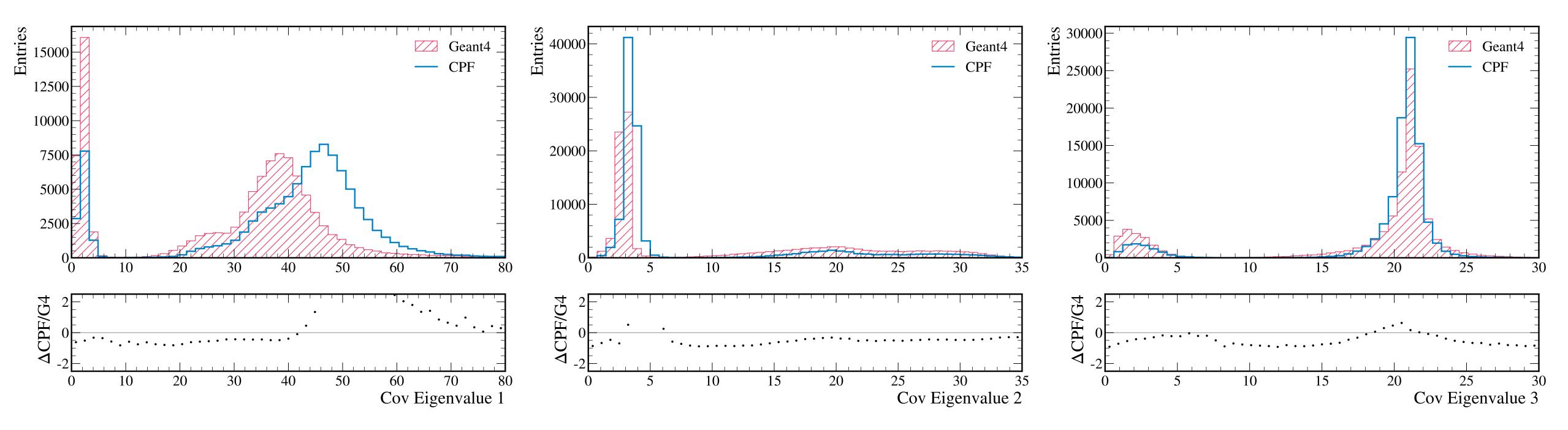
shower center in α





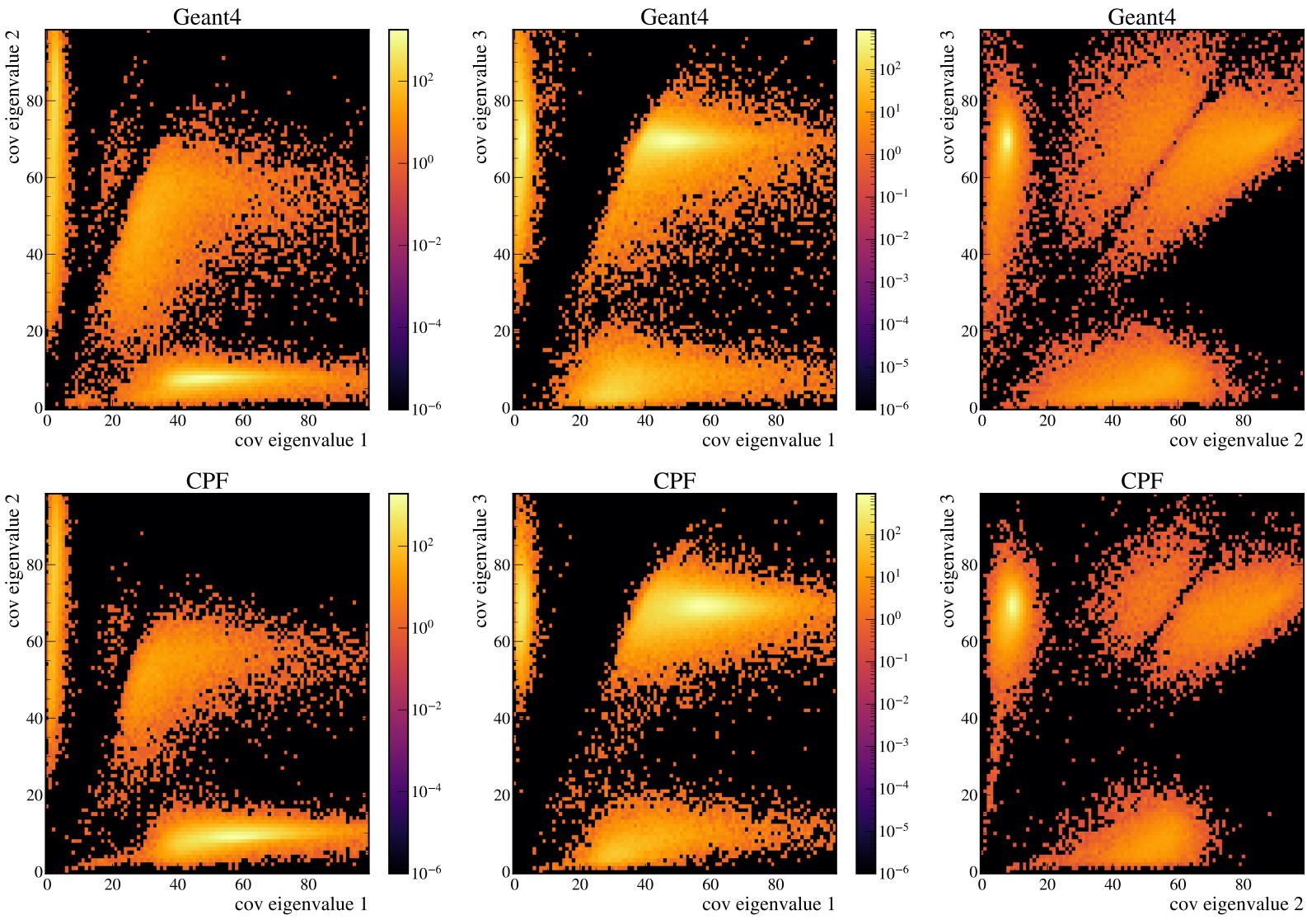
Eigenvalues of covariance matrix

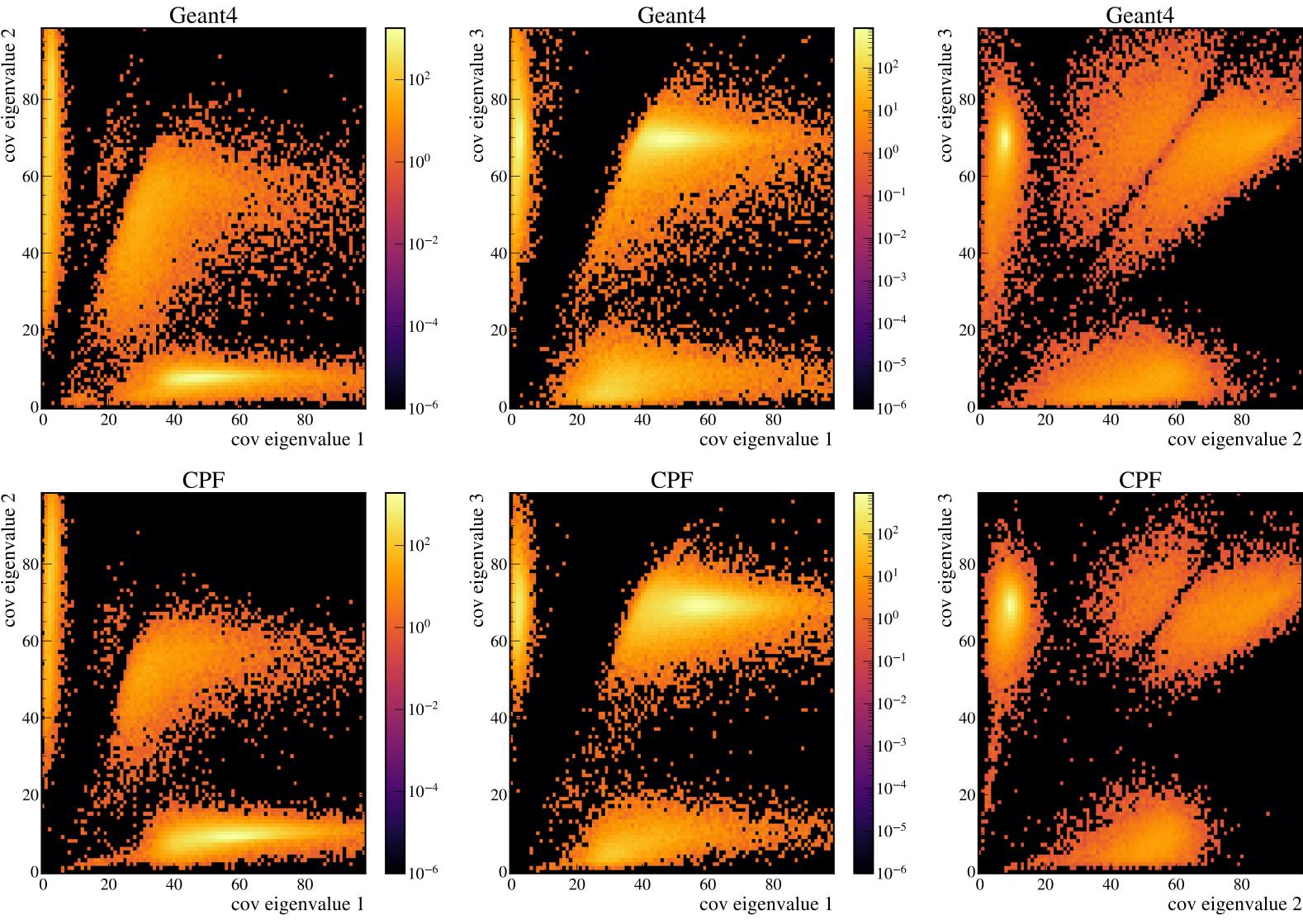
- Structural agreement between Geant and CPF
- Shifts and differences visible

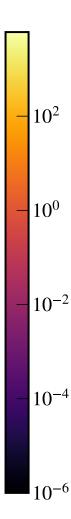


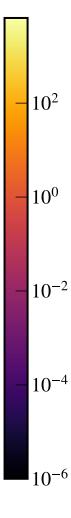
Eigenvalues of covariance matrix 2D

- Same sub-distributions visible
- Structural morphing visible
- Good proxy look of the differences between CPF and G4 shower







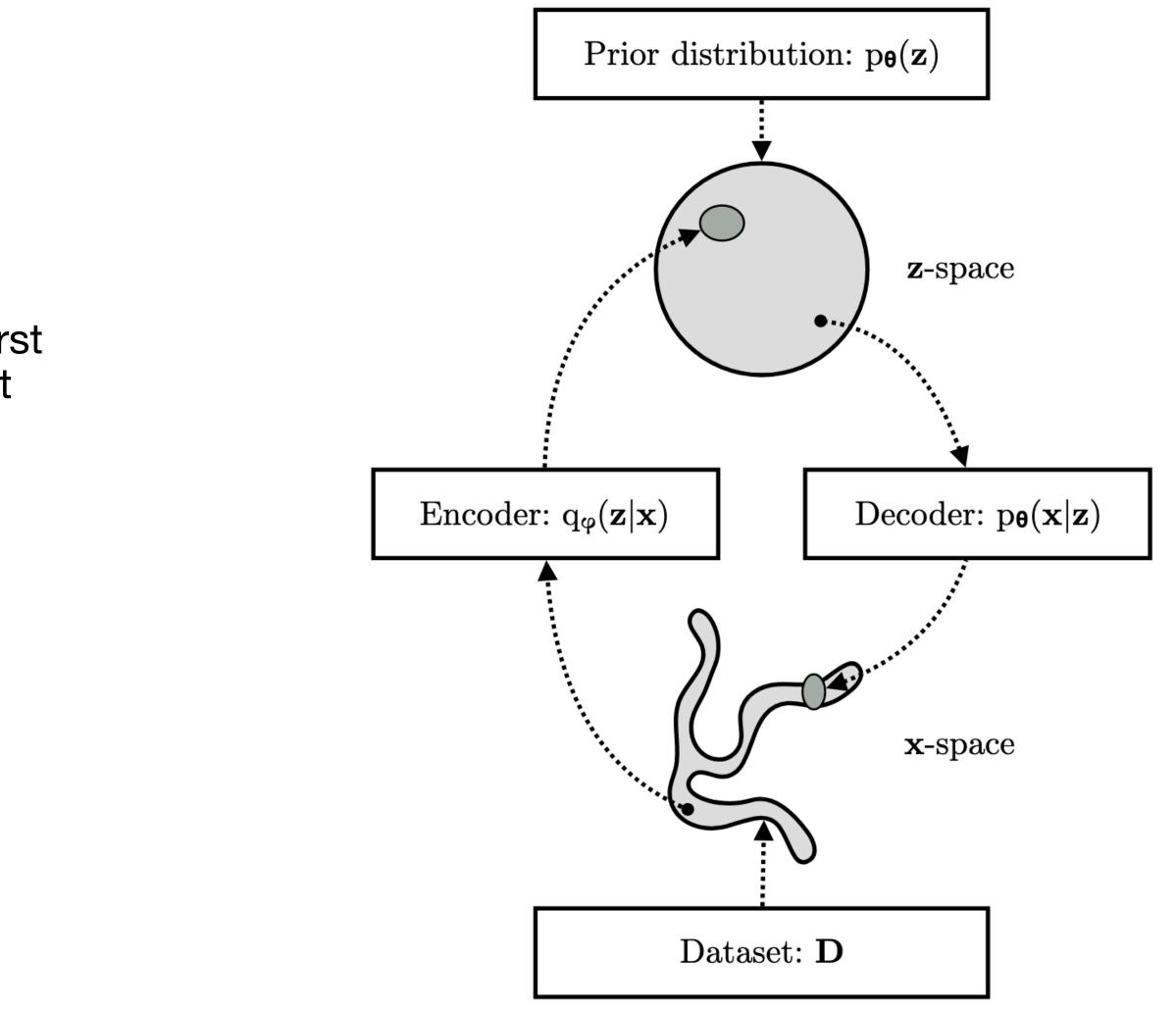


VAE **Variational Autoencoders**

 $\mathsf{ELBO}\,\mathscr{L} = \mathbb{E}_{q_{\varphi}(z|x)}[\ln p_{\theta}(x|z)] - D_{KL}(q_{\varphi}(z|x)||p_{\theta}(z))$

- If we assume that the data is gaussian distributed the first term is the MSE and the last term is a regularisation that keeps the latent gaussian
- The Encoder predicts (μ, σ)
- To a differentiable point is sampled by $z = \mu + \epsilon \odot \sigma$.

here $\epsilon \sim N(0,1)$ (reparametrization trick)



Durk Kingma PhD Thesis

Encoding **VAE** with an NF Prior

 $\mathsf{ELBO}\,\mathscr{L} = \mathbb{E}_{q_{\varphi}(z|X)}[\ln p_{\theta}(X|z)] - D_{KL}(q_{\varphi}(z|X)||p_{\theta}(z)) = \mathbb{E}_{q_{\varphi}(z|X)}[\ln p_{\theta}(X|z) + \ln p_{\theta}(z) - \ln q_{\varphi}(z|X)]$

Bijective transformation (NF) w = f(z) with $w \sim N(0,1)$

$$\begin{split} \mathscr{L} &= \mathbb{E}_{q_{\varphi}(z|X)} \left[\ln p_{\theta}(X|z) + \ln p_{\theta}(z) - \ln q_{\varphi}(z|X) \right] \\ &= \mathbb{E}_{q_{\varphi}(z|X)} \left[\ln p_{\theta}(X|z) + \log p_{\theta}(f(z)) + \log \left| \det \frac{\mathrm{d}f(z)}{\mathrm{d}z} \right| - \ln q_{\varphi}(z|X) \right] \\ &= \mathbb{E}_{q_{\varphi}(z|X)} \left[\ln p_{\theta}(X|z) \right] + \mathbb{E}_{q_{\varphi}(z|X)} \left[\log p_{\theta}(f(z)) + \log \left| \det \frac{\mathrm{d}f(z)}{\mathrm{d}z} \right| \right] - \mathscr{H}(q_{\varphi}(z|X)) \end{split}$$

Decoding Using a second Normalizing Flow

$$\ln p_{\theta}(X \mid z) = \ln \prod_{x_i \in X} p_{\theta}(x_i \mid z) = \sum_{x_i \in X} \ln p_{\theta}(x_i \mid z)$$

(NF) $y_i = g(x_i, z)$ with $y_i \sim N(0, 1)$

$$\ln p_{\theta}(X \mid z) = \sum_{x_i \in X} \ln p_{\theta}(x_i \mid z)$$
$$= \sum_{x_i \in X} \ln p_{\theta}(g(x_i, z)) + \log \left| \det \frac{\partial g(x_i, z)}{\partial x} \right|$$

The Algorithm How to tame the beast

for t = 1, 2, ..., T do

 $\mu, \sigma \leftarrow q_{\varphi}(X_t)$ where *d* is the dimension of μ

and X_t is a point cloud sample

$$\mathscr{L}_{entr} = \frac{d}{2}(1 + \ln(2\pi)) + \sum_{i=1}^{d} \ln \sigma_i$$

$$z = \epsilon \odot \sigma + \mu \qquad \text{(Reparametrization)}$$

$$w \leftarrow f(z)$$

$$\mathscr{L}_{prior} = N(w; 0, I) + \ln \left| \det \frac{df(z)}{dz} \right|$$

$$L \leftarrow 0$$

for $x_i \in X_t$ do

$$y_i \leftarrow g(x_i, z)$$

$$L_i \leftarrow \log N(y_i; 0, I) + \log \left| \det \frac{\partial g(x_i, z)}{\partial x} \right|$$

$$L \leftarrow L + L_i$$

end for

 $\begin{aligned} \mathscr{L}_{\text{recon}} &= \frac{L}{n_{X_t}} \\ \mathscr{L} &= \mathscr{L}_{\text{recon}} + \mathscr{L}_{\text{prior}} + \mathscr{L}_{\text{entr}} \end{aligned}$

 $Adam(-\mathscr{L})$

end for

