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▪ Calorimeter: vital detector measuring the particle energy in high energy physics

▪ Simulation of calorimeter: important but challenging 

▪ Measure the basic physics information particle energy

▪ Need tracing of huge amount of secondary particles (`shower`)

▪ More than 75% of simulation time spent on the calorimeter in ATLAS 

▪ Fast simulation of calorimeter mostly needed and  necessary for next generation experiment 
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▪ Traditional method (e.g. parameterization) 

▪ Risk of over-simplification 

▪ Still rely on explicitly particle simulation

▪ Machine learning method

▪ Treat calorimeter response as image or other formats

▪ Directly learn the distribution and do the sampling

▪ No tracing secondary particles

▪ Various DGM (deep generative model) available:

▪ Flow: accurate but usually slow sampling speed

▪ Diffusion: slow but promising at accuracy and scalability

▪ GAN: fast but hard to train and tune

▪ VAE: fastest but usually limited by the accuracy

▪ Why VAE-like methods:

▪ Unique latent space enable latent generative model

→Two-stages Generative Model
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Disclaimer: not a serious comparison just for illustration of typical performance

𝑃(𝐸𝑖|𝐸𝑖𝑛𝑐 , 𝑡𝑦𝑝𝑒, … )



▪ Challenges of  DGMs:

▪ Making big model considering both training time and tuning effort

▪ Generalization and migration between different dataset (format)

▪ Two stages calorimeter generative model: 

▪ Inspired by the VQVAE[1] and stable-diffusion[2]

▪ Stage1: AutoEncoder-like model for compression

▪ Flexibility: adapted to different geometry and aim to extract the common (physics) information

▪ Well defined target: compress as much information into latent and recover it

▪ Speed: fast training and forward pass

▪ Stage2: Latent model for sampling and other tasks

▪ Beneficial from mature model in other fields, e.g. cutting edge LLM 

▪ Explainable and physics embeddings, such as equivariant and symmetry

▪ We will present specific model on the calo challenge dataset
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https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2112.10752


▪ Cylindrical shape with Alpha, R and Z three dimension

▪ Not uniformly correspond to the physical distance

▪ Also possible to convert into ∆𝜂, ∆𝜙 and Z coordinate

▪ Where the metric scores are evaluated

▪ Special “3D calo-image” 

▪ Represent the calorimeter response of the incident particle

▪ Energy in each detector cell/pixel: 𝐸𝑖
▪ Sum of all the energy in N-th Z layer: 𝐸𝑙𝑎𝑦𝑒𝑟𝑁 and sum all 𝐸𝑡𝑜𝑡

▪ Incident energy of particle: 𝐸𝑖𝑛𝑐 (treated as condition)

▪ Dataset1: irregular geometry

▪ Layer different alpha and R segmentation (some with ring-like geo)

▪ Dataset2/3: more regular but special coordinate/granularity

▪ (A * R * Z) 3 dimensional data

▪ Rotational symmetry and particle always at center and perpendicular
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Common pre-processing for all calo challenge datasets
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▪ Large dynamic range due to the needs of simulation and underlying EM interaction

▪ Dynamic range of condition

▪ Dynamic range of all the pixel energy in a same particle shower

▪ Encoder pass

① Normalized by condition and then “R” (E_tot/E_inc): [1e-6,1e6] → [0,1]

② Transformed by log1p (with proper scaling and shift)

▪ Decoder pass:

① Softmax in last decoder layer: ensure output normalized in the sense of exponential

② Recover the energy with R (sampled with latent model) then E_inc (condition)
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Model to compress the specific dataset into latent space

S1
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(how large/long 

the latent space)

Latent vector

▪ Variant of VAE with additional latent regularization

▪ Quantize the latent (vectors) as discrete codes (finite number of “representative” vectors)

▪ Loss to drive the latent space well quantized besides of the typical AE loss (L1/L2)

▪ Quantization loss: codes faithfully represent the latent space

▪ Commitment loss:  encoded latent vectors close to codes

▪ Extend the latent space to ℤ𝐿 which is more flexible and descriptive

“codes”

(length of each 

latent vector)



▪ Pixel wise Loss: L2 distance (MSE) between truth and decoded pixels

▪ Adversary Loss: discriminator loss and generator loss ~ similar to GAN

▪ Physics-perceptual Loss: (more on backups and not used in the submitted model)
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Conditional sampling of latent space

S2



▪ Latent space to be sampled: sequence of discrete numbers

▪ Similar to language model: codes →token

▪ Latent discrete codes treated a language token 

▪ Sampling based on condition

▪ Various models(RNN, latent diffusion, GPT) tested and GPT is finally used

▪ Implementation from minGPT [3]

▪ General introduction of GPT model [ask GPT]
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https://github.com/karpathy/minGPT
https://openai.com/blog/chatgpt


▪ Important feature of calorimeter dataset: E_tot != E_inc

▪ Reflect the property of calorimeter design such as calibration and sampling ratio

▪ Highly correlated to the condition, pixel energy, particle and detector design

▪ Usually centralized (around 0.8) and with long tail

▪ Generate R in GPT:

▪ Digitized to bits and treated as discrete inputs

▪ Concatenate with latent sequence and sampling with GPT
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Special “shower language”

09000#yasdcvfghhb...#
Digitized R

(e.g. 0.9)

shower “codes”

separator(optional)

𝑅 ≡
𝐸𝑡𝑜𝑡
𝐸𝑖𝑛𝑐

=
σ𝐸𝑖
𝐸𝑖𝑛𝑐



ds1
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DS1-photon

Scores Cat. (No.): Mean Best Worst

Etot/Einc(16) 0.0146±0.0124 0.004 0.0542

Esum(5) 0.0054±0.0033 0.0028 0.0119

Eta_Center(2) 0.0154±0.0068 0.0085 0.0222

Phi_Center(2) 0.0053±0.0004 0.0049 0.0056

Eta_Width(2) 0.0400±0.0003 0.0397 0.0403

Phi_Width(2) 0.0559±0.0052 0.0508 0.0611

E_pixel(1) 0.0008 - -

Thanks for the nice visualization from calo challenge!
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DS1-pion

Scores Cat. (No.): Mean Best Worst

Etot/Einc(16) 0.0081±0.0087 0.0012 0.0365

Esum(7) 0.0580±0.0626 0.0033 0.1800

Eta_Center(4) 0.0386±0.0420 0.0070 0.1100

Phi_Center(4) 0.0363±0.0294 0.0122 0.0865

Eta_Width(4) 0.0801±0.0655 0.0158 0.1785

Phi_Width(4) 0.0796±0.0673 0.0148 0.1791

E_pixel(1) 0.0020 - -



ds2&3
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▪ Custom conv operator defined for the geometry

▪ 2D kernel and convolution in Z and Alpha direction (R direction treated as channel)

▪ Circular boundary for the Alpha direction

▪ Standard convolution in Z direction

▪ The equivariant with translation kept

Alpha-shift



▪ How to proper handle 50 circular segmentations: Cyclic stride only possible w/ integer divisor

▪ FFT resampling! Flexibility for any arbitrary circular dimension

▪ Replacement of simple stride in convolution operation for up/down-sampling 

19

Spatial

V
a

lu
e

Cyclic data (e.g. 1D L=50)
x <- data

FFT Downsampling→ L=26
x_down = ifft(

rfft(x)[:-50//2])

FFT Upsampling→ L=50
x_up = ifft(

pad(rfft(x_down),(0,N//2)))

Demo of FFT resample (1D)
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▪ Average image reflects the energy distribution across each layer and each “ring”

▪ Individual image shows the randomness of sampling and the underlying physics (shower)

▪ Current model gives good performance for the two aspects

Sampled Avg.Truth Avg.

DS2

E_inc=745.11GeV (4 samplings)



Scores Cat. (No.): Mean Best Layer Worst Layer

E_pixel(1) 0.0506 - -

Etot/Einc(1) 0.0022 - -

E_sum(45) 0.0080±0.0058 0.0007 0.0259

Eta_Center(45) 0.0100±0.0082 0.0016 0.0282

Phi_Center(45) 0.0101±0.0082 0.0023 0.0293

Eta_Width(45) 0.0192±0.0126 0.0032 0.0512

Phi_Width(45) 0.0190±0.0125 0.0033 0.0508 21

▪ The official calo challenge metrics evaluated and we report based on different category:

▪ Pixel energy, total energy, R and energy weighted center&width

▪ For each category, the metrics are averaged and the best layer and worst layer are listed for reference

Exact 0

DS2



▪ Performance of ds3 model: generally fine but some layers need further improvement
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DS3

Scores Cat. (No.): Mean Best Layer Worst Layer

Etot/Einc(1) 0.0037 - -

Esum(45) 0.0203±0.0239 0.0008 0.1276

Eta_Center(45) 0.0245±0.0206 0.0036 0.0839

Phi_Center(45) 0.0246±0.0207 0.0038 0.0841

Eta_Width(45) 0.0426±0.0307 0.0062 0.1359

Phi_Width(45) 0.0424±0.0295 0.0062 0.1264

E_pixel(1) 0.0078 - -

Some good ones

Some need further opt



▪ As one unique feature, the two stages generative model could factorize the model and 
explicitly evaluate each step:

▪ “Reconstruction”: forward pass of the AE architecture which involves no latent sampling

▪ Faithfully recover the truth

▪ “Generation”: latent sampling + decoder-only which is the real generative mode

▪ Sampling the consistent discrete joint distribution in latent space which is much compressed 

▪ GPT-based latent model (Stage2) does perfect job and the problem reduce to just tune an AE
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Truth v.s. Reconstruction Reconstruction v.s. Sampling

DS3

Reco

Gen

Truth

Reco



Datasets

(sampling)
S1 time/ms S2 time/ms Total time/ms

ds1-photon 0.017 0.081 0.098

ds1-pion 0.017 0.084 0.101

ds2 0.140 1.790 1.930

ds3 0.208 0.695 0.903
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DS1&2&3

▪ Parameters count all the trainable parameters of the model

▪ At several M level (S1 + S2 : 4M+0.2M for ds1, 3.1M+3.7M for ds2, 2.1M+0.4K for ds3 )

▪ Timing measured with  V1001 32GB

▪ Most time spent in latent sampling and depend on the size of latent space

▪ Latent model (GPT) could be optimized smaller for better speedup with large batch size

▪ S1 compression time is negligible and allowing for combining with other techniques

▪ A lot of further optimizations for S1 and won’t slow down the generation

not fully optimized due to time constraint



More “meaningful losss” for VAE?

VI



Johnson et al; arXiv:1603.08155

• Pre-trained network to match high-level features

• More tolerant than per-pixel loss to

perceptually (or physically) irrelevant differences

• Pretrained network suitable for this dataset?

➡We can invent a task to solve!

➡ Should be nontrivial, require the network to

learn physically-relevant features

Proxy Task: Topo Clustering on DS2

Seed Cells

Merge Cells

Leaf Cells

Calculate topoclusters directly

per event (4-2-0-ish)

Encoder:

(cylindrical)

Conv.
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Decoder:

Autoreg.

Transformer

{E, x, y, z}0

{E, x, y, z}n

…

TopoNet  

Truth

labels

Output:

Energy

Clusters

Input:

Voxel Cells

{E, x, y, z}1

for

training

Hidden layers used for calo feature losses
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https://arxiv.org/pdf/1603.08155.pdf


▪ Calorimeter simulation with vital importance in HEP but challenging in computing 

▪ Machine learning methods show great potential for calo sim speedup

▪ Two stages model proposed based on VAE-like architecture

▪ Vector quantization for good compression and flexible latent space

▪ GPT model adapted to conditional sample in the latent space

▪ Methods dealing with special dataset(s) presented

▪ Energy normalization by condition E and total E

▪ 2D cylindrical conv designed to deal with the cylindrical boundary condition

▪ FFT resampling to up/down-sample for arbitrary cylindrical geometry

▪ Results presented for dataset1,2,3 with promising results

▪ Performance such as classifier score limited by Stage1 and could be further improved

▪ More ideas discussed and in hope of the physics-aware calo sim model in the future

27Thanks to your listening!
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▪ Special cylindrical geometry with nontrivial translative symmetry:
▪ In Z direction: standard translation symmetry

▪ In Alpha direction: translation symmetry with circular boundary

▪ In R direction: NO translation symmetry 

▪ To save the complexity of 3D-conv operation and utilize the special symmetry:
▪ Geometry remapped to ( Z * A ) * R where R is treated as channel of the 2D `Z*A` image

▪ Custom cylindrical convolution and FFT resampling to implement the conv network

▪ Condition takes logarithm and remap to [-1,1] then append as extra channel in S1

▪ Condition with same processing used in S2 model 
29

▪ Simple flatten to handle the irregular geometry → simple MLP dense layers and conv1D used

▪ Binned condition (one hot embedding) used in S1 and S2

DS1

DS2&3



▪ Optimizer uses common Adam and LR tuned (starts from the maximum LR not collapse)

▪ Monitor the metrics on-the-fly and pick model (after loss converged) with best
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