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Introduction

Calorimeter: vital detector measuring the particle energy in high energy physics

Simulation of calorimeter: important but challenging
= Measure the basic physics information particle energy
= Need tracing of huge amount of secondary particles (‘shower’)

More than 75% of simulation time spent on the calorimeter in ATLAS

Fast simulation of calorimeter mostly needed and necessary for next generation experiment
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Machine Learning Methods for Fast CaloSim

calOaAN
. = Traditional method (e.g. parameterization)
P(E;|Eine type, ...) = Risk of over-simplification

= Still rely on explicitly particle simulation

i = Machine learning method
e = Treat calorimeter response as image or other formats

= Directly learn the distribution and do the sampling

Geant4

= No tracing secondary particles

(Full simulation) On..
(C%mal Moy = Various DGM (deep generative model) available:
""e/op gl = Flow: accurate but usually slow sampling speed

*) Diffusion: slow but promising at accuracy and scalability
GAN: fast but hard to train and tune
VAE: fastest but usually limited by the accuracy

‘ = Why VAE-like methods:
V.

AE = Unique latent space enable latent generative model
- Two-stages Generative Model

Speec; @

Disclaimer: not a serious comparison just for illustration of typical performance
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Two-stages Generative Model

= Challenges of DGMs:
= Making big model considering both training time and tuning effort

= Generalization and migration between different dataset (format)

o)
= Two stages calorimeter generative model: G
= Inspired by the VQVAE[ 1] and stable-diffusion[Z]

= Stagel: AutoEncoder-like model for compression

= Flexibility: adapted to different geometry and aim to extract the common (physics) information

= Well defined target: compress as much information into latent and recover it
= Speed: fast training and forward pass
= Stage2: Latent model for sampling and other tasks
= Beneficial from mature model in other fields, e.g. cutting edge LLM
= Explainable and physics embeddings, such as equivariant and symmetry

= We will present specific model on the calo challenge dataset
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https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2112.10752

Recap of Calorimeter Dataset (and terminology)

= Cylindrical shape with Alpha, R and Z three dimension
= Not uniformly correspond to the physical distance

= Also possible to convert into An, A¢ and Z coordinate
= Where the metric scores are evaluated

= Special “3D calo-image”
= Represent the calorimeter response of the incident particle
= Energy in each detector cell/pixel: E;
= Sum of all the energy in N-th Z layer: Ej;y.y and sum all Ey;

= Incident energy of particle: E;,,. (treated as condition)

= Datasetl:irregular geometry
= Layer different alpha and R segmentation (some with ring-like geo)

= Dataset2/3: more regular but special coordinate/granularity
= (A*R*Z)3 dimensional data

= Rotational symmetry and particle always at center and perpendicular
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Common pre-processing for all calo challenge datasets



Large dynamic Range and Solution: Normalization

= Large dynamic range due to the needs of simulation and underlying EM interaction

= Dynamic range of condition ‘ N lizati
= Dynamic range of all the pixel energy in a same particle shower ormalizallons
= Encoder pass

1 Normalized by condition and then “R” (E_tot/E_inc):[le-6,1e6] - [0,1]
2 Transformed by loglp (with proper scaling and shift)

= Decoder pass: o7

@ Softmax in last decoder layer: ensure output normalized in the sense of exponential © (z); =

K
2 Recover the energy with R (sampled with latent model) then E_inc (condition) Zj:l e

E inc=20 GeV Normalization of E_inc Normalization of R Logarithm
R=0.90
1 2 1 0.05 0.10 0.05 0.06 0.11 0.06 2.22 2.52 2.22
1 8 2 » 0.05 0.40 0.10 » 0.06 0.44 0.11 » 2.22 3.13 2.52
1 1 1 0.05 0.05 0.05 0.06 0.06 0.06 2.22 2.22 2.22

(1)



Model to compress the specific dataset into latent space



Vector Quantized VAE

= Variant of VAE with additional latent regularization
= Quantize the latent (vectors) as discrete codes (finite number of “representative” vectors)

= Loss to drive the latent space well quantized besides of the typical AE loss (L1/L2)
= Quantization loss: codes faithfully represent the latent space

» Commitment loss: encoded latent vectors close to codes

» Extend the latent space to Z! which is more flexible and descriptive
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Design of Loss Functions

= Pixel wise Loss: L2 distance (MSE) between truth and decoded pixels
= Adversary Loss: discriminator loss and generator loss ~ similar to GAN

= Physics-perceptual Loss: (more on backups and not used in the submitted model)
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BL What is the best model to generate discrete token

The choice of the best model for generating discrete tokens depends on the specific task
and requirements. However, one commonly used model for generating discrete tokens is the
GPT (Generative Pre-trained Transformer) model, which is a transformer-based language

model.

Conditional sampling of latent space



Latent Generation Model

= Latent space to be sampled: sequence of discrete numbers

= Similar to language model: codes < —>token
= Latent discrete codes treated a language token

= Sampling based on condition
= Various models(RNN, latent diffusion, GPT) tested and GPT is finally used

= Implementation from minGPT [3]
= General introduction of GPT model | ]
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https://github.com/karpathy/minGPT
https://openai.com/blog/chatgpt

Generation of “R” (E_tot/L_inc)

= Important feature of calorimeter dataset: E_tot |= E_inc R
= Reflect the property of calorimeter design such as calibration and sampling ratio

Etot _ Z Ei
Einc Einc

= Highly correlated to the condition, pixel energy, particle and detector design relerence

generated

= Usually centralized (around 0.8) and with long tail

= Generate R in GPT:
= Digitized to bits and treated as discrete inputs

= Concatenate with latent sequence and sampling with GPT
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: DS1-photon
Generatlve Mﬂdel Performance Thanks for the nice visualization from calo challenge!
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: DS1-pion
Generative Model Performance

Energy deposited in layer 1
Voxel energy distribution 8y b .
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Cylindrical Convolution for Special Geometry

= Custom conv operator defined for the geometry
= 2D kernel and convolution in Z and Alpha direction (R direction treated as channel)

= Circular boundary for the Alpha direction
= Standard convolution in Z direction

= The equivariant with translation kept

X shiftZ Dec{Enc(){}] Dec{Enc[X shiftZ))

X rollA Dec(Enc(X)) Dec(Enc(X _rollA))

EEE%
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FET resampling

= How to proper handle 50 circular segmentations: Cyclic stride only possible w/ integer divisor

= FFT resampling! Flexibility for any arbitrary circular dimension

= Replacement of simple stride in convolution operation for up/down-sampling

Cyeclic data (e.g. 1D L=50)
X <- data

Value

1fft(

Demo of FFT resample (1D)

FFT Downsampling - L=26
X down

rfft(x) [:-50//2])

FFT Upsampling = L=50
X up = 1fft(
pad (rfft (x _down), (0,N//2)))
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Generative Performance (Average and Individual Image) 5

= Average image reflects the energy distribution across each layer and each *“ring”
= Individual image shows the randomness of sampling and the underlying physics (shower)

= Current model gives good performance for the two aspects

Truth Avg. Sampled Avg. E_inc=745.11GeV (4 samplings)

Q0000 00000 . inscoeee TOFPRPPGCIED

00000 00000 #»ssPDHIGP GTSIEBVSA

00000 00000 ?%3swssve 33asessss
@ PPBPIILHLE BOBELEHRE
Q0000 00000 . . . GTeunmLeb

00000 0000. A PROEP D ae
#15 @ @
00000 00000 ., ., oy 555 230
00000 00000 ;5000000 35
0009 C0CPee 8@@@@@@%% D ®

Layer 40 Layer 41 Layer 12 Layer 43 Layer 41 Layer 10 Layer 41 Lavee 2 Layer 13 Layer 41 35 ¢ 37 o , 33' "-\ - a .. ‘__' g .
00000 00000 vy, EEHWEWLELT (@

té




Generative Performance (Distribution) D52

= The official calo challenge metrics evaluated and we report based on different category:
= Pixel energy, total energy, R and energy weighted center&width

= For each category, the metrics are averaged and the best layer and worst layer are listed for reference
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Generative Performance (Distribution)

DS3

= Performance of ds3 model: generally fine but some layers need further improvement
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Generated vs. Reconstructed DS3

= As one unique feature, the two stages generative model could factorize the model and
explicitly evaluate each step:

= “Reconstruction”: forward pass of the AE architecture which involves no latent sampling
= Faithfully recover the truth

= “Generation”: latent sampling + decoder-only which is the real generative mode
= Sampling the consistent discrete joint distribution in latent space which is much compressed

= GPT-based latent model (Stage2) does perfect job and the problem reduce to just tune an AE

Truth v.s. Reconstruction Reconstruction v.s. Sampling
Width of Center of Energy in Ay in layer 1 Width of Center of Energy in Ay in laver 1
Truth Reco
1014 ReCO 10-1 4 Gen {




Timing and Parameters of models DS18&2&3

= Parameters count all the trainable parameters of the model
= At several M level (S1 + 52 : 4M+0.2M for dsl, 3.1M+3.7M for ds2,2.1M+0.4K for ds3)

= Timing measured with V1001 32GB not fully optimized due to time constraint

= Most time spent in latent sampling and depend on the size of latent space
= Latent model (GPT) could be optimized smaller for better speedup with large batch size

= S1 compression time is negligible and allowing for combining with other techniques
= A lot of further optimizations for S1 and won’t slow down the generation

Datasc.-:ts Sl time/ms S2 time/ms Total time/ms
(sampling)

dsl-photon 0.017 0.081 0.098
dsl-pion 0.017 0.084 0.101
ds2 0.140 1.790 1.930
ds3 0.208 0.695 0.903

©



More “meaningful losss” for VAE?



Style TarQEt g(ﬁ,relulj Erj),relu2_2 gqb,reluB-S £¢,re1u4-3

Ph . t° t d P t l L Johnson et al; arXiv:1603.08155 e Lt ile ivle
YSICS Mmotivated rercepiiial LoOSS B SRR Sysh MW
* Pre-trained network to match high-level features Ixt | }_:A Y |
nput : p L L
* More tolerant than per-pixel loss to age 2S5 TS Yo [ it VEE) ‘;——————?:
perceptually (or physically) irrelevant differences Content Target Ceat ™"
» Pretrained network suitable for this dataset?
' |
— We caninvent a task to solve! Hidden layers used for calo feature losses
— Should be nontrivial, require the network to
learn physically-relevant features
Il B N = = Il B BN BN =N =N N =N = = = l
i TopoNet .
Proxy Task: Topo Clustering on DS2 i Output:
Input: Energy |
l Voxel Cells Clusters :
i
Truth ; 7 e e i
labels . = -~ :‘..#., Encoder: % Decoder: {E, X,V 2}o i
» , e § (cylindrical) f Autoreg. {E.x,y,2h ]
for 1 ¥ /5 1§ K g Transformer :
m training i .,y NI E {E,X,V, 2} y
Merge Cells a8
Leaf Cells I - |
Calculate topoclusters directly i @ [1
per event (4-2-0-ish) BN BN BN BN BN BN BN BN BN BN BN BN BN B BN BN W i


https://arxiv.org/pdf/1603.08155.pdf

Conclusion and Future Plan

= Calorimeter simulation with vital importance in HEP but challenging in computing
= Machine learning methods show great potential for calo sim speedup

= Two stages model proposed based on VAE-like architecture
= Vector quantization for good compression and flexible latent space

= GPT model adapted to conditional sample in the latent space

= Methods dealing with special dataset(s) presented
= Energy normalization by condition E and total E
= 2D cylindrical conv designed to deal with the cylindrical boundary condition
= FFT resampling to up/down-sample for arbitrary cylindrical geometry

= Results presented for datasetl,2,3 with promising results
= Performance such as classifier score limited by Stagel and could be further improved

= More ideas discussed and in hope of the physics-aware calo sim model in the future

Thanks to pour listening!
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Preprocessing and Conditioning
DS1

= Simple flatten to handle the irregular geometry - simple MLP dense layers and convlD used

= Binned condition (one hot embedding) used in S1 and S2

DS2&3

= Special cylindrical geometry with nontrivial translative symmetry:
= In Z direction: standard translation symmetry

= In Alpha direction: translation symmetry with circular boundary
= In R direction: NO translation symmetry

= To save the complexity of 3D-conv operation and utilize the special symmetry:
= Geometry remapped to (Z * A) * R where R is treated as channel of the 2D "Z*A’ image

= Custom cylindrical convolution and FFT resampling to implement the conv network

= Condition takes logarithm and remap to [-1,1] then append as extra channel in S1

= Condition with same processing used in S2 model @



Training and Optimization/model picking

= Optimizer uses common Adam and LR tuned (starts from the maximum LR not collapse)

= Monitor the metrics on-the-fly and pick model (after loss converged) with best

val/chiZ_max_ECEtas I ral/chiZ_max_ECFhis val/chi2_max_ECWidthEtas I 13 :
0.054
0.052

0.03
0.05
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0.025
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D 5000 10 15k 20k 25k
val/chiZ_max_ECWidthPhis val/chiZ2_max_E_layers

o
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non FET conv for datasets
(not work)
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