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Diffusion Models
● Diffusion has become the dominant paradigm for ML 

image generation
– Dalle-2, Midjourney, Stable Diffusion, etc 

● Easy training, high quality results, reasonable computation 
times “AI aiding physicists at LHC to analyze data 

and discover new particles”
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Diffusion Models : Technical Details

● Diffusion process: Starting with some image, iteratively add 
Gaussian noise, eventually reaching pure noise

● Train a model to invert the diffusion process
● Generate by starting from noise image, iteratively denoise 

using trained model
● Can condition on additional input information 

– Eg. text prompt or incident particle energy

 2006.11239 NSteps typically ~few hundred

https://arxiv.org/abs/2006.11239
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‘CaloDiffusion’
● We train diffusion models to generate 

synthetic calorimeter showers based 
on Geant simulations

● We use 400 steps to interpolate from 
real shower to Gaussian noise
– ‘cosine’ noise schedule of 2102.09672

● Preprocessing
– Voxels divided by incident energy 
– Logit transformation
– Standard scale so zero mean and unit 

variance
● Sample with “DDPM algorithm” (

2006.11239)

“Gaussian 
Noise” Shower

Geant 
Shower

400 Diffusion 
Steps

http://arxiv.org/abs/2102.09672
http://arxiv.org/abs/2006.11239
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Model Details
● Denoising network is has ‘U-net’ 

architecture based on 3D convolutions
– Primary input: Noisy shower
– Conditioning inputs: log(incident particle 

energy) &  diffusion noise level
● 6 (8) ResNet blocks, 

– 4x compression in radial / angular dims 
● Conditioning inputs embedded into 64 

dim vector with 3 layer FCN  
● 400k (1.1M) params for datasets 1 and 

2 (3)

U-nets compress to a smaller 
dim space but also include skip 

connections
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Optimizing for Cylindrical Data
Implement cylindrical convolutions to 

respect periodic boundary of phi

Original Data
Linear Rep.

Circular Padding
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Geometric Conditioning
● Showers are not translation 

invariant along R & Z
● Convolutions are inherently 

local → will do the same 
thing across whole 
geometry

● Instead allow convs. to be 
conditional on 3D location 
by adding additional input 
channels to shower ‘image’
– More efficient for learning

Shower 
input

‘Radius 
input’

‘Layer 
input’

+

+

Additional input channels
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Dataset 2 Average Showers

Geant

CaloDiffusion

Layer 4 Layer 12 Layer 25 Layer 42



Dataset 2 & 3 Results (1/2)
Dataset 2 
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Embedding Irregular Geometries
● Dataset 1 (ATLAS detector) is cylindrical but has irregular structure in layers

– Different radial / angular bins in each layer → can’t apply cylindrical convolutions

● GLaMGLaM : Learn an embedding that maps input into regular cylindrical structure 
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GLaMGLaM : Geometry Latent Mapping

● Decide on regular cylindrical shape → maximal set of all radial 
+ angular bins
– Significant increase in dimensionality (368→ 5x10x30)

● For each layer, map from irregular binning to regular structure
– Enforce angular symmetry → split evenly among angular bins
– Parameterize radial mapping with a single learnable matrix per layer, 

optimized during diffusion training 
– Initialized to geometric overlap between bins + O(10^-5) noise

● Embedding is only ~3k params for dataset 1!
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Dataset 1-Photons Average Showers

Geant



 

Dataset 1-Photons Results



Dataset 1-Photons Results
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Dataset 1-Pions Results
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Dataset 1-Pions Results
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Classifier Metric
● Train a NN classifier to distinguish between Geant 

showers and CaloDiffusion showers
– 2 hidden layers of 512 nodes, dropout = 20%

● Similar results for high-level and low-level input features

Dataset 
1-pions

Dataset 
1-photons

Dataset 
2

Dataset 
3

AUC 
(low-level / high-

level)
0.64 / 0.74 0.64 / 0.67 0.61 / 0.61 0.73 / 0.77

AUC’s much less than 1 for all datasets!
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Timing
● Evaluated generation time of our model using on 

CPU (Intel  E5-2650v2) & GPU (NVIDIA V100)
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Future Work I
● Very minimal hyperparam optimization done so far, likely significant 

room for improvement
– Pre-processing closer to std normal would likely help for diffusion

● Lots of room to explore in GlaMGlaM approach, 
– Picked simplest setup that worked

● Some “global” properties (ie total shower energy), can still be 
improved
– Hard to specifically optimize in diffusion training
– Could try ‘distributional’ MMD loss with large batch size
– Or separate network to learn total energy distribution, normalize 

diffusion shower to match
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Future Work II
● Generation time could be improved

– General prob with diffusion models → active area of 
research 

● Improved sampling algos
● Compression to a latent space
● Distillation methods

– Already demonstated in 2304.01266
 

● Perhaps starting generation from approximate shower 
instead of pure noise will be faster / easier
– “Cold Diffusion”, 2208.09392

● Extend to more complicated geometries e.g. CMS HGCal 

“Consistency Models” distill 
diffusion model to allow ~few 

step generation

https://arxiv.org/abs/2304.01266
http://arxiv.org/abs/2208.09392
http://arxiv.org/abs/2303.01469
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Outlook
● CaloDiffusion able to generate high quality 

showers for all datasets
– Convolutional approach scales well

● Several novelties
– Optimizations for cylindrical data
– GlaM GlaM lightweight embedding for irregular geometries

● Promising future directions for improvement

Lookout for 
paper on arxiv 

soon!
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Thanks!
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Backup
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Technical Details
● ‘logit’ transformation of voxel energies and then standard scale to zero mean 

and unit variance
– Correct preprocessing important for diffusion process, related to scale of added noise

● Denoising network uses ‘U-net’ architecture with cylindrical convolutions
– Two conditional inputs : shower energy and diffusion step
– ~400k params for dataset1 and 2, 1.1M for dataset3

● 400 diffusion steps, ‘cosine’ noise schedule (2102.09672)
● Choices for training objective: 

– Datasets 1 and 2 : Network is trained to predict noise component of image
– Dataset 3 : Network trained to predict weighted average of noise component and un-

noised image, 
● More stable, recommended by 2206.00364

● Sampling uses DDPM algorithm (2006.11239)

http://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2206.00364
http://arxiv.org/abs/2006.11239
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Additional Metrics
● Distance metrics:

– Frechet Particle Distance and Kernel Particle Distance (proposed in 2211.10295)
● Use implementation proposed for CaloChallenge, based on high level shower features

– We find that the computation of FPD is slightly biased, ie non-zero values even 
comparing different random samples of Geant to each other 

– Compare scores for Diffu-Geant (D-G) vs Geant-Geant (G-G)

Dataset 1 
Photons

Dataset 2 Dataset 3

FPD
 (D-G / G-G) 0.035 / 0.008 0.095 / 0.008 0.275 / 0.011

KPD
(D-G / G-G)

0.007 / 0 0.0001 / 0 0.0007  / 0

https://arxiv.org/abs/2211.10295
https://github.com/CaloChallenge/homepage/pull/1
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Previous Work (arXiv:2202.05320)

● Generated calorimeter showers with regular & ‘fast’ version of 
Geant4

● Use a CNN network to ‘denoise’ fast-sim shower image to match high 
granularity one

● Decent performance in a relatively simple setup
– Studies showed adding more info to the network beyond ‘energy image’ only 

moderately improved performance 
● Tried multiplicity, time of energy deposit, other Geant info

https://arxiv.org/abs/2202.05320


  31

Latent Diffusion Models
● Key advantage is that costly diffusion steps done in 

smaller latent space
● Relies on encoder not losing any important info

– ‘perceptual loss’ supposed to reduce blurriness
– Small regularization of latent space (std. normal KL or vector 

quantization) during AE training
● Conditioning setup very flexible

– Text prompts using some language model
– Image conditioning
– …
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Stable Diffusion (aka Latent Diffusion)

● First encode your image with an autoencoder to a smaller latent space
– They used a factor of 4 or 8 for each dimm. 

● Transform your conditioning data into a latent rep
● Denoising performed on the latent representation of your image, using conditioned data

– Conditioning done using an attention mechanism 
● Decode back into pixel space 

2112.10752

https://arxiv.org/abs/2112.10752
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Geometry Diagram

Denoise 

...

Reverse
...

Irregular 
Input

Cylindrical 
Input

Cylindrical 
Output

Irregular 
Output
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The Need for Fast Simulation
● Geant4 calo simulation is 

a significant part of ATLAS 
computing budget
– CMS will face similar needs 

with HGCAL in HL-LHC

● For HL-LHC, computing 
simulation more crunched
– Reconstruction usage will 

scale ~linearly with pileup 
→ less resources for sim.
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The Need for Fast Simulation
● Geant4 calo simulation is 

a significant part of ATLAS 
computing budget
– CMS will face similar needs 

with HGCAL in HL-LHC

● For HL-LHC, computing 
simulation more crunched
– Reconstruction usage will 

scale ~linearly with pileup 
→ less resources for sim.

Fast & Accurate Calorimeter
 Simulation is Needed!
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Dataset: Calo Challenge 
● Community challenge to compare 

generative models for Calorimeter 
simulation

● Standard datasets to allow 
comparison
– Dataset1: ATLAS-like geometry, 5 layer 

cylinder with irregular binning, 368 
voxels

– Dataset2: 45 layers, 6480 total voxels
– Dataset3: 45 layers, 40,500 total voxels

https://calochallenge.github.io/homepage/
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Dataset-1 Photons Energy Response
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Dataset-1 Pions Energy Response


