

Oz Amram In collaboration with Kevin Pedro

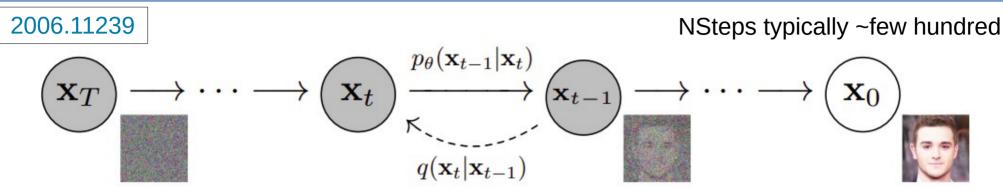
CaloChallenge Workshop May 30th, 2023

Diffusion Models

- Diffusion has become the dominant paradigm for ML image generation
 - Dalle-2, Midjourney, Stable Diffusion, etc.
- Easy training, high quality results, reasonable computation times "AI aiding physicists at LHC to analyze data

and discover new particles"

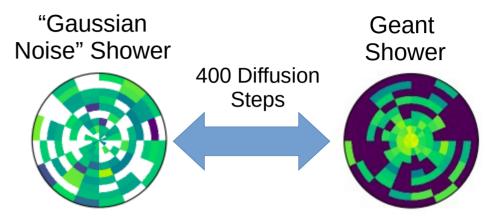
Diffusion Models : Technical Details

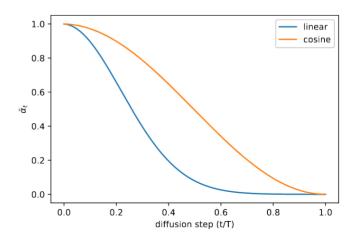


- Diffusion process: Starting with some image, **iteratively add** Gaussian noise, eventually reaching pure noise
- Train a model to invert the diffusion process
- Generate by starting from noise image, **iteratively denoise** using trained model
- Can condition on additional input information
 - Eg. text prompt or incident particle energy

'CaloDiffusion'

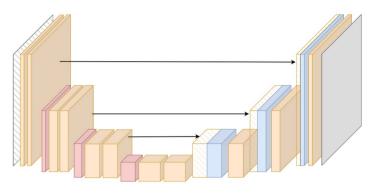
- We train diffusion models to generate synthetic calorimeter showers based on Geant simulations
- We use **400 steps** to interpolate from real shower to Gaussian noise
 - 'cosine' noise schedule of 2102.09672
- Preprocessing
 - Voxels divided by incident energy
 - Logit transformation
 - Standard scale so zero mean and unit variance
- Sample with "DDPM algorithm" (2006.11239)



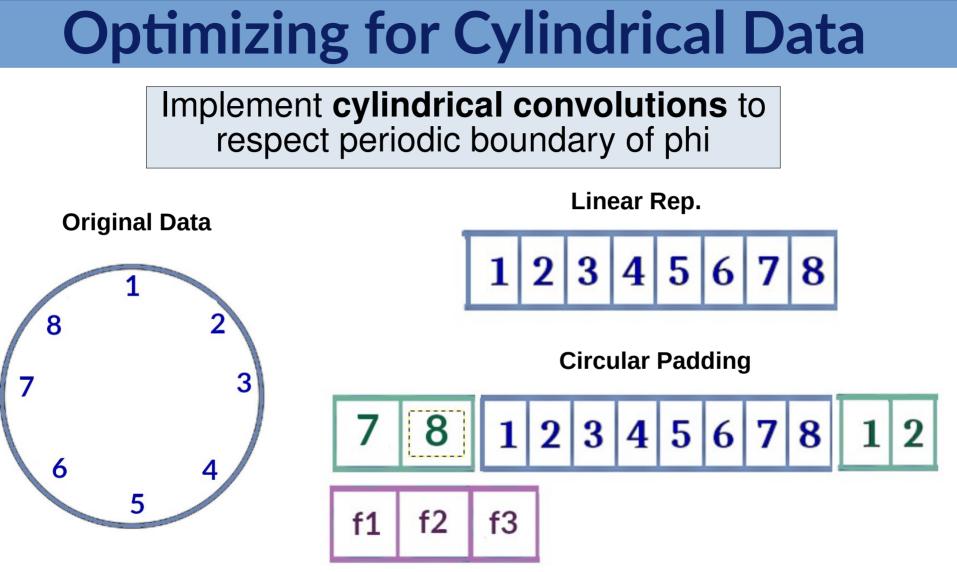


Model Details

- Denoising network is has 'U-net' architecture based on 3D convolutions
 - Primary input: Noisy shower
 - Conditioning inputs: log(incident particle energy) & diffusion noise level
- 6 (8) ResNet blocks,
 - 4x compression in radial / angular dims
- Conditioning inputs embedded into 64 dim vector with 3 layer FCN
- 400k (1.1M) params for datasets 1 and 2 (3)

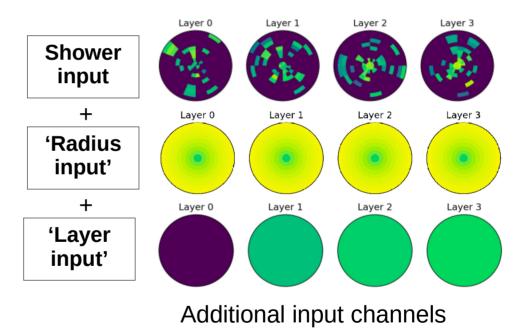


U-nets compress to a smaller dim space but also include skip connections

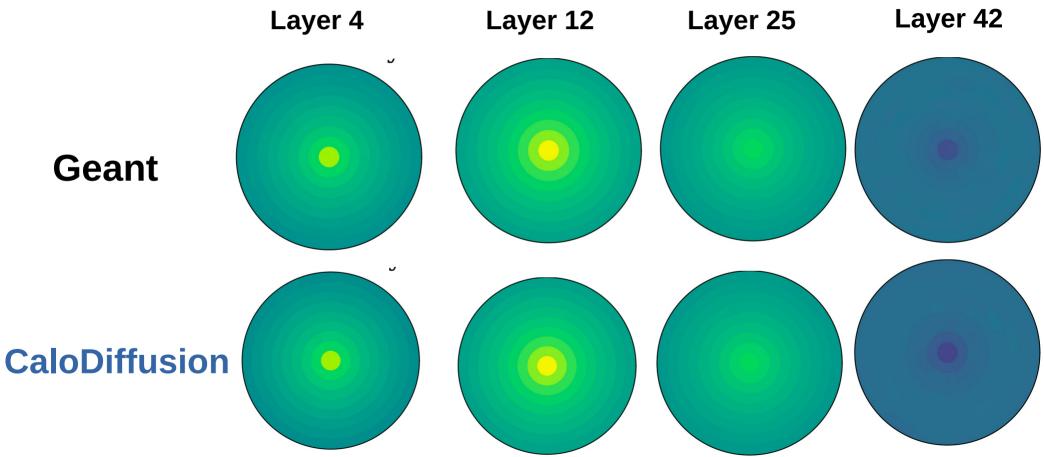


Geometric Conditioning

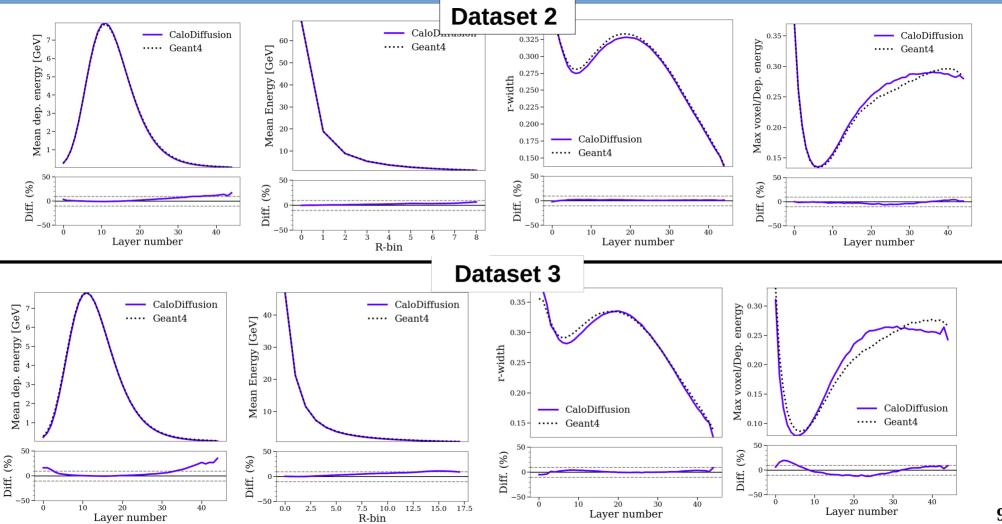
- Showers are **not** translation invariant along R & Z
- Convolutions are inherently local → will do the same thing across whole geometry
- Instead allow convs. to be conditional on 3D location by adding additional input channels to shower 'image'
 - More efficient for learning



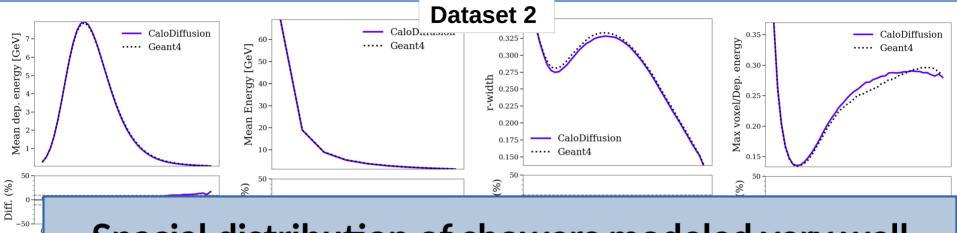
Dataset 2 Average Showers



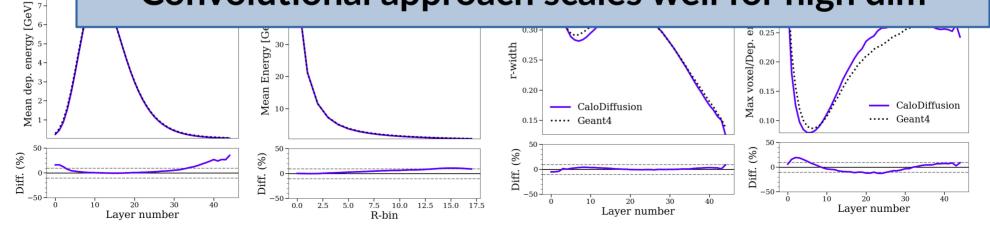
Dataset 2 & 3 Results (1/2)



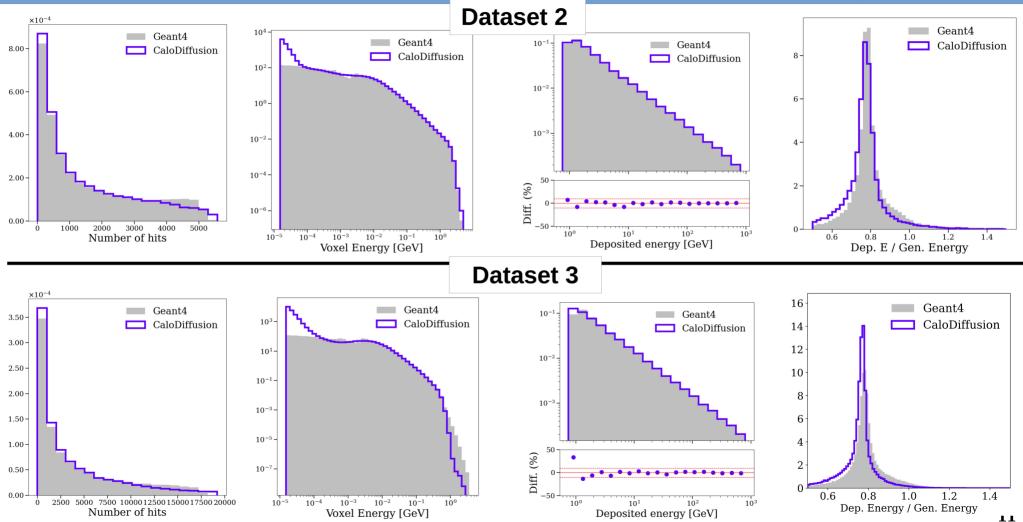
Dataset 2 & 3 Results (1/2)



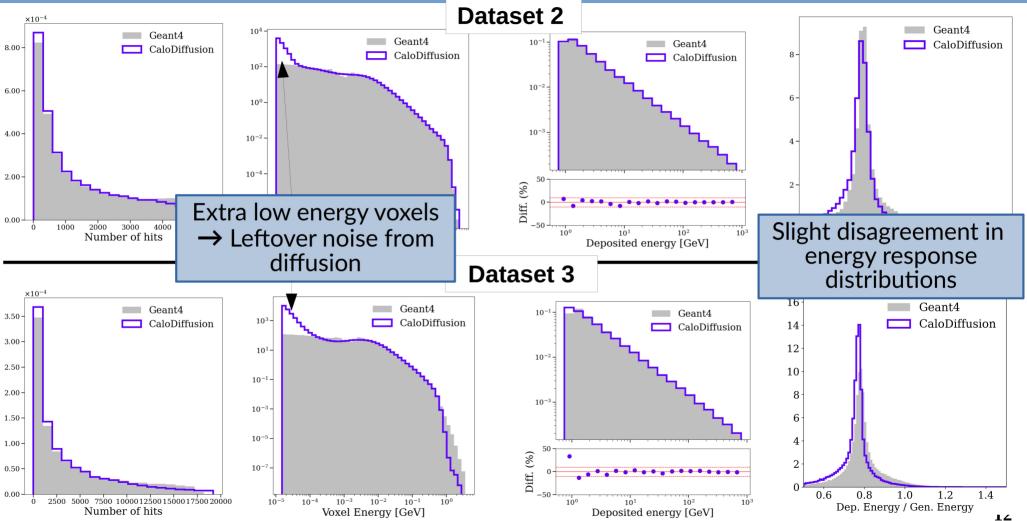
Spacial distribution of showers modeled very well Convolutional approach scales well for high dim



Dataset 2 & 3 Results (2/2)

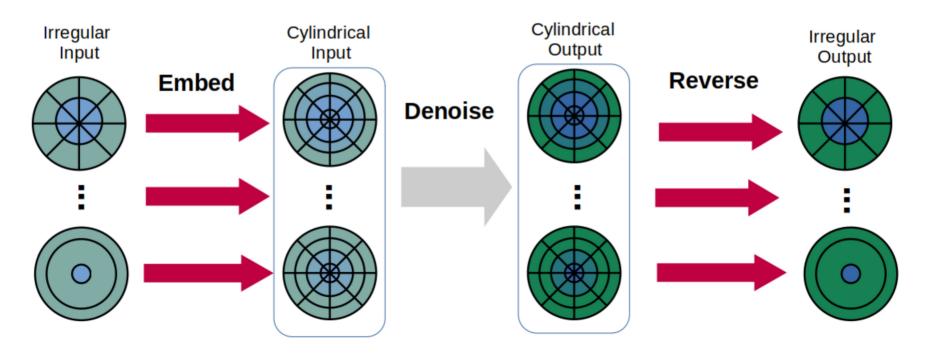


Dataset 2 & 3 Results (2/2)



Embedding Irregular Geometries

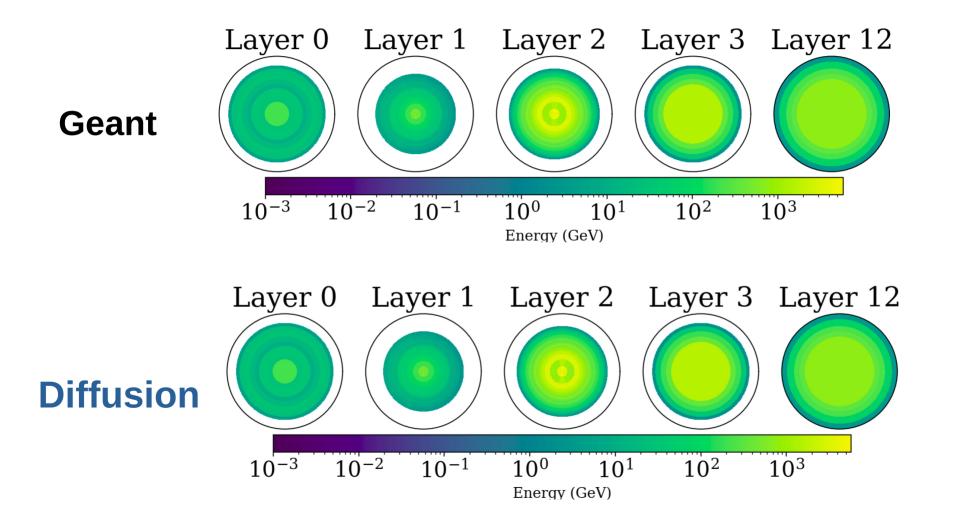
- Dataset 1 (ATLAS detector) is cylindrical but has irregular structure in layers
 - Different radial / angular bins in each layer \rightarrow can't apply cylindrical convolutions
- GLaM : Learn an embedding that maps input into regular cylindrical structure



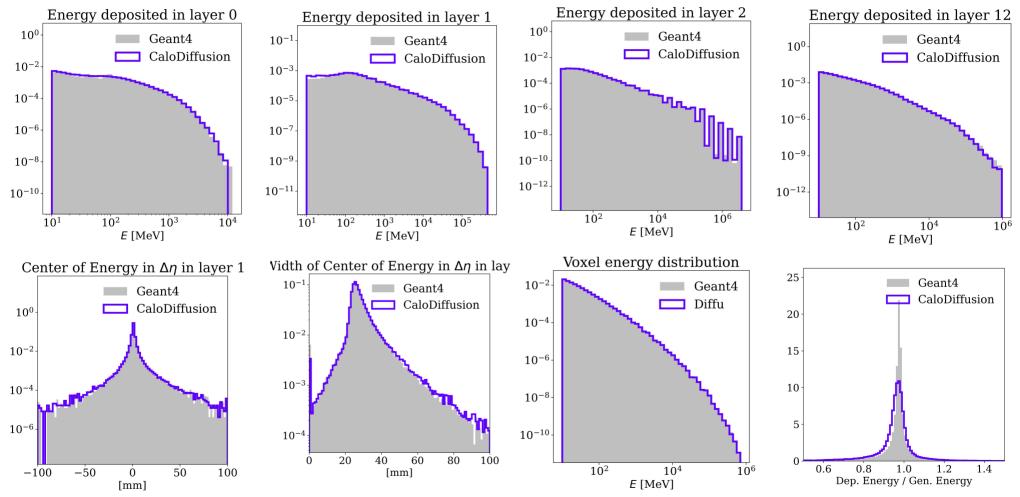
GLaM : Geometry Latent Mapping

- Decide on regular cylindrical shape → maximal set of all radial + angular bins
 - Significant increase in dimensionality ($368 \rightarrow 5x10x30$)
- For each layer, map from irregular binning to regular structure
 - Enforce angular symmetry \rightarrow split evenly among angular bins
 - Parameterize radial mapping with a **single learnable matrix** per layer, optimized during diffusion training
 - Initialized to geometric overlap between bins + O(10^-5) noise
- Embedding is only ~3k params for dataset 1!

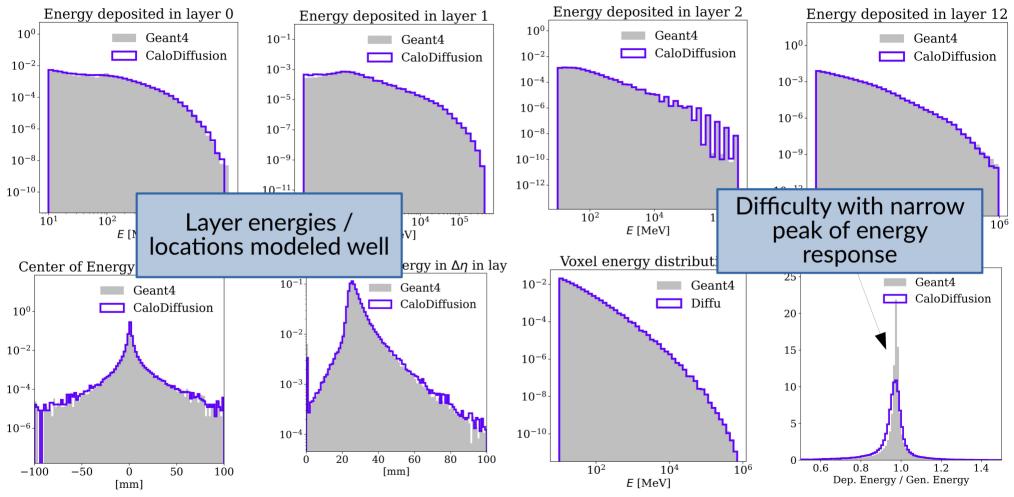
Dataset 1-Photons Average Showers



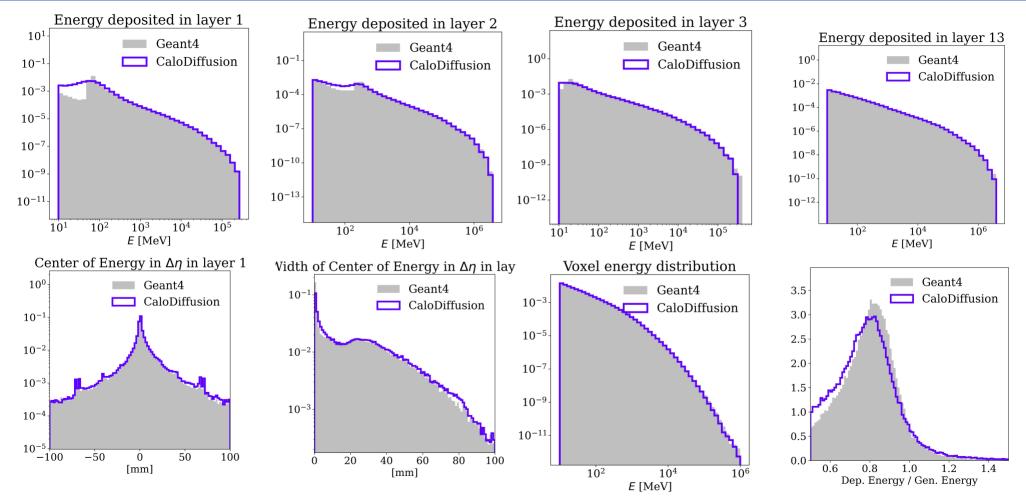
Dataset 1-Photons Results



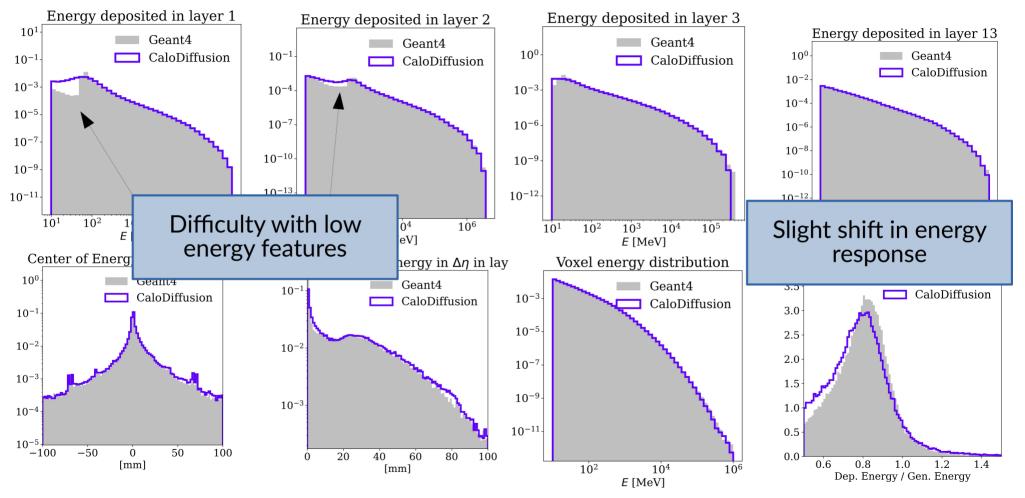
Dataset 1-Photons Results



Dataset 1-Pions Results



Dataset 1-Pions Results



Classifier Metric

- Train a NN classifier to distinguish between Geant showers and CaloDiffusion showers
 - 2 hidden layers of 512 nodes, dropout = 20%
- Similar results for high-level and low-level input features

	Dataset	Dataset	Dataset	Dataset
	1-pions	1-photons	2	3
AUC (low-level / high- level)	0.64 / 0.74	0.64 / 0.67	0.61 / 0.61	0.73 / 0.77

AUC's much less than 1 for all datasets!

Timing

• Evaluated generation time of our model using on CPU (Intel E5-2650v2) & GPU (NVIDIA V100)

Dataset	Batch Size	Time / Shower, CPU [s]	Time / Shower, GPU [s]
1-photons	1	5.3	3.0
(368 voxels)	10	1.3	0.3
	100	0.7	0.08
1-pions	1	5.7	3.0
(533 voxels)	10	1.3	0.4
	100	0.7	0.07
2	1	9.6	2.6
(6.5k voxels)	10	3.4	0.3
	100	3.2	0.2
3	1	52.7	4.1
(40.5k voxels)	10	44.1	1.4
	100		1.3

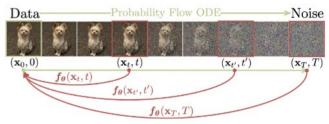
Future Work I

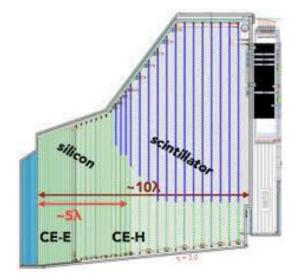
- Very minimal hyperparam optimization done so far, likely significant room for improvement
 - Pre-processing closer to std normal would likely help for diffusion
- Lots of room to explore in GlaM approach,
 - Picked simplest setup that worked
- Some **"global" properties** (ie total shower energy), can still be improved
 - Hard to specifically optimize in diffusion training
 - Could try 'distributional' MMD loss with large batch size
 - Or separate network to learn total energy distribution, normalize diffusion shower to match

Future Work II

- Generation time could be improved
 - General prob with diffusion models \rightarrow active area of research
 - Improved sampling algos
 - Compression to a latent space
 - Distillation methods
 - Already demonstated in 2304.01266
- Perhaps starting generation from **approximate shower** instead of pure noise will be faster / easier
 - "Cold Diffusion", 2208.09392
- Extend to more complicated geometries e.g. CMS HGCal

"Consistency Models" distill diffusion model to allow ~few step generation





Outlook

- CaloDiffusion able to generate high quality showers for all datasets
 - Convolutional approach scales well

Lookout for paper on arxiv soon!

- Several novelties
 - Optimizations for cylindrical data
 - GlaM lightweight embedding for irregular geometries
- Promising future directions for improvement

Acknowledgements

- Co-author : Kevin Pedro
- This work was performed with support of the U.S. CMS Software and Computing Operations Program under the U.S. CMS HL-LHC R&D Initiative.
- Additional support from the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
- Thank you to the CaloChallenge organizers for organizing everything!

Thanks!

Technical Details

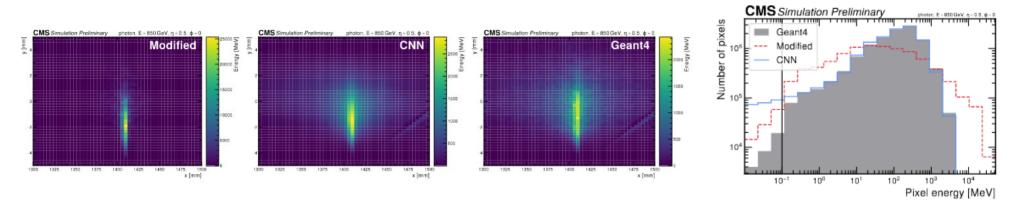
- 'logit' transformation of voxel energies and then standard scale to zero mean and unit variance
 - Correct preprocessing important for diffusion process, related to scale of added noise
- Denoising network uses 'U-net' architecture with cylindrical convolutions
 - Two conditional inputs : shower energy and diffusion step
 - ~400k params for dataset1 and 2, 1.1M for dataset3
- 400 diffusion steps, 'cosine' noise schedule (2102.09672)
- Choices for training objective:
 - Datasets 1 and 2 : Network is trained to predict noise component of image
 - Dataset 3 : Network trained to predict weighted average of noise component and unnoised image,
 - More stable, recommended by 2206.00364
- Sampling uses DDPM algorithm (2006.11239)

Additional Metrics

- Distance metrics:
 - Frechet Particle Distance and Kernel Particle Distance (proposed in 2211.10295)
 - Use implementation proposed for CaloChallenge, based on high level shower features
 - We find that the computation of FPD is slightly biased, ie non-zero values even comparing different random samples of Geant to each other
 - Compare scores for Diffu-Geant (D-G) vs Geant-Geant (G-G)

	Dataset 1 Photons	Dataset 2	Dataset 3
FPD (D-G / G-G)	0.035 / 0.008	0.095 / 0.008	0.275 / 0.011
KPD (D-G / G-G)	0.007 / 0	0.0001/0	0.0007 / 0

Previous Work (arXiv:2202.05320)

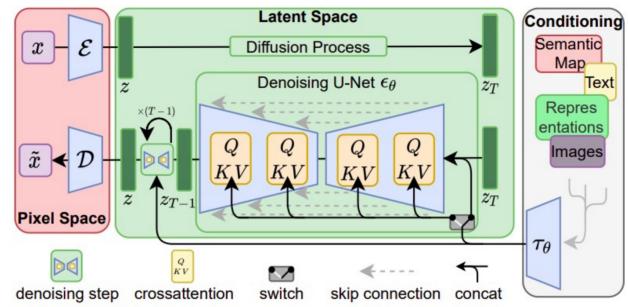


- Generated calorimeter showers with regular & 'fast' version of Geant4
- Use a CNN network to 'denoise' fast-sim shower image to match high granularity one
- Decent performance in a relatively simple setup
 - Studies showed adding more info to the network beyond 'energy image' only moderately improved performance
 - Tried multiplicity, time of energy deposit, other Geant info

Latent Diffusion Models

- Key advantage is that costly diffusion steps done in smaller latent space
- Relies on encoder not losing any important info
 - 'perceptual loss' supposed to reduce blurriness
 - Small regularization of latent space (std. normal KL or vector quantization) during AE training
- Conditioning setup very flexible
 - Text prompts using some language model
 - Image conditioning

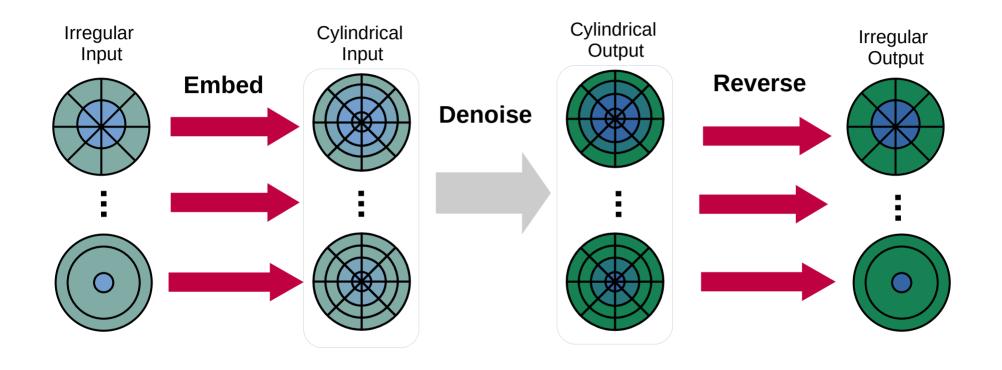
Stable Diffusion (aka Latent Diffusion)



- First encode your image with an autoencoder to a smaller latent space
 - They used a factor of 4 or 8 for each dimm.
- Transform your conditioning data into a latent rep
- Denoising performed on the latent representation of your image, using conditioned data
 - Conditioning done using an attention mechanism
- Decode back into pixel space

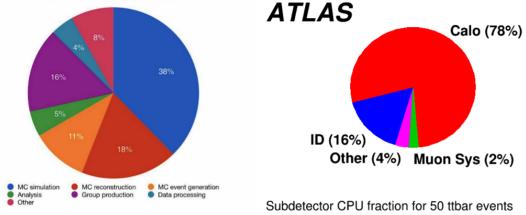
2112.10752

Geometry Diagram



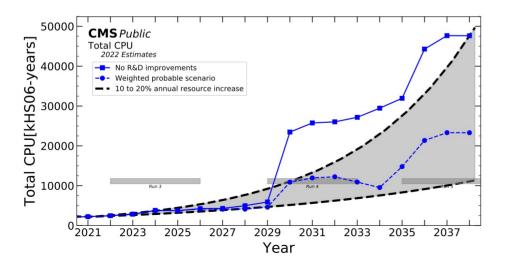
The Need for Fast Simulation

Wall clock consumption per workflow



ATLAS CPU hours used by various activities in 2018

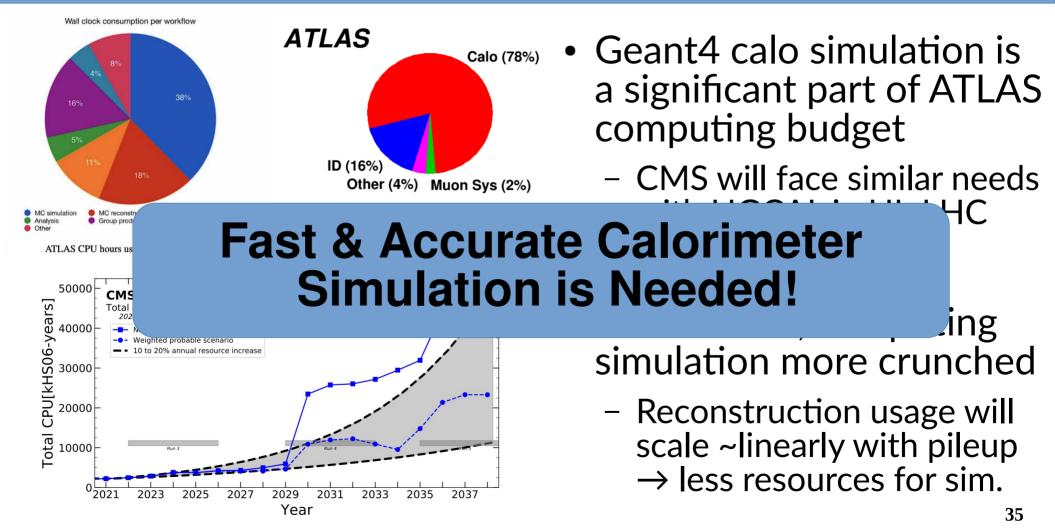
MC16 Candidate Release



- Geant4 calo simulation is a significant part of ATLAS computing budget
 - CMS will face similar needs with HGCAL in HL-LHC

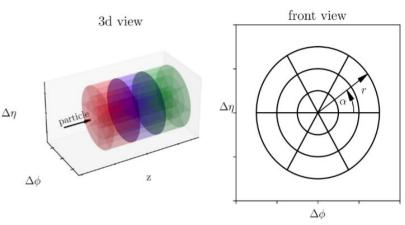
- For HL-LHC, computing simulation more crunched
 - Reconstruction usage will scale ~linearly with pileup
 → less resources for sim.

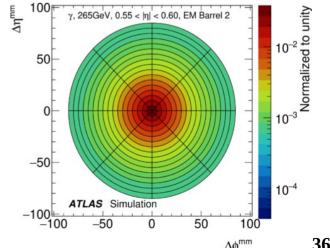
The Need for Fast Simulation



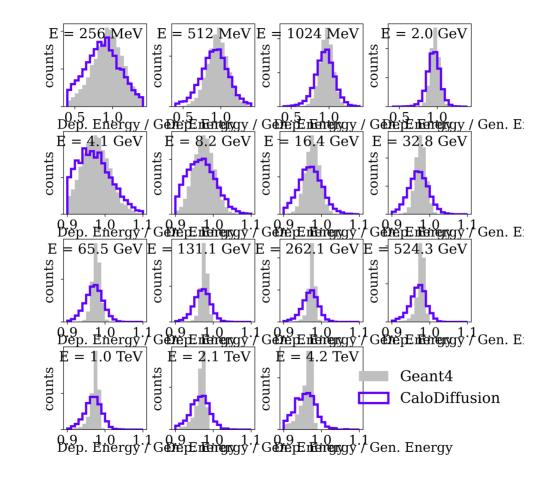
Dataset: Calo Challenge

- Community challenge to compare generative models for Calorimeter simulation
- Standard datasets to allow comparison
 - Dataset1: ATLAS-like geometry, 5 layer cylinder with **irregular binning**, 368 voxels
 - Dataset2: 45 layers, 6480 total voxels
 - Dataset3: 45 layers, 40,500 total voxels





Dataset-1 Photons Energy Response



Dataset-1 Pions Energy Response

