
Score-based Generative Models 
for Calorimeter Shower Simulation

Vinicius M. Mikuni, Ben Nachman

1



Detector simulation

2

▰ Calorimeters expensive to simulate:
▻ Full detector simulation of a particle can take up to a minute and we 

still need billions of particles simulated
▰ For previous LHC runs, detector simulation used around 40% of all 

computing resources and may go beyond the available budget for future 
runs



Diffusion models

3

“An astronaut lounging in a tropical 
resort in space in a photorealistic 
style”

https://openai.com/dall-e-2/

https://openai.com/dall-e-2/


Diffusion models

4

More generally, we can define a 
forward diffusion process that 
slowly corrupts our input data over 
time
▰ Reversing the diffusion 

process is the same as a 
generative model! 

▰ With f and g fixed, the goal is 
to estimate the score 
function, or the gradient of 
the log probability 
distribution



Score-matching

5

▰ The breakthrough insight was to notice that approximating the score function of the data is 

equivalent to approximating the score function of a smearing function that is used to perturb 

the data, minimizing:

▰ sΘ is the output of the neural network

▰ 𝜆(t) is a time-dependent weight function that 

controls the importance of each term over time

For a Gaussian perturbation



Generation

6

▰ Generation of new samples is done by 
solving the reverse SDE

▰ Langevin dynamics is used to draw 
samples from p(x) using only the score 
function

▰ High fidelity samples require small time 
steps, 

▰ For Calorimeter generation, O(100) 
evaluations are enough to produce precise 
results



First version of CaloScore

7

Let’s use a realistic example: Fast Calorimeter 
Simulation Challenge 2022
▰ Converting initial sets voxelized in (alpha,r) 

coordinates to (eta,phi) coordinates
▻ Dataset 1: 368
▻ Dataset 2: 45x12x12 = 6480
▻ Dataset 3: 45x32x32 = 46080

▰ Datasets 2 and 3: 3D convolutional layers.
▻ Number of trainable parameters ~2M

▰ Dataset 1: 1D convolutional layers
▻ Number of trainable parameters ~32M

Data curation:
● Each energy deposition Ei is normalized by the 

generated energy E and transformed to log 
space: u = Ei/E and 

https://calochallenge.github.io/homepage/
https://calochallenge.github.io/homepage/


Calorimeter shower generation

8

Very simple U-NET model used to build the score function
▰ Lots of new developments over the years, adding attention between layers, 

additional skip connections, but kept it simple for this application
▰ Conditional information is added to convolutional layers as a bias term



Results: CaloScore v1

9

▰ Total energy deposited in the calorimeter material
▰ The 1-Wasserstein distance (EMD) between each generative model and Geant4 are 

shown for comparison

Dataset 1 Dataset 2 Dataset 3



CaloScore v2

10

▰ No additional conversion to cartesian coordinates:
▻ Use datasets 2 and 3 as is but add additional zero-padding to move 

non-empty regions closer to the center of the image
▰ Replace the basic U-Net backbone with U-Net + Transformer

▻ At lower resolutions, add visual attention layers to improve the lack of 
inductive bias

▰ Break the score estimation into 2 components trained simultaneously
▻ Learn the total energy deposited in each layer separately from the voxel 

information
▻ Learn only the normalized voxels conditioned on the layer energy

▰ Make the model inference faster through the use of progressive distillation
▻ Reduce the number of steps during generation to 8 instead



CaloScore v2

11

▰ Data curation:
▻ Normalize between [0,1]
▻ Apply logit transformation
▻ Standardize with mean 0 and std 1

▰ Number of trainable parameters:
▻ Dataset 1: ~700k
▻ Datasets 2 and 3: ~2M

▰ Learning rate schedule:
▻ Cosine Annealing with initial LR of 1e-4 * NGPUs

▰ Cap minimal energies in the samples based on the minimum energies in the files
▻ Dataset 1: 0.1 keV
▻ Datasets 2 and 3: 0.0151 MeV



Results

12

Dataset 1 Dataset 2 Dataset 3

EMD Dataset 1 Dataset 2 Dataset 3

CaloScore v1 1.52 1.8 3.17

CaloScore v2 0.28 0.18 0.30



Results

13

EMD Dataset 2 Dataset 3

CaloScore v1 0.09 0.09

CaloScore v2 0.02 0.02

Dataset 2 Dataset 2Dataset 3 Dataset 3



Results: Visualization

14

▰ Energy spread consistent with the simulation



Results: Visualization

15

Geant4 CaloScore v1

▰ Mean deposited energy for each calorimeter layer in dataset 2
▰ Visualize the energy deposition in the layers with highest (10) and lowest (44) expected 

energies

Geant4 CaloScore v2

Layer 10

Layer 44



Results: Visualization

16

Geant4 CaloScore v1

▰ Mean deposited energy for each calorimeter layer in dataset 3
▰ Visualize the energy deposition in the layers with highest (10) and lowest (44) expected 

energies

Geant4 CaloScore v2

Layer 10

Layer 44



Results

17

▰ Progressive distillation is used to reduce the 
number of time steps needs during generation

▰ Train a follow up model that learns how to 
predict 2 steps at a time 

▰ Repeat multiple times until performance 
degrades

▰ Compared to v1, the generation time is 20 times 
faster for datasets 2 and 3 and 100 times faster 
for dataset 1

Time to generate 
100 showers [s]

Dataset 1 Dataset 2 Dataset 3

CaloScore v1 4.0 5.8 33.4

CaloScore v2 0.034 0.24 1.47

https://arxiv.org/abs/2202.00512


Conclusion

18

Diffusion models are gaining 
popularity inside and outside HEP
▰ Several updates to CaloScore v1 

to address the data format and 
slow sampling times

▰ Improvements on 
preprocessing to enforce 
additional energy conservation

▰ Excited to see how it compares 
against other methods! 

AUC/JSD Low Dataset 1 Dataset 2 Dataset 3

CaloScore v2 
distilled

0.9343 / 0.5324 0.7449 / 0.1446 0.7730 / 0.1997

CaloScore v2 0.8513 / 0.3111 0.6877 / 0.0849 -

AUC/JSD High Dataset 1 Dataset 2 Dataset 3

CaloScore v2 
distilled

0.6488 / 0.0781 0.8388 / 0.2854 0.9478 / 0.5763

CaloScore v2 0.6266 / 0.0722 0.7384 / 0.1391 -



Backup

19



Score matching/denoising/diffusion

20

Denoise diffusion models are the newest state-of-the-art generative 
models for image generation. 
Pros:
▰ Stable training: convex loss function
▰ Scalability: Network complexity is more sensitive to the 

architecture than the dimensionality
▰ Access to data likelihood after training: similar to NFs, but 

overall normalization is not required during training
Cons:
▰ Slow sampling: Possibly 1000s of model evaluations to 

generate realistic images



Score-matching

21

▰ The common choice for 𝜆(t) is 𝛔(t)2 resulting in the loss function 

▰ Another important result is when 𝜆(t) is g(t)2 that represents an 

upper bound of the data likelihood

▰ Allowing the maximum-likelihood training of diffusion models!

https://arxiv.org/abs/2101.09258


Likelihood estimation?

22

▰ Data generation can also be achieved by solving the associated ODE
▻ Often leads to worse samples compared to Langevin dynamics generation

▰ On the other hand, we can also use the deterministic ODE recover the data density!

SDE

ODE



Perturbation kernels

23

▰ Let’s go back to the diffusion equation
▰ In principle, we can choose any function 

for f and g but the common ones are 
those in which the transition kernel p(xt|x) 
is gaussian. That can be accomplished if 
f is an affine function

Variance preserving (VP):

Variance exploding (VE):

Sub Variance 
preserving(subVP): 

https://arxiv.org/abs/2006.11239
https://arxiv.org/pdf/1907.05600.pdf
https://openreview.net/pdf?id=PxTIG12RRHS

