The Fast Calorimeter Challenge 2022: Results & The Road Ahead

— Villa Mondragone, Frascati, Italy —

Claudius Krause

Institute for Theoretical Physics, University of Heidelberg

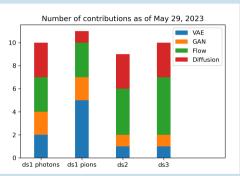
May 31, 2023

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

The Fast Calorimeter Challenge 2022: Results & The Road Ahead

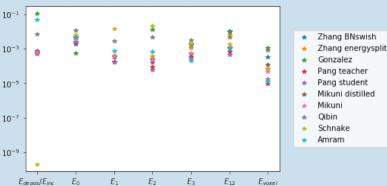
- We now have seen 12 talks with different approaches
- All of them better than midjourney ⇒

⇒ The big Question: How do they compare to each other?



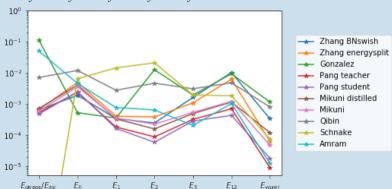
"Calorimeter Simulation"

A total of 40 samples have been submitted


- Until Monday afternoon, 40 samples have been submitted.
- Not enough time to run all comparisons.

- \Rightarrow A few histogram χ^2
- ⇒ Focus on Multi-class classifier for now: Train on submission 1 vs. submission 2 vs. ... vs. submission n Which submission is GEANT4 the closest to?

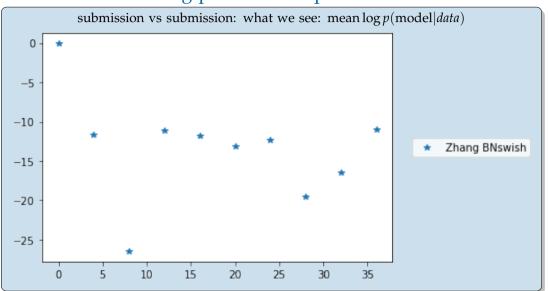
Histograms ds1 photons


• Looking at histogram χ^2 of E_{tot}/E_{inc} , E_{layer0} , E_{layer1} , E_{layer2} , E_{layer3} , $E_{layer12}$, E_{voxel}

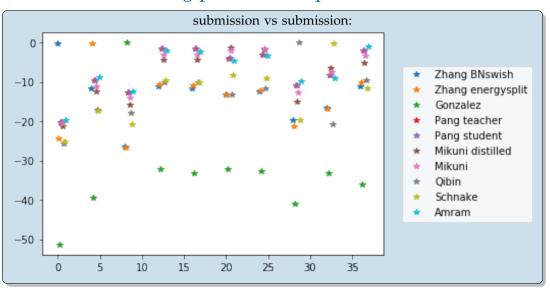
 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, some sets are imbalanced, ...

Histograms ds1 photons

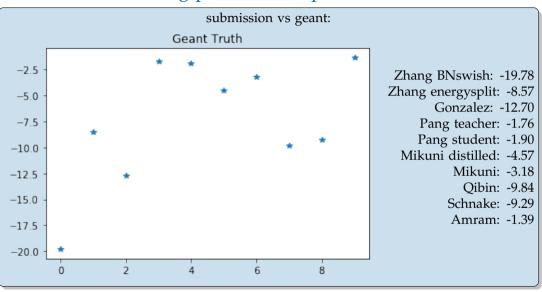
• Looking at histogram χ^2 of E_{tot}/E_{inc} , E_{layer0} , E_{layer1} , E_{layer2} , E_{layer3} , $E_{layer12}$, E_{voxel}


 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, some sets are imbalanced, ...

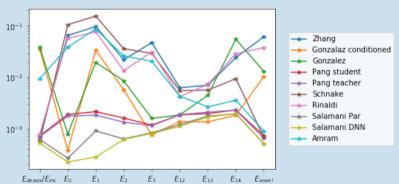
Architecture and Training


- Simple DNN with 2 hidden layer of 2048 neurons.
- features: $log_{10}E_{inc}$, \mathcal{I}_a/E_{inc}
- Cross Entropy loss, ADAM optimizer, 50 epochs (val loss min around 15)

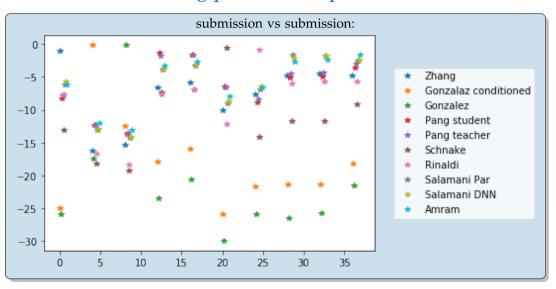
 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, thresholds, ... pion data has doubles, some sets are imbalanced, only 1 training


Log-posterior ds1 photons

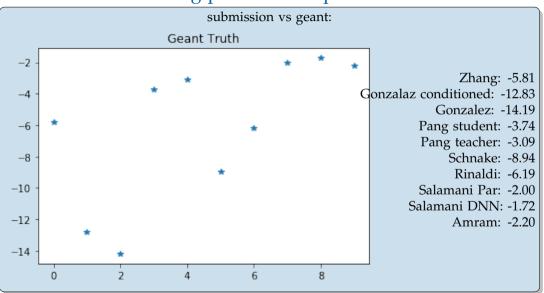
Log-posterior ds1 photons



Log-posterior ds1 photons

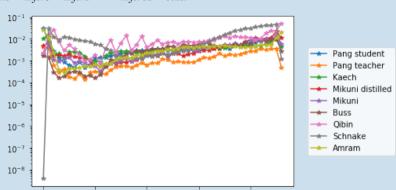

Histograms ds1 pions

• Looking at histogram χ^2 of E_{tot}/E_{inc} , E_{layer0} , E_{layer1} , E_{layer2} , E_{layer3} , $E_{layer12}$, $E_{layer13}$, $E_{layer14}$, E_{voxel}



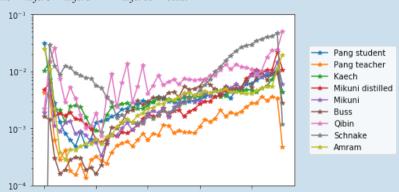
 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, some sets are imbalanced, (only 1 training), ...

Log-posterior ds1 pions

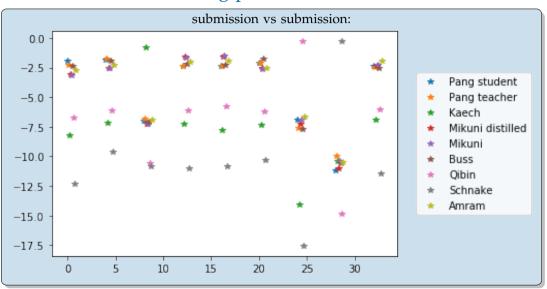


Log-posterior ds1 pions

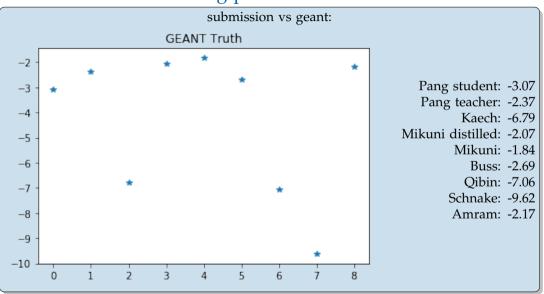
Histograms ds2


• Looking at histogram χ^2 of E_{tot}/E_{inc} , E_{laver0} , E_{laver1} , ... $E_{laver44}$, E_{voxel}

 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, some sets are imbalanced, (only 1 training), ...

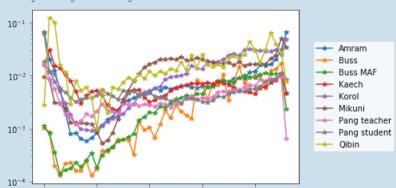

Histograms ds2

• Looking at histogram χ^2 of E_{tot}/E_{inc} , E_{laver0} , E_{laver1} , ... $E_{laver44}$, E_{voxel}



 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, some sets are imbalanced, (only 1 training), ...

Log-posterior ds2



Log-posterior ds2

Histograms ds3

• Looking at histogram χ^2 of E_{tot}/E_{inc} , E_{layer0} , E_{layer1} , ... $E_{layer44}$, E_{voxel}

 \Rightarrow Keep in mind: I didn't check E_{inc} -dist, normalizations, doubles, some sets are imbalanced, ...

Log-posterior ds3

submission vs submission submission vs geant

Not enough time / RAM;-)

Next steps:

- We will publish a new dataset for ds1 pions: train + eval
- We will run the detailed comparison of more metrics.
- ⇒ I will contact you more often with questions, maybe we should have a common channel in the ML4Jets SLACK?
- We will summarize our results in a joint paper, to be submitted to EPJC or Rept.Prog.Phys.
- ⇒ We need your (final!) samples by end of July!
- ⇒ We need your (final!) models by end of July!
- ⇒ We need your write-up by end of July!
- ⇒ Have it on arXiv for ML4Jets in November.

The Summary Paper

1	introduction	
2	datasets	
	2.1 dataset 1 photon	
	2.2 dataset 1 pion	
	2.3 dataset 2	
	2.4 dataset 3	
3	Individual approaches	
0	3.1 GAN-based approaches	
	3.1.1 GAN intro	
	3.1.2 contribution 1	
	3.1.3 contribution 2	
	3.2 Flow-based approaches	
	3.2.1 Normalizing Flow intro	
	3.2.2 contribution 3	
	3.2.3 contribution 4	
	3.3 Diffusion-based approaches	
	3.3.1 Diffusion model intro	
	3.3.2 contribution 5	
	3.3.3 contribution 6	
	3.4 VAE-based approaches	
	3.4.1 VAE intro	
	3.4.2 contribution 7	
	3.4.3 contribution 8	
4	results	
	4.1 intro to metrics	
	4.1.1 histos	
	4.1.2 classifiers	
	4.1.3 timings / hardware	
	4.2 ds 1 photons	
	4.3 ds 1 pions	
	4.4 ds 2	
	4.5 ds 3	
	conclusions	
5	conclusions	

- Each contribution should write 1-3 pages about Architecture, Preprocessing and Training
- Each group of contributions (GANs, Flows, ...) should coordinate the general model introduction
- We will draft the results based on everyones feedback/contributions

The Summary Paper — Results section

1	introduction
2	datasets
	2.1 dataset 1 photon
	2.2 dataset 1 pion
	2.3 dataset 2
	2.4 dataset 3
3	Individual approaches
	3.1 GAN-based approaches
	3.1.1 GAN intro
	3.1.2 contribution 1
	3.1.3 contribution 2
	3.2 Flow-based approaches
	3.2.1 Normalizing Flow intro
	3.2.2 contribution 3
	3.2.3 contribution 4
	3.3 Diffusion-based approaches
	3.3.1 Diffusion model intro
	3.3.2 contribution 5
	3.3.3 contribution 6
	3.4 VAE-based approaches
	3.4.1 VAE intro
	3.4.2 contribution 7
	3.4.3 contribution 8
4	results
_	4.1 intro to metrics
	4.1.1 histos
	4.1.2 classifiers
	4.1.3 timings / hardware
	4.2 ds 1 photons
	4.3 ds 1 pions
	4.4 ds 2
	4.5 ds 3
5	conclusions
ľ	

- Histograms of evaluate.py, sparsity, ...
- timings / number of trainable parameters / memory usage on same hardware
- multiclass and sample vs. Geant classifiers, sliced by E_{inc} , model type, large/small weights, ...
- correlation plots of the above

The Fast Calorimeter Challenge 2022: Results & The Road Ahead

- Thank you to everyone who contributed to the challenge via samples, ideas, discussions, ...!!!
- Some fun is behind us, but there is a lot more ahead:
- ⇒ Re-training / fine-tuning of models
- ⇒ in-depth comparisons
- ⇒ the write-up
- A <u>Big Thank You</u> to Michele Faucci Giannelli, Marco Vanadia, Umberto De Sanctis, and all local organizers!