

CaloShowerGAN

A GAN model for fast calorimeter shower simulate in HEP

Michele Faucci Giannelli (INFN - Roma2) <u>Rui Zhang</u> (Wisconsin) CaloChallenge Workshop 2023 30–31 May 2023, Frascati, Italy

Simulation in HEP

- Monte-Carlo simulation is crucial in understanding and analysing data
 - Simulate interactions happening in calorimeter is time & resource intensive

- Reducing time in calorimeter simulation is the first task to speed up the MC production
- Fast Calorimeter simulation becomes an increasingly essential requirement
 - Generative models assisted calorimeter simulation would be much faster
 - In the meantime, required the generated showers to have high quality and to be as close as with Geant 4

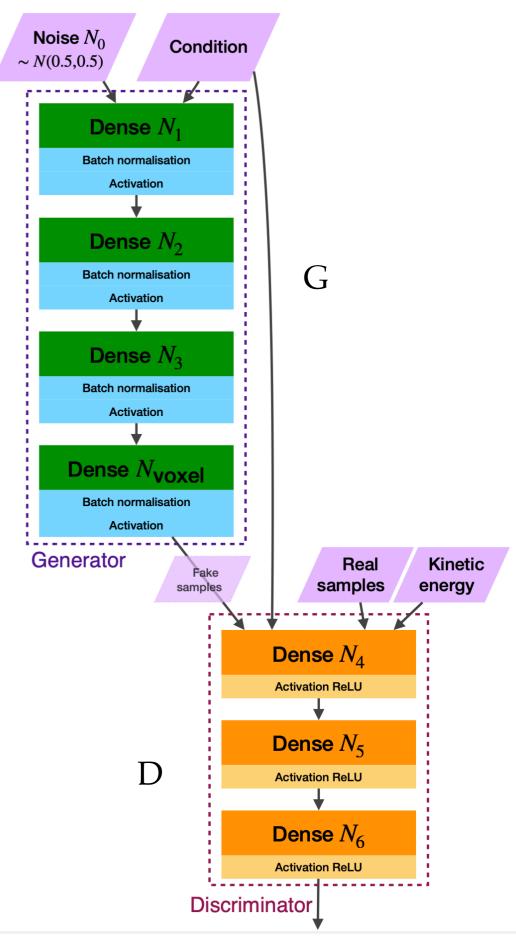
Generative Adversarial Networks (GAN)

- GANs are an known approach for generative models using deep learning techniques
 - An unsupervised learning task, learn patterns in input dataset and generate new examples that could plausibly have been drawn from the input
- Training of GANs is framed as supervised learning
 - Two sub-models: the generator model is trained to generate new examples and the discriminator model is trained to classify examples as either real (from the input) or fake (generated).
 - The two models are trained together in a zero-sum game, until the discriminator model is fooled about half the time, meaning the generator model is generating plausible examples.
- Wasserstein GAN (WGAN) is a variant that introduces the Wasserstein distance (also known as Earth Mover's distance) as a new metric
 - Improved training stability; better gradient flow and vanishing gradients; Mode collapse mitigation; More meaningful loss and evaluation metrics

GAN solution for shower simulation

- CaloShowerGAN is proposed in this talk to use WGAN technique for calorimeter shower simulation
- It is conditioned by the incident kinetic energy of the particle
- Will use the Dataset1 from the CaloChallenge [<u>link</u>] to benchmark
- Table of Contents:
 - Dataset
 - Model architecture and training
 - Hyperparameter optimisation
 - Model performance
 - Investigation of energy split
 - Summary

- Generator: 3 hidden layer + 1 output layer
 - Each layer: a dense layer + batch normalisation + activation
 - Consume a noise vector of multi-dimensional Gaussian (mean=0.5, std=0.5)
 - Condition on particle kinetic energy to train/ generate
- Discriminator: 3 hidden layer + 1 output layer
 - Each layer: a dense layer + activation (ReLU)
 - Batch normalisation does not help in performance
- Above are common for all particles



Data preprocessing

- Input values are energies, normalised by the true incident energy
 - After normalisation, all values in the input are in the same order of magnitude and dimensionless
- Condition label of kinetic energy is normalised to [0, 1] using

•
$$\hat{E} = \frac{\log \frac{E_{kin}}{E_{min}}}{\log \frac{E_{max}}{E_{min}}}$$

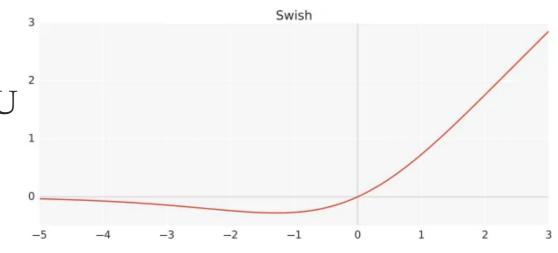
- Motivated by the expectation that the shower width is logarithmically dependent on the kinetic energy of the incoming particle
- Removing too low values in training vector
 - It is found not improving or undermining the numerical stability, therefore is not used in the results
- Normalisation depending on incident energy
 - It is found not improving the performance, therefore is not used in the results

Training

- Training is done separately for particles (γ , π)
- Optimiser: Adam
- Train 1 million iterations and checkpoint models every 1k
- Evaluated by calculating χ^2 of total energy distributions in all 15 energies between generated and Geant 4 simulated showers
 - A good metric which is non-trivial to produce by output vectors
 - The checkpoint that gives the best is χ^2 will be used

Hyperparameter optimisation

- Optimiser
 - Learning rate and momentum of both generator and discriminator are tested
 - Batch size
 - Cyclic learning rate and variant such as RAdam, LookAhead, AdamW do not help
- Activation
 - Con of Swish: seems to be less stable than ReLU
 - Swish in γ G is helpful while ReLU is good in other situations



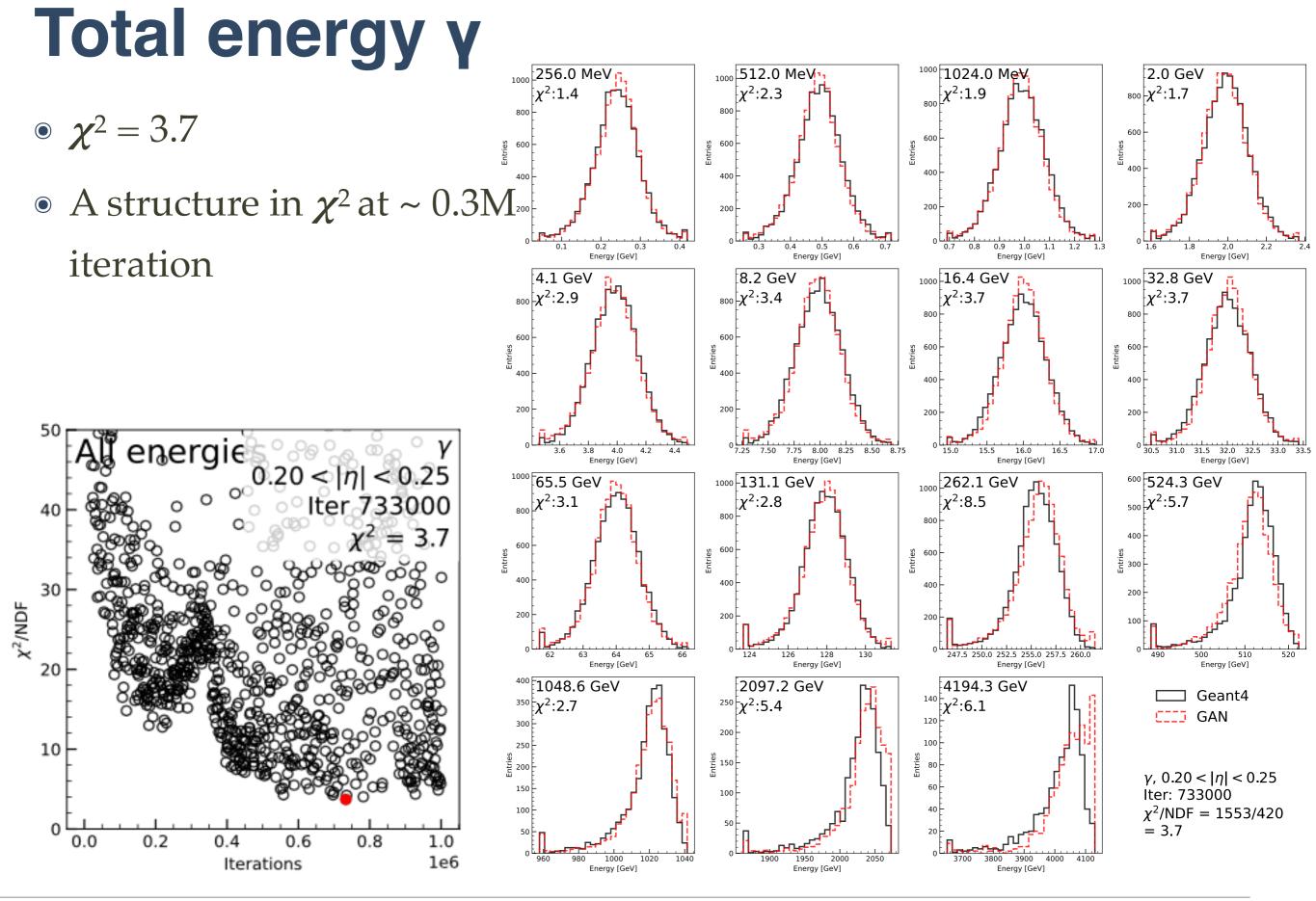
- More powerful when paring with Glorot Normal initialisation of neuron weights
 - ReLU is best to use with He Uniform
- GAN parameters
 - D/G ratio: number of training passes of D for each pass of G (always > 1 since < 1 do not offer advantage)
 - λ that controls the penalty contribution

Final model hyperparameters

Hyperparameter	Photon	Pion
Generator size (N_0, N_1, N_2, N_3)	100, 100, 200, 400	200, 200, 400, 800
Discriminator size (N_4, N_5, N_6)	368, 368, 368	800, 400, 200
Generator optimiser	Adam	Adam
Learning rate	$1 imes 10^{-4}$	1×10^{-4}
$oldsymbol{eta}_1$	0.5	0.5
eta_2	0.999	0.999
Discriminator optimiser	Adam	Adam
Learning rate	$1 imes 10^{-4}$	1×10^{-4}
$oldsymbol{eta}_1$	0.9	0.5
β_2	0.999	0.999
Batch size	1024	1024
D/G ratio	8	5
λ	3	20
Activation	Swish	ReLU
Neuron weight initialisation (generator)	Glorot Normal	He Uniform
Neuron weight initialisation (discriminator)	He Uniform	He Uniform
Trainable parameters (generator, discriminator)	261k, 408k	871k, 829k

• Pion GAN is larger due to more number of voxels

Photon CaloShowerGAN result

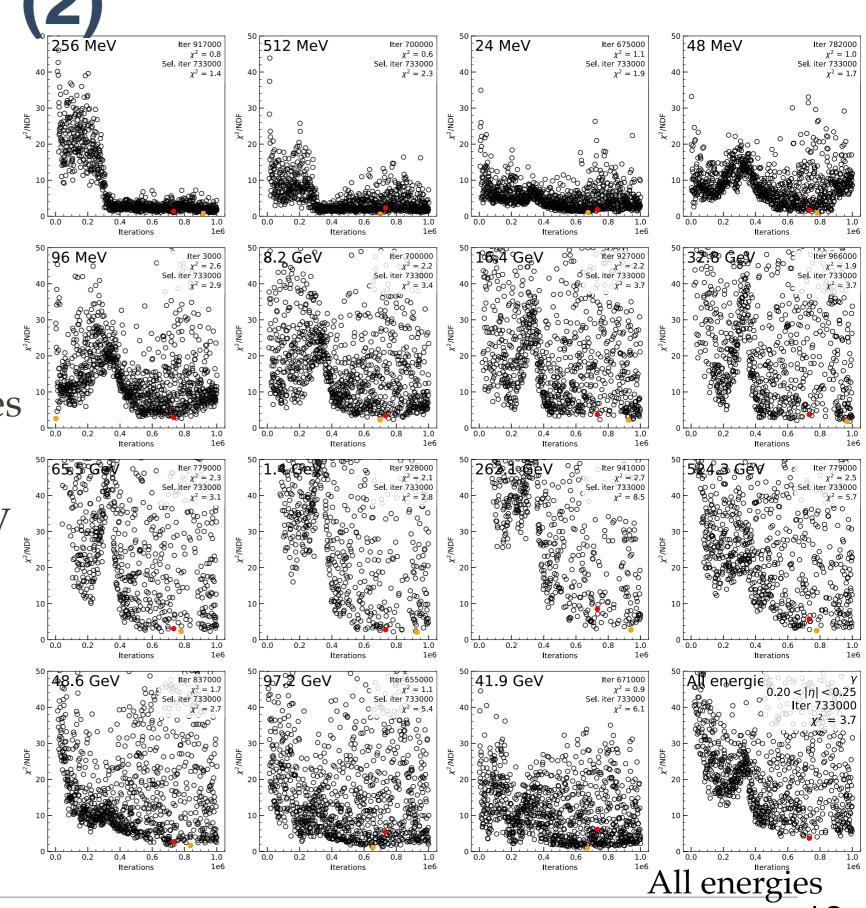


R. Zhang

30.05.2023

Total energy y (2)

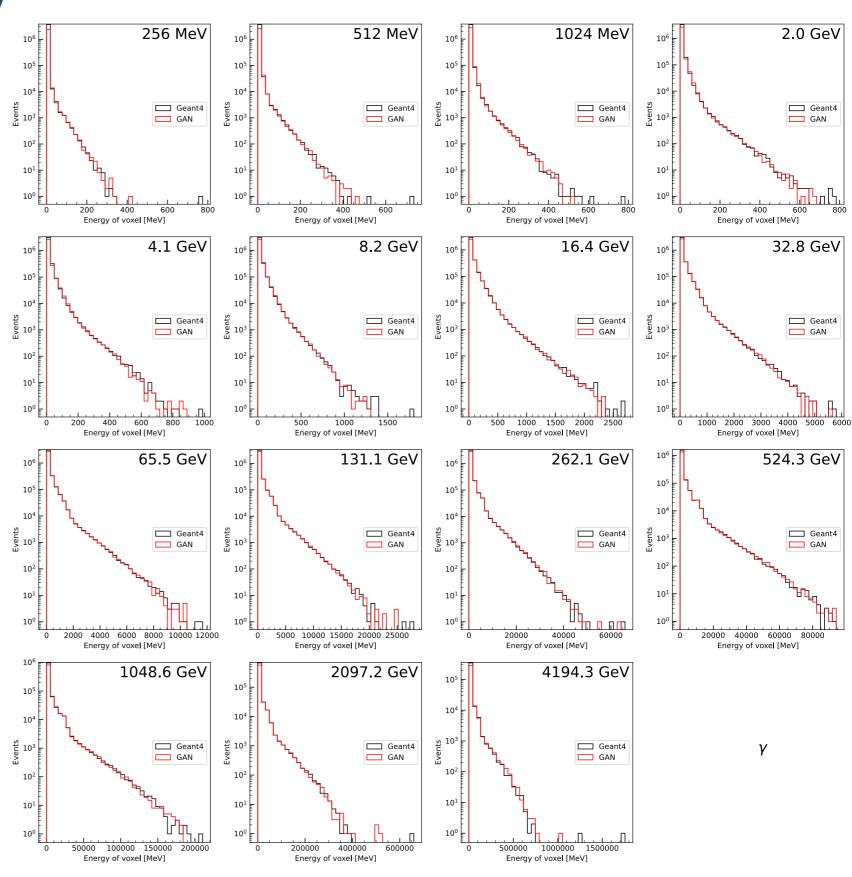
- $\chi^2 = 3.7$
- The global best model performs worse in some energies
- 0.3M iter structure persist in all low energies
- Some energies do not perform well, eg 96 MeV



30.05.2023

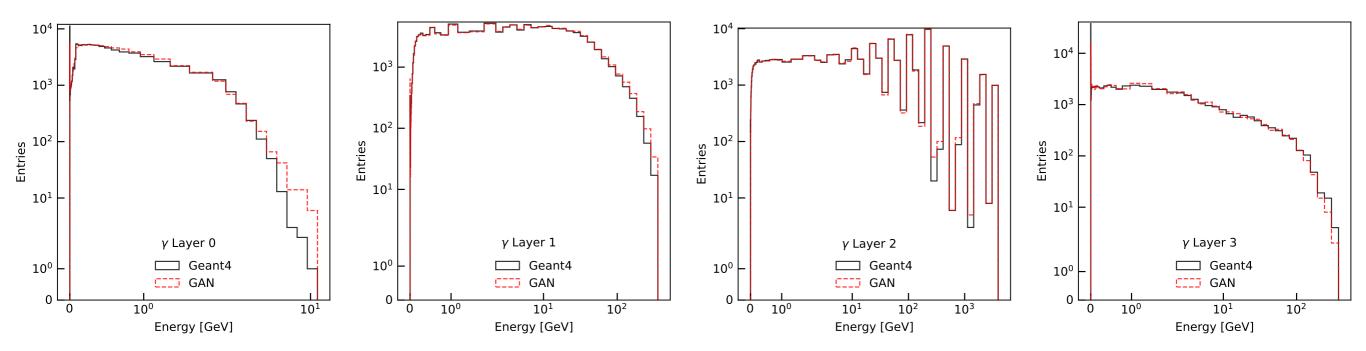
Voxel energy y

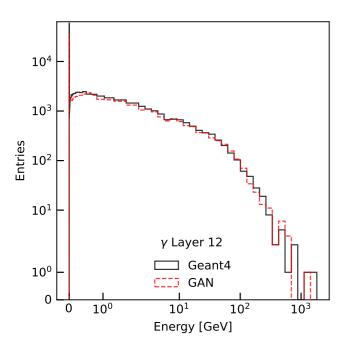
CaloShowerGAN can
reproduce voxel energy
distributions



R. Zhang

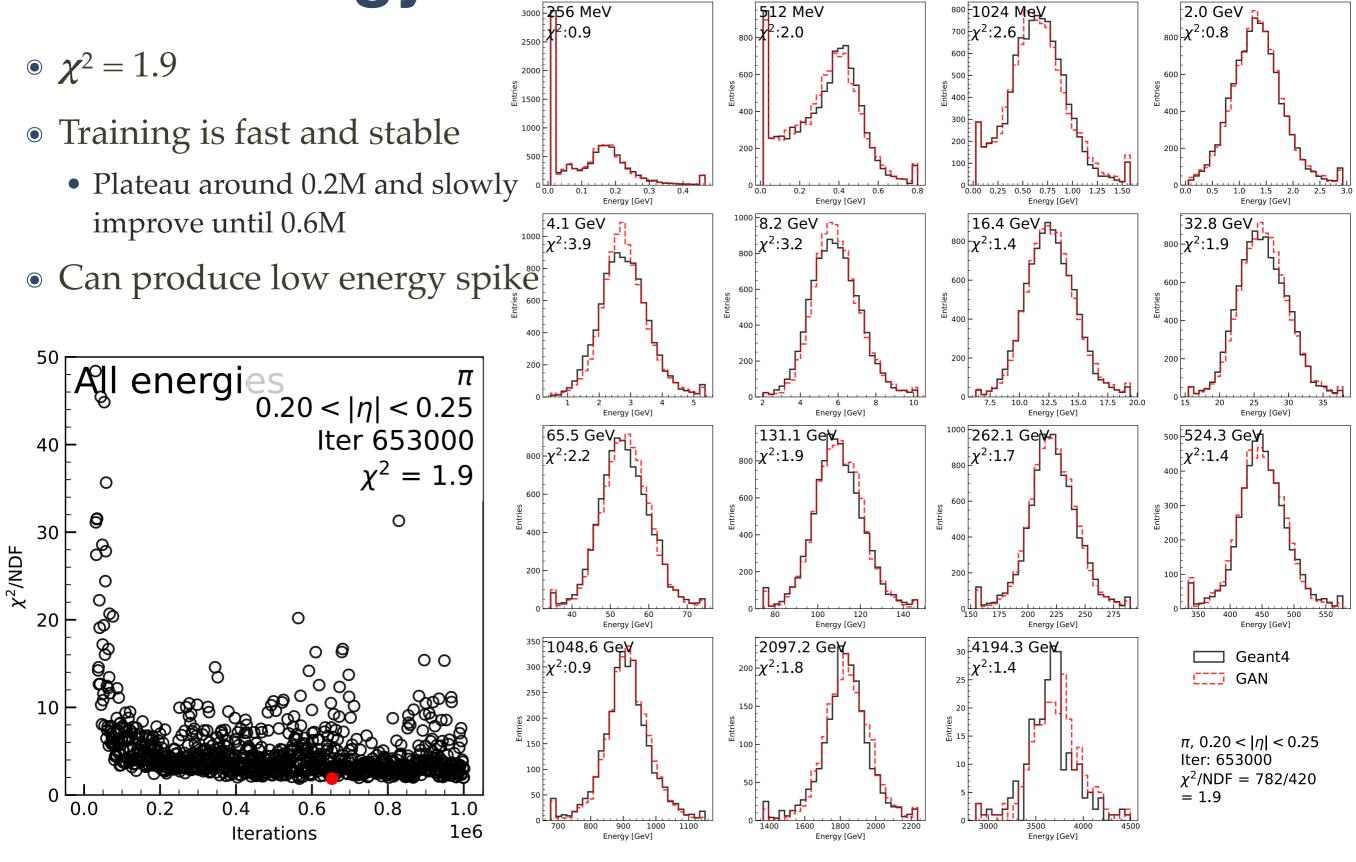
Layer energy y





Pion CaloShowerGAN result

Total energy π



30.05.2023

Total energy π (2)

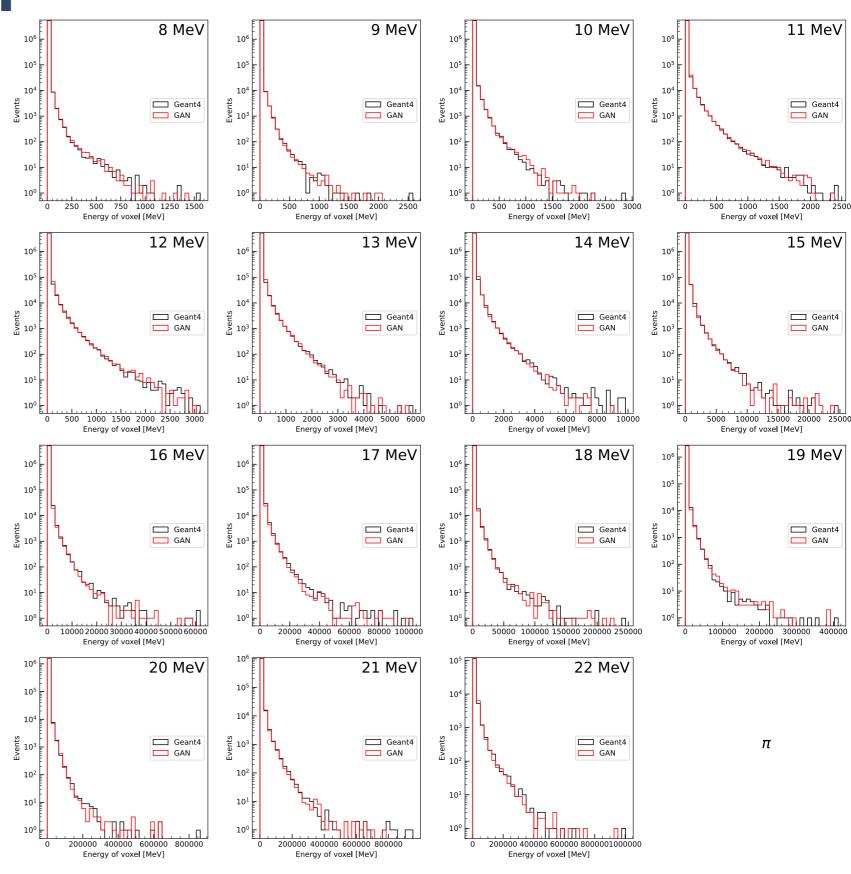
- $\chi^2 = 1.9$
- The global best model performs worse in some energies
- Some energies do not perform well, eg 4.1GeV and 2.1 TeV

30.05.2023

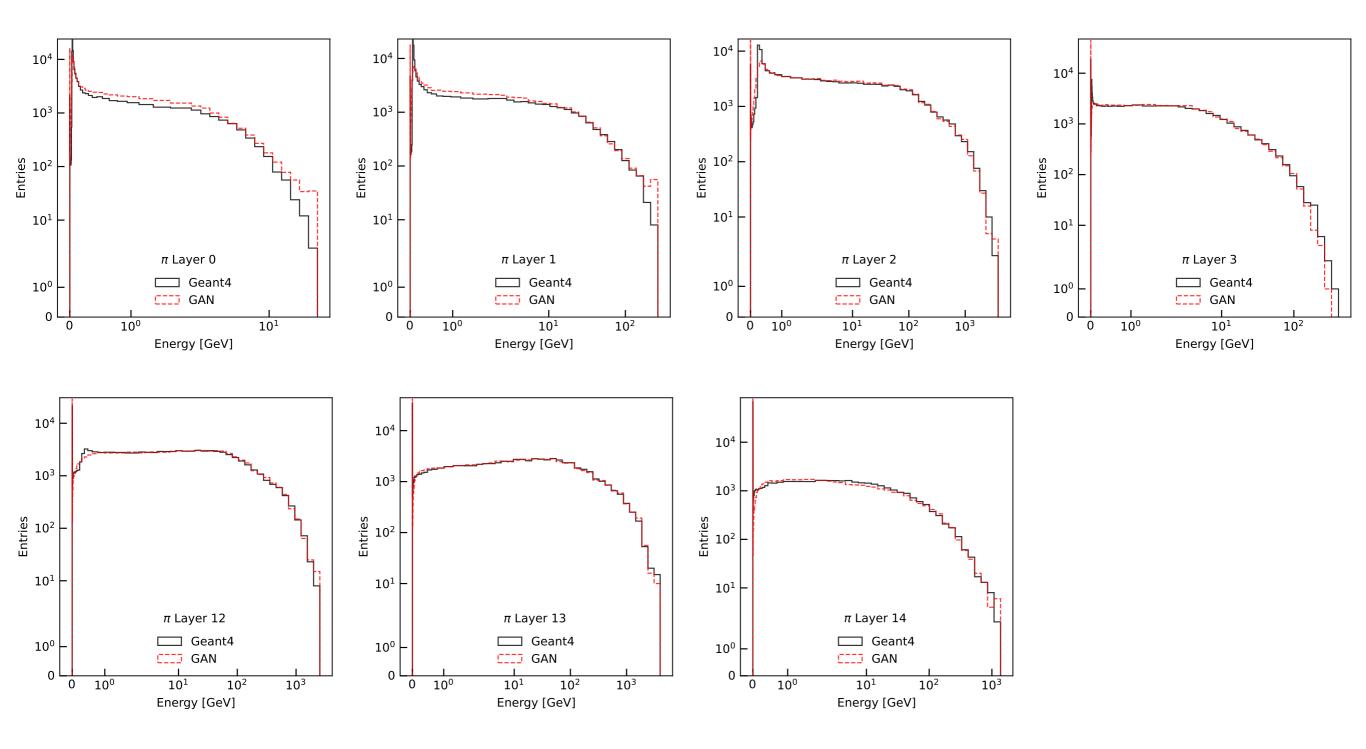


Voxel energy π

CaloShowerGAN can
reproduce voxel energy
distributions



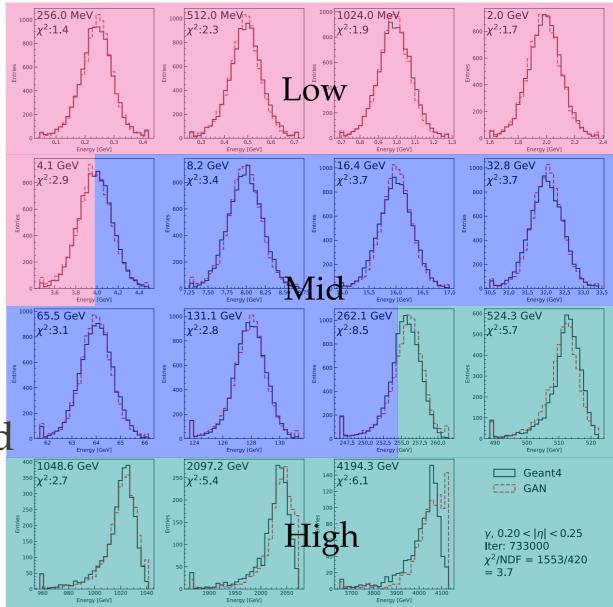
Layer energy π



Energy split — Photon

Energy split in photons

- Low energy and high energy photon responses are quite different
 - May make sense to use different GAN models for low and high energies
- Two scenarios are tested
 - Split at 4.1GeV 2 GANs
 - Split at 4.1GeV and 262GeV 3 GANs
- Use the same hyperparameter for Mid and High as the previous photon
- Use ReLU for low instead of Swish



	1 GAN	Low	Mid High		Mid+Hig
G size	100, 100, 200,	50, 50, 100,	50	, 50, 100, 2	200
Activation	Swish	ReLU	Swish		

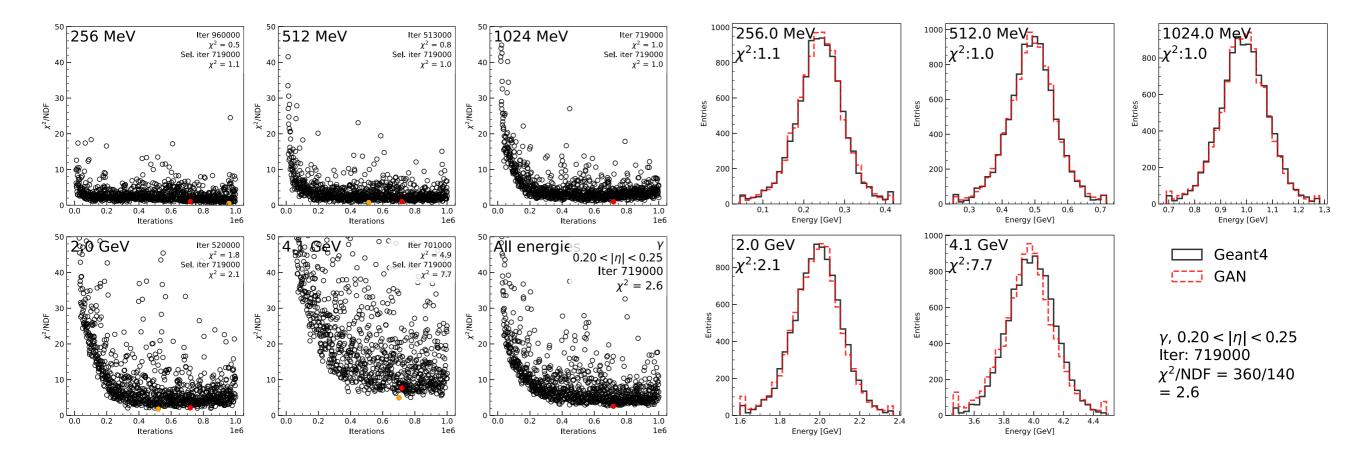
Split energy result y

• $\chi^2: 3.7 \rightarrow 3.1 \rightarrow 2.5$

• If use 3x larger node in G in 1 GAN, $\chi^2 = 8.2$

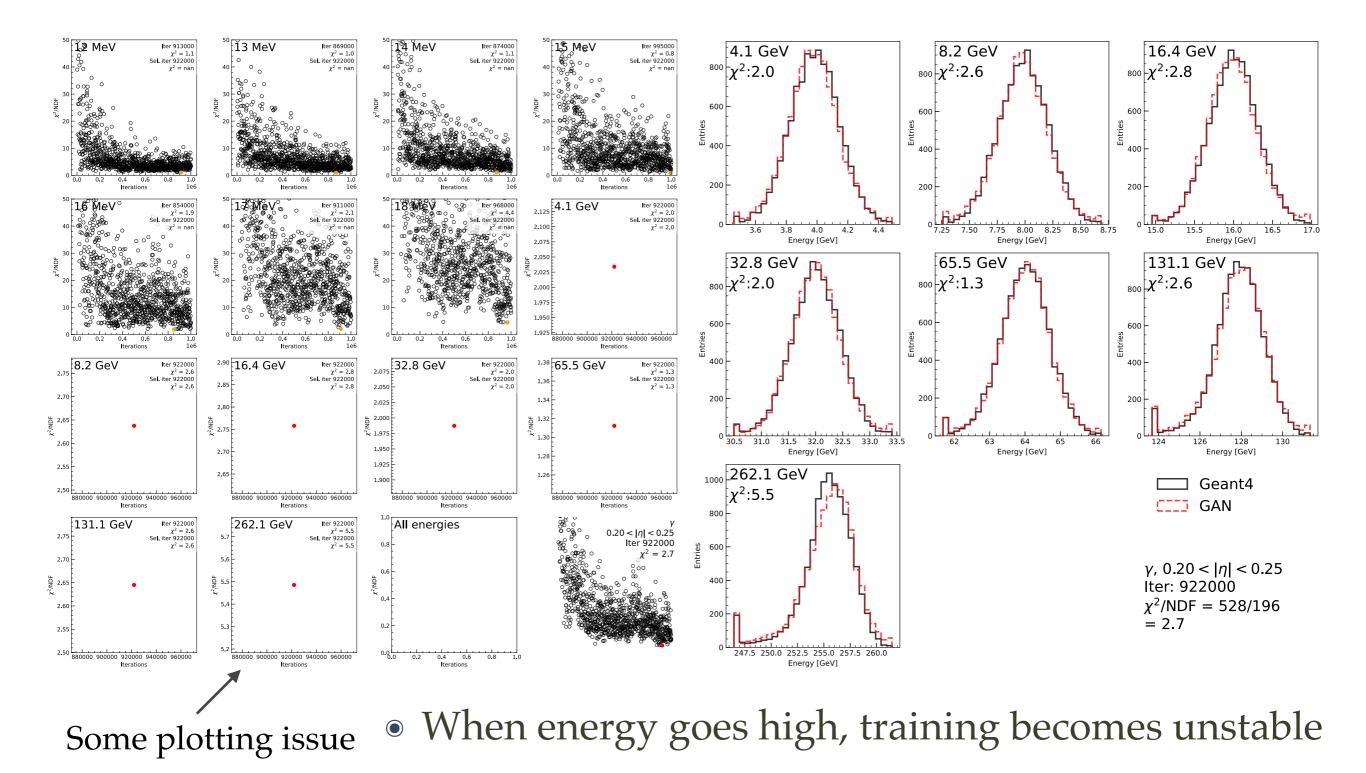
Energy range	Total χ^2	NDF	χ^2/NDF
\leq 4.1 GeV	360	140	2.6
\geq 4.1 GeV	1042	308	3.4
$4.1 \text{GeV}{-262.1 \text{GeV}} \\ \ge 262.1 \text{GeV}$	528	196	2.7
	299	140	2.1
\leq 4.1 GeV + \geq 4.1 GeV	1402	448	3.1
\leq 4.1 GeV + 4.1 GeV-262.1 GeV + \geq 262.1 GeV	1187	476	2.5

Low energy y

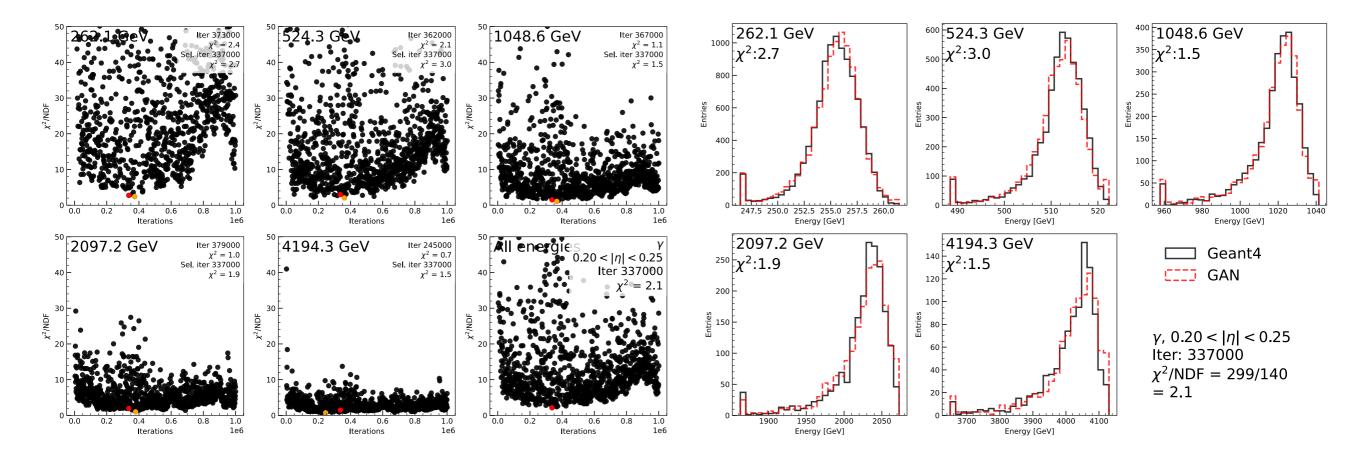


• Very good low energy model

Mid energy y

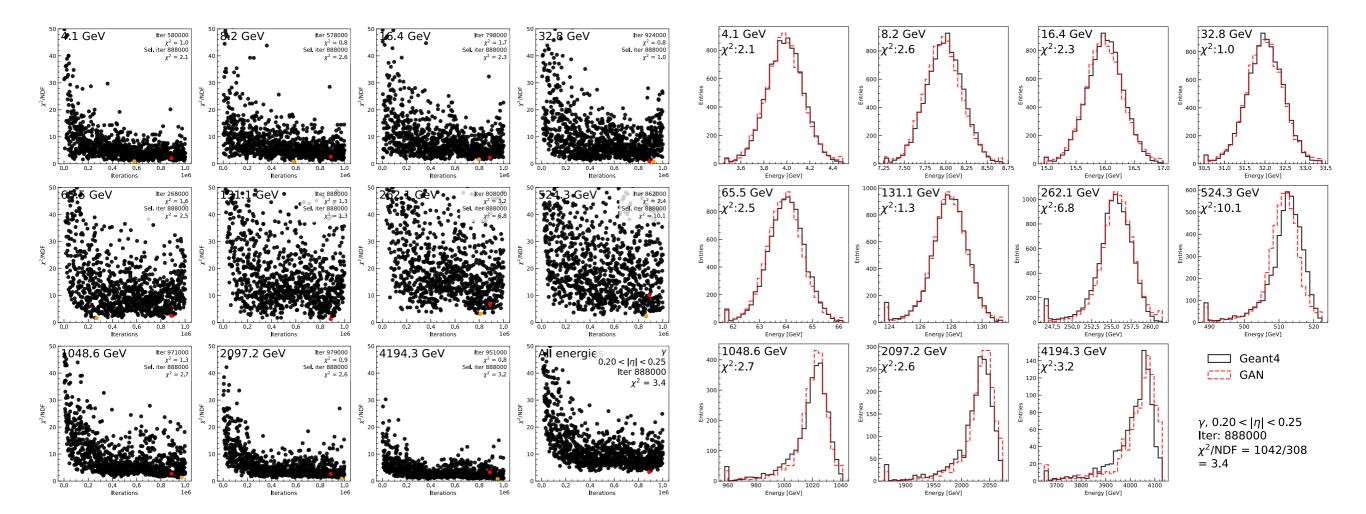


High energy y



• High energy is most difficult to train

M+H energy y



• Good mid energy training, but χ^2 is still large

Time consumption

	Training time V100 GPU [s/1k iter]	Inference time Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz [s/ training events]
γ 1 GAN	38	0.54/121000
π 1 GAN	40	1.2/120230
γ 2 GANs	23+22	0.54
γ 3 GANs	23+23+23	0.54

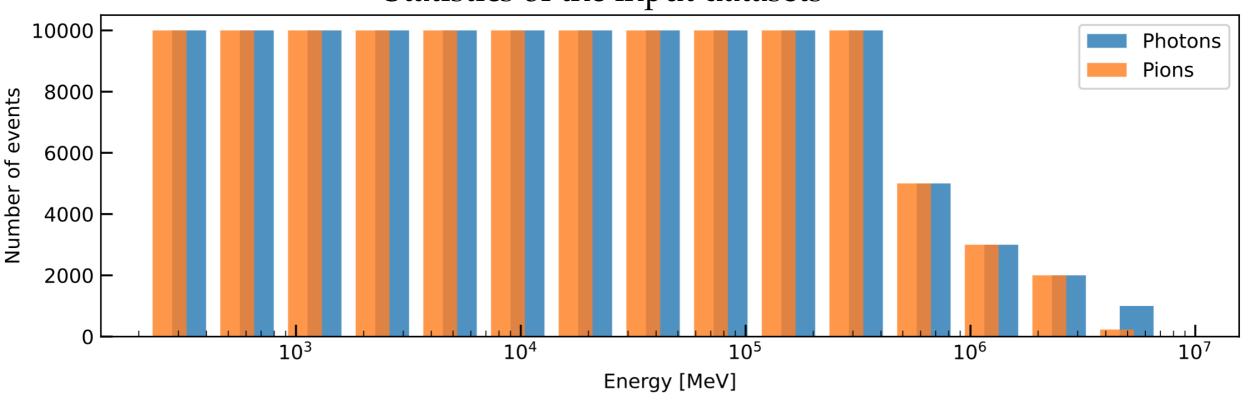
Summary

- CaloShowerGAN is proposed in this talk for fast calorimeter simulation
- Used Dataset1 from CaloChallenge to benchmark the performance
- Great π performance: $\chi^2 = 1.9$
- Good γ performance: $\chi^2 = 3.2$
 - Responses in energies are quite different
 - Train separate GANs for different energy range can further improve the performance $\chi^2 = 3.7 \rightarrow 3.1 \rightarrow 2.5$
 - Train a GAN with 3 times the parameters does not achieve the same results!

Backup

Input datasets

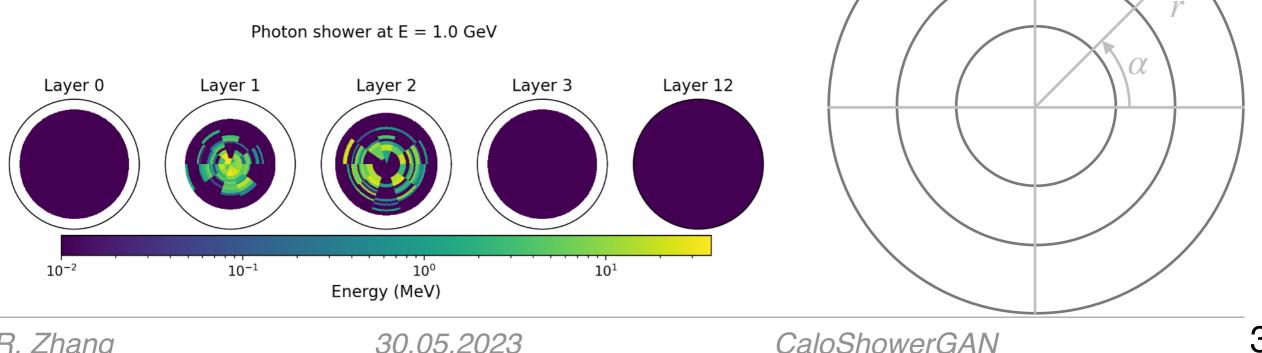
- We used DataSet 1 from CaloChallenge [link]
 - Known as the ATLAS voxelised data used in <u>AtlFast3</u>
 - Separate datasets for single particle photons and pions due to their different calorimeter responses
 - Consists of discrete kinetic energies from 256 MeV to 4 TeV
 - Will condition the GANs on kinetic energies to generate showers with different kinetic energies



Statistics of the input datasets

Input datasets (2)

- Data structure of the machine learning task is the deposit energies in a group of calorimeter cells called "Voxels"
- Since responses dependent on the incidental pseudo-rapidity (η), the provided dataset is in a slice of $2.0 < \eta < 2.05$
- For a calorimeter layer, shower shape is transformed into $r \alpha$ plane
- The task of CaloShowerGAN is to generate numbers in each voxel, such that the shower energy and shower shape are close to that simulate by Giant 4



30.05.2023

Photons	iter x1000	chi2/ndf	iter x1000	chi2/ndf
swish + he	524000	12.052		
Goroth	601000	11.15	254000	6.195
Goroth_DoubleSize	726000	5.413	758000	3.952
ReLu_DoubleSize	899000	5.566	794000	3.311
Goroth_DoubleSize_Mask1KeV	972000	6.481	808000	3.909
Goroth_DoubleSize_Mask10KeV	867000	6.145	905000	3.587
Goroth_DoubleSize_Mask100eV	912000	5.712	610000	3.609