HASPIDE WP5

Detector Validation for ASI Proposal

What means validation?

a-Si:H

- → Ideally to have a duplication of incoming radiation fluxes and expose a sensor to them (quite difficult in this case....)
- → fast evaluation using some experimental results not optimized for the task (we are here)
- → more accurate study using simulations of detector and radiation fluxes.
- → some measurement of detector response to real well known radiation fluxes to feed to simulation.

Which measurements we have?

1) specific SEPs fluxes (photons, electrons, protons)

October 28, 2021

0	$1319649771E^{2.8058}$ $0.02 \le E \le 0.042$ $2124407E^{0.7821442}$ $0.042 \le E \le 0.08$
Onset	
15:35-16:35 UT	$7499891 \exp(-E/0.135)E^{1.06}$ $0.08 \le E \le 0.898$ $5728E^{-4.583910749}$ $0.898 \le E \le 2.41$
	$5728E^{-4.583910749}$ $0.898 \le E \le 2.41$
	$9659222E^{-0.087462841}$ $0.02 \le E \le 0.04$
Peak(NM)	$644779E^{-0.928365512}$ $0.04 \le E \le 0.0726$
17:30-18:20 UT	$1029025 \exp \left(-\frac{E}{0.157129681}\right) E^{-0.940836137} 0.0726 \le E \le 0.484$
	$2554E^{-4.715f16675}$ $0.484 \le E \le 2.25$
Peak(space) 20:35-22:35 UT	$311105E^{-1.3}$ $0.02 \le E \le 0.0357$
	$41837E^{-1.90255}$ $0.0357 \le E \le 0.0717$
	$15749E^{-2.273}$ $0.0717 \le E \le 0.580$

Which measurements we have?

- 2) probability of interaction of single ionizing particle with a-Si:H material
- → NIST tables

- 3) average energy deposition in the material
- → SRIM for protons,

Which measurements we have?

4) specific sensitivities and noise for a given detector (photons, electrons, protons)

Ionizing	Sensor	Bias	Sensitivity $[nC cGy^{-1}]$	5σ detection	Linearity
Radiation	Name	[V]		value [cGy]	[%]
γ X-ray	A2AB1	0.0	0.052	0.260	~ 1.6 ~ 1.6 ~ 1.0 ~ 1.5 ~ 1.5 ~ 5 ~ 5
γ 50 kV X-ray	A2AB1	20.0	0.657	0.040	
γ 50 kV X-ray	A3AC2	30.0	2.040	0.045	
γ Clinical (6 MV)	UOW429	0.0	0.049	0.245	
e ⁻ 6 MeV Clinical	UOW429	0.0	0.065	0.325	
Protons 3 MeV	PAD_V2	20.0	0.025	0.400	
Protons 3 MeV	PAD_V4	20.0	0.030	0.330	

5) CSC $4x4 \text{ mm}^2$ area, $8.2 \mu\text{m}$ thickness

 25×25 sensors arranged in a square, readout in parallel.

Sensitivity 10 nA/(cGy/s) , single device noise 5 pA estimation of total noise 25 pA detection limit @ $5\sigma \rightarrow 125$ pA

6) Using monochromatic radiation we could then produce the tables like this (photons):

Detection limits at 5σ for monochromatic photon fluxes.

Photon Energy [keV]	Minimum detectable flux $[\gamma/(cm^2 \text{ sr s})]$			
3.0	$2.4 \cdot 10^3$			
5.0	$3.8 \cdot 10^{3}$			
10.0	$10.2 \cdot 10^3$			
15.0	$20.2 \cdot 10^3$			
20.0	$33.0 \cdot 10^3$			
25.0	$47.8 \cdot 10^3$			
30.0	$79.8 \cdot 10^3$			
35.0	$150.0 \cdot 10^3$			
40.0	$237.0 \cdot 10^3$			

7) Integrating the energy spectra with the expected energy deposition for each particle at a given energy and folding it with sensitivity we could obtain the lower limit of the flux for 5σ detection.

and compare with absolute fluxes recorded for past SEPs.

8) What we obtain for the 28 october 2021 SEP:

- \rightarrow photons : using 3-40 keV part of spectrum less than 10° photon flux (well below actual flux)
- → electrons : using > 50 keV part of spectrum barely noticeable signal (S/N 1.8)
- \rightarrow protons: using the whole spectrum we obtain \sim 2500 protons/s detected \rightarrow 5/N > 4

Simulation of the actual device and radiation fluxes. Started....

→ Measurement of specific sensitivities for monochromatic or well known radiation sources. Started.....