SEP fluxes and simulations analysis

M. Villani, M. Fabi, C. Grimani, F. Sabbatini

Urbino University – INFN Florence

HASPIDE meeting - Florence - February 2023

SEP October 29, 2021

PEAK

Blue line: fit with low energy data Light blue line: fit with high energy data Black line: fit up-to 400 MeV

With low-energy data only, it is not possible to determine the high-energy portion of the curve

Protons simulation – 2.0 cm

Layer A					
		400 MeV		600 MeV	
Laver E	Region	Mean (keV)	RMS (keV)	Mean (keV)	RMS (keV)
TELO TALES <tht< th=""><th>160</th><th>3.1</th><th>11.2</th><th>2.3</th><th>6.3</th></tht<>	160	3.1	11.2	2.3	6.3
	• 172	3.2	9.9	2.1	4.7

Stopped all protons up to 200 MeV

Stopped 35% protons @ 400 MeV

It is not possible to have a bin at 400 MeV without hard simulation work

14

Protons simulation – 2.0 cm

Protons simulation – 6.8 cm

Layer A					
		400 MeV		600 MeV	
Laver E	Region	Mean (keV)	RMS (keV)	Mean (keV)	RMS (keV)
VIEW TAGIN <tht< td=""><td>160</td><td>11.7</td><td>26.4</td><td>4.2</td><td>26.1</td></tht<>	160	11.7	26.4	4.2	26.1
	172	16.1	36.1	2.1	5.0

Stopped 75% protons @ 400 MeV

It would be possible to have a clear bin at 400 MeV

Protons simulation – 6.8 cm

Gamma simulation Simplified geometry

DEPOSITED ENERGY

20 keV		70 keV			
Mean (keV)	RMS (keV)	Mean (keV)	RMS (keV)		
0.15 (17.3)	1.72 (18.3)	0.007 (13.0)	0.45 (19.7)		

a-5

Single layer

Perpendicular 15 deg		30 deg		45 deg			
Mean (keV)	RMS (keV)	Mean (keV)	RMS (keV)	Mean (keV)	RMS (keV)	Mean (keV)	RMS (keV)
4.0	9.7	4.2	7.4	4.8	8.6	6.7	13.7

Single layer

Back up slides

Detector performance Photons

 10^{1}

10¹⁰

 10^{9}

108

 10^{7}

 10^{6}

10⁵

 10^{4}

 10^{-3}

 10^{2}

1

 10^{2}

10

Thick line: Flare magnetar @ 1 kpc Other lines: Solar X flare @ 1 AU

103

Energy (keV)

Detector performance Protons

Detection limits at 5σ for monochromatic protons fluxes

Proton Energy $[MeV]$	S/N = 1 Flux [p (cm ² sr s) ⁻¹]
$5.0 \\ 10.0 \\ 20.0 \\ 50.0 \\ 70.0 \\ 100.0 $	$\begin{array}{c} 0.4 \cdot 10^{3} \\ 0.5 \cdot 10^{3} \\ 1.0 \cdot 10^{3} \\ 1.5 \cdot 10^{3} \\ 3.0 \cdot 10^{3} \\ 3.5 \cdot 10^{3} \end{array}$
200.0 400.0	$5.0 \cdot 10^3$ $10.0 \cdot 10^3$

One has to keep in mind that tungsten layers will reduce protons energy:

this means that in the last layer more energy will be deposited wrt the first.