HASPIDE WP2 Status

Valentino Liberali, INFN Milano

Florence, Feb. 02, 2023

Introduction (from the proposal)

HASPIDE¹ (HAmorphous² Silicon Pixel Detector for ionizing radiation) addresses two types of detectors, for:

- 1 intense radiation flux, either continuous or pulsed, for beam monitoring in clinical and non-clinical accelerators (to be used in WP4: Beam monitoring);
- **Single particle**, either for cosmic radiation (to be used in WP5: Space applications) or neutron detection (to be used in WP6: Neutron detection).

[photo by Ghorayr,

¹Greek: ἀσπίς (Naja haie) from en.wikipedia.org/wiki/Egyptian_cobra

²HAmorphous = H (hydrogen) + 'Amorphous', from greek ἄμορφος (= without⊧form)

V. Liberali HASPIDE WP2 Status a-Si:1

WP2: Electronics and DAQ

Tasks:

- **T2.1**: Design of the front-end chip for clinical dosimetry
- T2.2: Design and test of the data acquisition board for neutron detection
- T2.3: Design and test of the data acquisition board for clinical dosimetry

T2.3 will use the chip designed in T2.1 (new prototype, in 28 nm CMOS); T2.2 will use a chip already designed for other purposes (currently under characterization).

First test chip (T2.1) - 1

First test chip (miniASIC) registered and confirmed by IMEC:

- Chip name: cleopatra (by Gianni Mazza)
- Area (design): 1.333 mm \times 1.111 mm
- Optical scaling (linear): ×0.9
- Area (silicon): 1.2 mm × 1.0 mm
- Design "flavor": 28 nm CMOS RF High Performance Compact Mobile Computing Plus ELK Cu 1P10M 0.9/1.8V [RF HPC +]
- Metal stack: 1P9M_5X1Y1Z1U UT-ALRDL
- Number of dies: 100 only, naked
- Backend: Wirebond

Purchase order sent to IMEC (12.169,00 \in + VAT)

Deadlines:

- Preliminary gds submission deadline: 29th March 2023
- Last chance of cancellation deadline: 29th March 2023
- Final submission deadline: 26th April 2023

Preliminary gds does not need to be DRC/LVS clean. It must:

- have the final area
- include all the CAD layers and devices of the final gds

First test chip (T2.1) - 2

Read out architecture is based on TERA chip, already in use (made with different technologies)

New design in 28 nm CMOS

Advantages:

- Mature technology, available through IMEC
- Low cost (per transistor)
- Already used in INFN projects (AM chips, TIMESPOT)
- \bullet Complete cell library available trough CERN (for the 1P9M stack), including layout view \longrightarrow complete parasitic extraction is possible
- Intrinsically rad-hard

Drawback:

- Cell library was made available only in Jan. 2023
- Performance limited by layout parasitics
 - → speed and power can be estimated only with post-layout simulation

a-Si.L

Chip for single particle detection (TO)

- Designed for the PANDA MVD (outside the HASPIDE project)
- CMOS UMC 0.11 μm technology
- 64 channels ASIC for strip readout
- preliminary test results are available

Additional details provided by Gianni Mazza

DAQ system with TERA chips (LNS)

- Read-out chain based on the TERA-08 chip
- Two configurations: for continuos and for pulsed proton beams
- Originally designed for continuous beams; modified to work also with pulsed beams
- FPGA board for data acquisition

Details in the talk given by Roberto Catalano

DAQ system from University of Wollongong (UoW)

DAQ system already available. Modified DAQ versions:

- Programmable sensor voltage
- Increase of the number of channels

Details in the talk given by Marco Petasecca

Workplan for 2023 (1)

- miniASIC design and test:
 - design to be completed by April 26
 - ullet 3 months for fabrication \longrightarrow dice available at the end of July
 - test board design in May-June
 - test board firmware in June-July
 - assembly in August (?) or September
 - miniASIC test in (September)-October-November
 - Milestone: "Characterization of the first miniASIC" to be delayed to Nov. 30, 2023 (or Dec. 15, 2023)
- People involved in chip design: <u>Lorenzo Piccolo</u>, Gianni Mazza (TO);
 Valentino Liberali, Alberto Stabile, Luca Frontini (MI: chip integration and design support);
 Pisana Placidi (PG: design support)
- People involved in board design, firmware, and test: Gianni Mazza all activities); Lorenzo Piccolo and <u>Francesco Rotondo</u> (TO: board segn)
 <u>Richard Wheadon</u> (TO: firmware and test) + new PostDoc (?)

Workplan for 2023 (2)

- DAQ system with TERA chips:
 - · assembly in July
 - firmware in July
 - test with pulsed beams in August
 - People involved: <u>Roberto Catalano</u>, Pablo Cirrone, Giacomo Cuttone, Giada Petringa (LNS)
- DAQ system from University of Wollongong:
 - Data acquisition system modified to allow to bias the sensor with a programmable voltage – Done
 - Test of the modified DAQ in February
 - Modified DAQ will be sent to Florence (after tests)
 - New DAQ version with 128 channels (end 2023 / begin 2024)
 - People involved: Marco Petasecca, Matthew Large (UoW)

WP2 will have regular meeting every two weeks, on the first and the third Fridays of every month

THANK YOU!

Questions?

