



## $\psi(2S) \rightarrow \tau \tau$ to test Lepton Flavor Violation @'BESIII

I. Garzia University of Ferrara - INFN Ferrara



X.H. Mo, J.Y.Zhang, <u>B.X. Zhang</u> IHEP

> CGEM-IT PERUGIA February 27-28, 2023



Institute of High Energy Physics Chinese Academy of Sciences

## LF Universality Violation

Lepton Flavor Universality violation accessed by BaBar and Belle studying the ratio:

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}, \quad (\ell = e, \mu)$$
  
EXP:  $R(D) = 0.403 \pm 0.047, \quad R(D^*) = 0.310 \pm 0.017,$   
SM:  $R(D) = 0.300 \pm 0.008, \quad R(D^*) = 0.252 \pm 0.003.$ 

#### The combined results show a deviation from SM prediction of a level of $3.9\sigma$

• new physics only in the  $\tau$  channel decay

<u>JHEP 06 (2017) 019</u>

#### IDEA: $\psi(2S) \rightarrow \tau \tau$

New observables for test the LFU violation: non-universality in leptonic decays of  $\psi$  and  $\Upsilon$  quarkonia

- same mechanism as for the R(D<sup>(\*)</sup>)
- only the V $\rightarrow \tau\tau$  decay is affected by NP

$$R_{\tau/\ell}^{V} \equiv \frac{\Gamma\left(V \to \tau^{+}\tau^{-}\right)}{\Gamma\left(V \to \ell^{+}\ell^{-}\right)}, \quad (V = \psi, \Upsilon; \ \ell = e, \mu),$$

| V(nS)          | ) SM prediction                   | Exp. value $\pm \sigma_{\text{stat}} \pm \sigma_{\text{syst}}$ |
|----------------|-----------------------------------|----------------------------------------------------------------|
| $\Upsilon(1S)$ | $0.9924 \pm \mathcal{O}(10^{-5})$ | $1.005 \pm 0.013 \pm 0.022$                                    |
| $\Upsilon(2S)$ | $0.9940 \pm \mathcal{O}(10^{-5})$ | $1.04 \pm 0.04 \pm 0.05$                                       |
| $\Upsilon(3S)$ | $0.9948 \pm \mathcal{O}(10^{-5})$ | $1.05 \pm 0.08 \pm 0.05$                                       |
| $\psi(2S)$     | $0.390 \pm \mathcal{O}(10^{-4})$  | $0.39 \pm 0.05$                                                |



## LF Universality Violation

Lepton Flavor Universality violation accessed by BaBar and Belle studying the ratio:

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}, \quad (\ell = e, \mu)$$
  
EXP:  $R(D) = 0.403 \pm 0.047, \quad R(D^*) = 0.310 \pm 0.017,$   
SM:  $R(D) = 0.300 \pm 0.008, \quad R(D^*) = 0.252 \pm 0.003.$ 

#### The combined results show a deviation from SM prediction of a level of $3.9\sigma$

- new physics only in the  $\tau$  channel decay

<u>JHEP 06 (2017) 019</u>

#### IDEA: $\psi(2S) \rightarrow \tau \tau$

New observables for test the LFU violation: non-universality in leptonic decays of  $\psi$  and  $\Upsilon$  quarkonia

- same mechanism as for the R(D<sup>(\*)</sup>)
- only the V $\rightarrow \tau\tau$  decay is affected by NP

$$R_{\tau/\ell}^{V} \equiv \frac{\Gamma\left(V \to \tau^{+}\tau^{-}\right)}{\Gamma\left(V \to \ell^{+}\ell^{-}\right)}, \quad (V = \psi, \Upsilon; \ \ell = e, \mu),$$

| V(nS)          | SM prediction                     | Exp. value $\pm \sigma_{\text{stat}} \pm \sigma_{\text{syst}}$ |
|----------------|-----------------------------------|----------------------------------------------------------------|
| $\Upsilon(1S)$ | $0.9924 \pm \mathcal{O}(10^{-5})$ | $1.005 \pm 0.013 \pm 0.022$                                    |
| $\Upsilon(2S)$ | $0.9940 \pm \mathcal{O}(10^{-5})$ | $1.04 \pm 0.04 \pm 0.05$                                       |
| $\Upsilon(3S)$ | $0.9948 \pm \mathcal{O}(10^{-5})$ | $1.05 \pm 0.08 \pm 0.05$                                       |
| $\psi(2S)$     | $0.390 \pm \mathcal{O}(10^{-4})$  | $0.39 \pm 0.05$                                                |



## Analysis: event and track selection

#### Study of $\psi(2S) \rightarrow \tau \tau \rightarrow e \mu 4 \nu / \pi e 3 \nu / \pi \mu 3 \nu / \pi \pi 2 \nu$ decays

#### **Charged tracks**

#### nCharged=2

- Vertex cut:  $R_{xy}$ <1cm and  $R_z$ <10cm
- polar angle of tracks in MDC: |cosθ|<0.93</li>
- ptrk < 1.2 GeV (remove Bhabha and dimuon events)
- pt>0.05 GeV/c
- Vertex Fit

#### Neutral candidates

- EMC time cut: 0<t<sub>TDC</sub><14(/50*ns*)
- E<sub>γ</sub> >0.025 GeV for the barrel (<u>|(cos(θ)| < 0.8)</u>, and E<sub>γ</sub>>0.050 GeV for the endcap (<u>0.86<</u>] (<u>cos(θ)|<0.92</u>)
- Isolated  $\gamma$ : opening angle between photon and its nearest charged tracks  $\theta_{\gamma-tr} > 10^{\circ}$
- nGamma = 0

- Release 664p03
- 240000 events simulated:  $\psi(2S) \rightarrow \tau \tau \rightarrow e^{\mp} \mu^{\pm} 4\nu$ 
  - 2009+2012 conditions
- 2009+2012 MC inclusive  $\psi(2S)$  sample
- 2009+2012  $\psi(2S)$  data sample

#### NEW boss709 with 2021 condition

| Decay psi(2S)<br>1.0000 tau+ tau-<br>Enddecay                                                             | PHOTOS VLL;                                          |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Decay tau+<br>0.3900 e+ nu_e anti-nu_tau<br>0.3900 mu+ nu_mu anti-nu_tau<br>0.2200 pi+ nu_tau<br>Enddecay | PHOTOS TAULNUNU;<br>PHOTOS TAULNUNU;<br>TAUSCALARNU; |
| Decay tau–<br>0.3900 e– anti–nu_e nu_tau<br>0.3900 mu– anti–nu_mu nu_tau<br>0.2200 pi– nu_tau<br>Enddecay | PHOTOS TAULNUNU;<br>PHOTOS TAULNUNU;<br>TAUSCALARNU; |
| End                                                                                                       |                                                      |

#### PID studies



similar distributions for selected muons/pions from MC truth

## mue vs. perk from MC samples



[a]

## mue vs. perk from MC samples

muc\_dep 50

30



Scan for different value of parameters [a] and [b] •

•



#### Additional cuts



### Additional cuts II



#### Summary table of cuts $\psi(2S) \rightarrow \tau \tau \rightarrow e \mu 4 \nu$



Electron PID
0.8 < E/p < 1.2</li>
χ2<sub>dE/dx</sub> (e) < 4</li>
|Δtof(e)|<0.3 ns</li>



$$\chi^2_{dE/dx}(\mu) < 4$$

muc\_dep>81\*(ptrk-0.65)

 $|\cos\theta_{miss}| < 0.8$ 

- energyDep < 2 (sum of doposit operav of the two
  - deposit energy of the two

tracks)

MissingEnergy<2.65 GeV/c<sup>2</sup>

2.5<tof < 5 (ns)</li>

10

## study of inclusive sample

Continuum



- Comparison with and without Emiss cut: the difference between signal and data in the higher Miss region is due to the continuum contributions
- Signal shape form inclusive MC (it includes bkg)
- Background shape from inclusive MC (check MC truth ID different from emu signal)
  - background fraction  $\sim 6\%$
- Continuum from data, rescaled for the right luminosity •

$$f = \frac{\mathcal{L}_{\psi(2S)}}{\mathcal{L}_{off}} \cdot \frac{s_{off}}{s_{\psi(2S)}} = 7.6$$

## OLD RESULTS (2009 and 2012)



- Continuum shape from data
- Nsig2012 =  $18796 \pm 668$
- Nsig2009 =  $7370 \pm 365$
- $\epsilon = 0.31$  (the same for 2009 and 2012) without Emiss cut

$$Br_{\tau\tau} = \frac{\frac{N^{obs} - N^{obs}_{cont} - N^{norm}_{bg}(Br_{\tau\tau})}{\varepsilon_{e\mu} \cdot Br(e\mu)} - \sigma^{\tau\tau}_{Int}(Br_{\tau\tau}) \cdot L_{3.686}}{N_{\psi(2S)}}$$

https://doi.org/10.1103/PhysRevD.74.112003

$$\sigma_{\text{int}} = -66.587 \text{*BR}(\tau \tau) \text{ pb}$$

 $=(2.87\pm0.09)\times10^{-3}$ 

 $=(3.58\pm0.16)\times10^{-3}$ 

2012

2000

## New result using 2021 dataset



- no fit to data
- Nobs =  $276456 \pm 526$
- Nbkg =  $8885 \pm 94$
- Ncont =  $128326 \pm 358$
- $\varepsilon = 0.304$  (with Emiss cut)

$$Br_{\tau\tau} = \frac{\frac{N^{obs} - N^{obs}_{cont} - N^{norm}_{bg}(Br_{\tau\tau})}{\varepsilon_{e\mu} \cdot Br(e\mu)} - \sigma^{\tau\tau}_{Int}(Br_{\tau\tau}) \cdot L_{3.686}}{N_{\psi(2S)}}$$

$$=(3.271\pm0.023)\times10^{-3}$$

 $=(2.87\pm0.09)\times10^{-3}$ 

 $=(3.58\pm0.16)\times10^{-3}$ 

- Signal+background shape form inclusive MC
  - background fraction ~ 8.5% (8.9%) from 2012(2009) inclusive MC sample
- Continuum shape from data
- Nsig2012 =  $18796 \pm 668$
- Nsig2009 =  $7370 \pm 365$
- $\epsilon = 0.31$  (the same for 2009 and 2012) without Emiss cut

$$Br_{\tau\tau} = \frac{\frac{N^{obs} - N^{obs}_{cont} - N^{norm}_{bg}(Br_{\tau\tau})}{\varepsilon_{e\mu} \cdot Br(e\mu)} - \sigma^{\tau\tau}_{Int}(Br_{\tau\tau}) \cdot L_{3.686}}{N_{\psi(2S)}}$$

https://doi.org/10.1103/PhysRevD.74.112003

$$\sigma_{\text{int}} = -66.587 \text{*BR}(\tau \tau) \text{ pb}^{-1}$$



(3.1  $\pm$  0.4) X 10<sup>-3</sup> (PDG)

#### X. H. Mo, J. Y. Zhang, B.X. Zhang (IHEP)

## **Events selection**

#### Charged track

>nCharged=2
>Vr<1cm, |Vz|<10cm</li>
>|cosθ|<0.93</li>
> ptrk<1.2 GeV</li>
>Vertex Fit

PID electron
 0.8<E/p<1.2</li>
 χ2<sub>dE/dx</sub><4</li>
 Δtof(e) <0.3 ns</li>

#### Neutral track

>Emc>0.025GeV(barrel),Emc>0.050 GeV(Endcap)

- ➢ 0<T<sub>EMC</sub><14(x50ns)</p>
- **>** θ(γ,trk)>10<sup>0</sup>
- PID muon
- ► E/p<0.7
- $\geq \chi 2_{dE/dx} < 4$
- > ∆tof(mu) <0.3 ns</p>
- > muc\_dep>81\*(ptrk-0.65)

same event and track selection

#### X. H. Mo, J. Y. Zhang, B.X. Zhang (IHEP)

#### MC & Data distribution comparison (I)



X. H. Mo, J. Y. Zhang, B.X. Zhang (IHEP)

#### Normalized by number of events



No continuum data included

#### Cross section calculation (IHEP)

#### Cross section calculation( $e^+e^- \rightarrow \tau \tau$ )



 $\begin{aligned} \text{Cross section calculation}(e^+e^- \to \tau\tau) \\ S(v) &= \frac{1}{v} \left\{ (1+v^2) \left[ \frac{\pi^2}{6} + \ln\left(\frac{1+v}{2}\right) \ln\left(\frac{1+v}{1-v}\right) + 2\text{Li}_2\left(\frac{1-v}{1+v}\right) + 2\text{Li}_2\left(\frac{1+v}{2}\right) \right. \\ &\left. -2\text{Li}_2\left(\frac{1-v}{2}\right) - 4\text{Li}_2(v) + \text{Li}_2(v^2) \right] \\ &\left. + \left[ \frac{11}{8}(1+v^2) - 3v + \frac{1}{2}\frac{v^4}{(3-v^2)} \right] \ln\left(\frac{1+v}{1-v}\right) \\ &\left. + 6v\ln\left(\frac{1+v}{2}\right) - 4v\ln v + \frac{3}{4}v\frac{(5-3v^2)}{(3-v^2)} \right\} \\ &\left. + \text{Li}_2(x) = -\int_0^x \ln(1-t)dt/t = \sum_{n=1}^\infty x^n/n^2 \right] \\ \end{aligned}$ 

#### Cross section calculation( $e^+e^- \rightarrow \tau \tau$ )



X. H. Mo, J. Y. Zhang, B.X. Zhang (IHEP)

#### Systematic Uncertainties Zhang Bingxin (IHEP)

| Ecm(GeV)                     | Uncertainty (%) |
|------------------------------|-----------------|
| Track efficiency             | 0.6             |
| Luminosity                   | 1.4             |
| $\psi(2S)$ total number      | 0.7             |
| <b>Branching fraction</b>    | 0.3             |
| PID                          | 1.0             |
| $\mu$ and $\pi$ difference   | 1.2             |
| M <sub>mis</sub> requirement | 0.8             |
| $\theta_{mis}$ requirement   | 0.1             |
| Ngamma requirement           | 1.7             |
| Background                   | 0.4             |
| Cross section calculation    | 0.4             |
| MC statistics                | 0.1             |
| Total                        | 3.1             |



#### (3.1 $\pm$ 0.4) X 10<sup>-3</sup> (PDG)



 $\triangleright$  B fraction of  $\tau + \tau$ - events yielding the eµ topology. 0.6190 (PDG)

 $\gg N_{e\mu}$ ,  $N_{bg}$ ,  $N_{\psi(2S)}$  Events number of eu, background and  $\psi(2S)$ 

 $\succ \sigma_{Q+I}$  *QED production* cross section 2.125nb

 $\succ$  L the accumulated luminosity  $\psi(2S)$ 

 $\succ \epsilon$  detection efficiency

This term is estimated by QED calculation BESIII: 550 M  $\psi$  (2S) BR ( $\psi$  (2S) ->  $\tau\tau$ ) ≈ (3.1 ± 0.03<sub>stat</sub>: ?) x 10<sup>-3</sup> [0.03/3.1 ≈ 1 %]



very good agreement!

#### **Branching fraction calculation**

| Nobs                                         | Nbkg  | Lum.<br>(pb <sup>-1</sup> ) | 8      | σ(nb) | Ν <sub>ψ΄</sub> (10 <sup>6</sup> ) | Br(10 <sup>-3</sup> ) |     |
|----------------------------------------------|-------|-----------------------------|--------|-------|------------------------------------|-----------------------|-----|
| 280412                                       | 11531 | 3171.64                     | 0.3085 | 2.125 | 2260                               | 3.236±0.0<br>±0.104   | 01) |
| This work $(3.236 \pm 0.104) \times 10^{-3}$ |       |                             |        |       |                                    |                       |     |

#### (3.1 $\pm$ 0.4) X 10<sup>-3</sup> (PDG)

#### Plans and Conclusions

- Two different approaches give in agreement results
- Review committee started on January 16
  - link of the memo

Three referees are : Zhiyong Wang, <wangzy@ihep.ac.cn>, IHEP (Chair) Tao Luo, <luot@fudan.edu.cn>, FDU Qian Liu, <liuqian@ucas.ac.cn>, UCAS

The Link of HyperNews forum : <u>http://hnbes3.ihep.ac.cn/HyperNews/get/paper686.html</u> The memo in docDB :

https://docbes3.ihep.ac.cn/DocDB/0011/001174/006/Brpsip2TTMeas-memo-v404.pdf
The talk in P&S meeting in Indico :
 https://indico.ihep.ac.cn/event/18523

## Thanks for your allention

## Background analysis (inclusive MC)

| No. | decay chain                                                                                                                                                         | final states                                                      | iTopology | nEvt  | nTot   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|-------|--------|
| 0   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_{\tau}, \tau^- \rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$                               | $e^+ \bar{\nu}_\mu \bar{\nu}_\tau \nu_e \mu^- \nu_\tau$           | 0         | 64245 | 64245  |
| 1   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$                                     | $\bar{\nu}_e \mu^+ \bar{\nu}_\tau e^- \nu_\mu \nu_\tau$           | 1         | 63262 | 127507 |
| 2   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow \pi^- \nu_\tau$                                                   | $e^+ \bar{\nu}_\tau \pi^- \nu_e \nu_\tau$                         | 2         | 5045  | 132552 |
| 3   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \pi^+ \bar{\nu}_{\tau}, \tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}$                                         | $\bar{\nu}_e \bar{\nu}_\tau e^- \nu_\tau \pi^+$                   | 4         | 4855  | 137407 |
| 4   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau \gamma_{FSR}$                        | $\bar{\nu}_e \mu^+ \bar{\nu}_\tau e^- \nu_\mu \nu_\tau$           | 5         | 4166  | 141573 |
| 5   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau \gamma_{FSR}$                        | $e^+ \bar{\nu}_\mu \bar{\nu}_\tau \nu_e \mu^- \nu_\tau$           | 3         | 4141  | 145714 |
| 6   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow \pi^- \bar{\nu}_\tau \gamma_{FSR}$                                | $e^+ \bar{\nu}_\tau \pi^- \nu_e \nu_\tau$                         | 10        | 382   | 146096 |
| 7   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_{\tau}, \tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau} \gamma_{FSR}$                      | $\bar{\nu}_e \bar{\nu}_\tau e^- \pi^0 \nu_\tau \pi^+$             | 18        | 325   | 146421 |
| 8   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow \nu_\tau \pi^- K^0, K^0 \rightarrow K_L$                          | $e^+ \bar{\nu}_\tau \pi^- \nu_e K_L \nu_\tau$                     | 14        | 191   | 146612 |
| 9   | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau \gamma_{FSR}, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau \gamma_{FSR}$           | $\bar{\nu}_e \mu^+ \bar{\nu}_\tau e^- \nu_\mu \nu_\tau$           | 12        | 163   | 146775 |
| 10  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau \gamma_{FSR} \gamma_{FSR}, \tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$           | $e^+ \bar{\nu}_\mu \bar{\nu}_\tau \nu_e \mu^- \nu_\tau$           | 11        | 153   | 146928 |
| 11  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$                                       | $e^{+}\bar{\nu}_{\tau}\pi^{-}\pi^{-}\nu_{e}\nu_{\tau}\pi^{+}$     | 13        | 141   | 147069 |
| 12  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \bar{\nu}_\tau \pi^+ K^0, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau, K^0 \rightarrow K_L$                    | $\bar{\nu}_e \bar{\nu}_\tau e^- K_L \nu_\tau \pi^+$               | 19        | 132   | 147201 |
| 13  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \pi^+ \pi^+ \pi^- \bar{\nu}_{\tau}, \tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}$                             | $\bar{\nu}_e \bar{\nu}_\tau \pi^- e^- \nu_\tau \pi^+ \pi^+$       | 22        | 124   | 147325 |
| 14  | $\psi' \rightarrow \tau^+ \tau^- \gamma_{FSR}, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$                        | $e^+ \bar{\nu}_\mu \bar{\nu}_\tau \nu_e \mu^- \nu_\tau$           | 17        | 52    | 147377 |
| 15  | $\psi' \rightarrow \tau^+ \tau^- \gamma_{FSR}, \tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$                        | $\bar{\nu}_e \mu^+ \bar{\nu}_\tau e^- \nu_\mu \nu_\tau$           | 24        | 52    | 147429 |
| 16  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$                                 | $\mu^+ \bar{\nu}_\mu \bar{\nu}_\tau \mu^- \nu_\mu \nu_\tau$       | 20        | 51    | 147480 |
| 17  | $\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow e^+ e^- \gamma_{FSR}$                                                                                     | $e^{+}\pi^{-}e^{-}\pi^{+}$                                        | 8         | 43    | 147523 |
| 18  | $\psi' \to \tau^+ \tau^-, \tau^+ \to \pi^+ \pi^0 \bar{\nu}_{\tau}, \tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}$                                                     | $\bar{\nu}_{\mu}\bar{\nu}_{\tau}\pi^{0}\mu^{-}\nu_{\tau}\pi^{+}$  | 40        | 34    | 147557 |
| 19  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow K^+ \bar{\nu}_{\tau}, \tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}$                                           | $\bar{\nu}_e \bar{\nu}_\tau e^- \nu_\tau K^+$                     | 9         | 31    | 147588 |
| 20  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow K^- \nu_\tau$                                                     | $e^+ \bar{\nu}_{\tau} K^- \nu_e \nu_{\tau}$                       | 63        | 24    | 147612 |
| 21  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \rightarrow \pi^- \nu_\tau$                                               | $\mu^+ \bar{\nu}_\tau \pi^- \nu_\mu \nu_\tau$                     | 16        | 22    | 147634 |
| 22  | $\psi' \to \tau^+ \tau^-, \tau^+ \to e^+ \nu_e \bar{\nu}_\tau \gamma_{FSR} \gamma_{FSR}, \tau^- \to \pi^- \nu_\tau$                                                 | $e^+ \bar{\nu}_\tau \pi^- \nu_e \nu_\tau$                         | 21        | 16    | 147650 |
| 23  | $\psi' \to \tau^+ \tau^-, \tau^+ \to \bar{\nu}_\tau \pi^+ K^0 \pi^0, \tau^- \to e^- \bar{\nu}_e \nu_\tau \gamma_{FSR}, K^0 \to K_L$                                 | $\bar{\nu}_e \bar{\nu}_\tau e^- \pi^0 K_L \nu_\tau \pi^+$         | 56        | 13    | 147663 |
| 24  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$                                         | $e^+ \overline{\nu}_e \overline{\nu}_\tau e^- \nu_e \nu_\tau$     | 41        | 11    | 147674 |
| 25  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \bar{\nu}_\tau \pi^+ \pi^- \pi^+ \pi^0, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau \gamma_{FSR}$              | $\bar{\nu}_e \bar{\nu}_\tau \pi^- e^- \pi^0 \nu_\tau \pi^+ \pi^+$ | 54        | 11    | 147685 |
| 26  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau \gamma_{FSR}, \tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$                          | $e^{+}\bar{\nu}_{\tau}\pi^{-}\pi^{-}\nu_{e}\nu_{\tau}\pi^{+}$     | 15        | 9     | 147694 |
| 27  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_{\tau}, \tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau} \gamma_{FSR} \gamma_{FSR}$         | $\bar{\nu}_e \bar{\nu}_\tau e^- \pi^0 \nu_\tau \pi^+$             | 64        | 9     | 147703 |
| 28  | $\psi' \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau \gamma_{FSR}, \tau^- \rightarrow \nu_\tau \pi^- \bar{K}^0, \bar{K}^0 \rightarrow K_L$ | $e^+ \bar{\nu}_\tau \pi^- \nu_e K_L \nu_\tau$                     | 55        | 7     | 147710 |
| 29  | $\psi' \rightarrow J/\psi \pi^+ \pi^-, J/\psi \rightarrow e^+ e^- \gamma_{FSR} \gamma_{FSR}$                                                                        | $e^{+}\pi^{-}e^{-}\pi^{+}$                                        | 42        | 7     | 147717 |

Mainly background come from  $e\pi(\pi^0)$  events with same intermediate states  $\tau\tau$  and few  $\pi\pi J/\psi$  (J/ $\psi$  to electron pairs ) events

# Check the difference between data and inclusive MC

RUN 25338

• Comparison between data and inclusive MC distributions



# Check the difference between data and inclusive MC

RUN 25338

• Comparison between data and inclusive MC distributions



## Signal MC: distributions III

MissingMass {emuDecay==1}



#### Cuts Optimization



## OLD Background studies

#### Several background taken into account:

| CUTS              | ψ(2S)→π+e-3v | ψ(2S)→π-e+3v | ψ(2S)→π+µ-3 <b>v</b>    | ψ(2S)→π-µ+3v | ψ(2S)→π-π+3v | SIGNAL<br>ψ(2S)→eµ4 <b>v</b> |
|-------------------|--------------|--------------|-------------------------|--------------|--------------|------------------------------|
| Tot number        | 40000        | 40000        | 40000                   | 40000        | 100000       | 240000                       |
| good trk = 2      | 32368        | 32531        | 32744 32750 82762 19599 |              | 32750 82762  |                              |
| EMCch > 25<br>MeV | 32336        | 32499        | 9 32703 32712 82647     |              | 195847       |                              |
| Ngamma = 0        | 23505        | 22618        | 25732                   | 24870        | 54505        | 167455                       |
| eµDecay           | 1005         | 943          | 1                       | 1            | 0            | 84176                        |
| μμDecay           | 1            | 0            | 1119                    | 1074         | 38           | 2                            |
| eeDecay           | 4            | 2            | 0                       | 0            | 0            | 16                           |

 $\psi(2S) \rightarrow \pi e_3 v$  non-negligile contribution

#### Additional cuts I

\*signal arbitrary scale



Full data-2012 and inclusive-2012 MC sample analyzed

- evident discrepancy between the two samples in the signal region
- the peak above 3 GeV (due to Psi2S decay to pipiJpsi) is removed after selecting events with charged tracks equal to 2

### Additional cuts II





- no cut in MissingEnergy
- MissingEnergy<2.65 GeV</li>
- pion contamination

### Additional cuts II



## Signal MC: distributions I

#### $\psi$ (2S) $\rightarrow \tau \tau \rightarrow e\mu 4\nu/\pi e 3\nu/\pi \mu 3\nu/\pi \pi 2\nu$ signal



#### Conclusion from this new event and track selection



## study of inclusive sample

(*a*) 3.650 GeV (L ~ 44.5 pb<sup>-1</sup>)

Continuum 2012 data



- Signal shape form inclusive MC (MCtruth)
- Background shape from inclusive MC (check MC truth info different from emu signal)
- Continuum from data, rescaled for the right luminosity factor

## Extraction of number of signal



Fit to Data

- Signal+background shape form inclusive MC •
  - background fraction ~ 10% from inclusive MC sample •
- Continuum from data, rescaled for the right luminosity factor (fixed) ٠
- $Nsig = 17237 \pm 195$  $\varepsilon = 0.30$

•

$$Br_{\tau\tau} = \frac{\frac{N^{obs} - N^{obs}_{cont} - N^{norm}_{bg}(Br_{\tau\tau})}{\varepsilon_{e\mu} \cdot Br(e\mu)} - \sigma^{\tau\tau}_{Int}(Br_{\tau\tau}) \cdot L_{3.686}}{N_{\psi(2S)}} = (2.72 \pm 0.05) \times 10^{-3}$$

## Additional tests



#### **2012 DATA SET**

- Check consistency of continuum
  - data set collected in 2009

<u>https://doi.org/10.1103/PhysRevD.74.112003</u>  $\sigma_{int} = -66.587*BR(\tau\tau) \text{ pb}^{-1}$ 



https://arxiv.org/pdf/hep-ex/0010072.pdf

by

$$B(\tau\tau) = \frac{\frac{N_{e\mu} - N_{bg}}{B\epsilon} - \sigma_{Q+I}L}{N_{\psi(2S)}}$$
This term is estimated by continuum data at energy point (3.65 GeV)

X. H. Mo, J. Y. Zhang, B.X. Zhang (IHEP)

- > B fraction of  $\tau$ + $\tau$  events yielding the eµ topology. 0.6190 (PDG)
- $\gg N_{e\mu}$ ,  $N_{bg}$ ,  $N_{\psi(2S)}$  Events number of eu, background and  $\psi(2S)$
- $\succ \epsilon$  detection efficiency
- $\succ \sigma_{Q+I}$  *QED production* cross section 2.230nb
- $\succ$ L the accumulated luminosity  $\psi$ (2S)

#### **Branching fraction calculation**

| ltem/<br>Year                         | Nobs  | Nbkg | Lum.   | æ      | Ν <sub>ψ΄</sub> (10 <sup>6</sup> ) | Br(10 <sup>-3</sup> ) |
|---------------------------------------|-------|------|--------|--------|------------------------------------|-----------------------|
| 2009                                  | 11535 | 835  | 161.63 | 0.2304 | 107.0                              | 3.63±0.006            |
| 2012                                  | 31006 | 2821 | 506.92 | 0.2433 | 341.1                              | 2.17±0.003            |
| Combine (2.40±0.006)X10 <sup>-3</sup> |       |      |        |        |                                    |                       |

#### $(3.1 \pm 0.4) \times 10^{-3}$ (PDG)