

OF TECHNOLOGY Nuclear Tapas: the shell model as a cornerstone of nuclear structure 27–28 Apr 2023, Centro Cultural La Corrala, Madrid

KTH ROYAL INSTITUTE

Anomalous collective mode from the finite-N triaxial rotor

--Some thing that one cannot do with the shell model yet

An early story that may have not yet ended

- SM can reproduce the rotational spectra of Cr isotopes perfectly
- But there seems some mismatch in the B(E2) patterns
- Is that something that we should worry about or worth looking into?
- If so, is there any physics one can learn from it

 $^{48}\mathrm{Cr}$ level scheme; experiment vs. theory

A. Poves and F. Nowacki: LNP 581, pp. 70–101, 2001.

An early story that may have not yet ended

- SM can reproduce the rotational spectra of Cr isotopes perfectly
- But there seems some mismatch in the B(E2) patterns
- Is that something that we should worry about or worth looking into?
- If so, is there any physics one can learn from it

 48 Cr level scheme; experiment vs. theory

A. Poves and F. Nowacki: LNP 581, pp. 70–101, 2001.

PHYSICAL REVIEW C 70, 047302 (2004)

Highly anomalous yrast B(E2) values and vibrational collectivity

R. B. Cakirli,^{1,2,3} R. F. Casten,^{1,3} J. Jolie,³ and N. Warr³

¹Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520-8124, USA ²Istanbul University, Department of Physics, Turkey ³Institut für Kernphysik, Universität zu Köln, Köln, Germany (Received 24 June 2004; published 29 October 2004)

It is shown that the existing yrast B(E2) values [especially the $B(E2;4_1^+ \rightarrow 2_1^+)/B(E2;2_1^+ \rightarrow 0_1^+)$ ratio] in ⁹⁸Ru are highly anomalous and cannot be plausibly interpreted with existing models. A survey of all even-even nuclei from $40 \le Z \le 80$ shows that this phenomenon is rare in collective nuclei. It occurs to a much lesser extent in ¹¹⁴Te, ¹¹⁴Xe, and possibly a few other nuclides. The combination of vibrational-like energies and nonvibrational B(E2) values perhaps points to a different kind of vibrational behavior.

B_{4/2} systematics

No theoretical models including SM and GCM can reproduce those anomalous $B_{4/2}$ patterns in open shell nuclei

⁹⁸Ru, ¹⁸⁰Pt seem to be ruled out

https://www.nndc.bnl.gov/nudat3/ + some recent papers

Outline

- Introduction
- Collective modes in the algebraic model
- Algebraic realization of the finite-N, triaxial rotor mode within the interacting boson model
- Application in N=90-100 nuclei
- Summary and future works

Collective modes in the algebraic model

$$B_{4/2} \equiv B(E2; 4_1^+ \to 2_1^+) / B(E2; 2_1^+ \to 0_1^+)$$

 $R_{4/2} \equiv E(4_1^+)/E(2_1^+)$

Collective modes in the algebraic model

FIG. 1: Contour plots generated from the potential function (6) with the nonzero parameters taken as $\varepsilon = 1.0$ for U(5), $\kappa = -1.0$ for O(6), $(\kappa = -1.0, \chi = -\sqrt{7}/2)$ for SU(3)_P and $(\kappa = -1.0, \chi = \sqrt{7}/2)$ for SU(3)_O.

• **PES in the classical limit** $V(\beta, \gamma) = \frac{1}{N} \langle \beta, \gamma, N | \hat{H}_{CQ} | \beta, \gamma, N \rangle |_{N \to \infty}$ $= \varepsilon \frac{\beta^2}{(1+\beta^2)} + \delta \frac{6\beta^2}{(1+\beta^2)}$ $+ \kappa \frac{4\beta^2}{(1+\beta^2)^2} \left[1 - \sqrt{\frac{2}{7}} \chi \beta \cos(3\gamma) + \frac{1}{14} \chi^2 \beta^2 \right]$ The consistent-Q Hamiltonian

D. D. Warner and R. F. Casten, Phys. Rev. C 28, 1798 (1983).

$$\hat{H}_{\rm CQ} = \varepsilon \, \hat{n}_d + \kappa \frac{1}{N} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}$$

 $\hat{n}_d = d^{\dagger} \cdot \tilde{d}$ and $\hat{Q}_u^{\chi} = (d^{\dagger}s + s^{\dagger}\tilde{d})_u^{(2)} + \chi (d^{\dagger} \times \tilde{d})_u^{(2)}$

- ϵ/κ , χ determine the deformation
- $d^{\dagger} \cdot \tilde{d}$ generators for U(5), n_d number conserved
- N total boson number
- The Hamiltonian spans the (β,γ) space and incorporate following dynamic symmetries:

U(5) when $\varepsilon > 0$ and $\kappa = 0$;

O(6) when $\varepsilon = 0$, $\kappa < 0$ and $\chi = 0$;

SU(3) when $\varepsilon = 0$, $\kappa < 0$ and $\chi = \pm \sqrt{7}/2$.

No triaxial minimum or rotor mode

Collective modes in the algebraic model

FIG. 1: Contour plots generated from the potential function (6) with the nonzero parameters taken as $\varepsilon = 1.0$ for U(5), $\kappa = -1.0$ for O(6), $(\kappa = -1.0, \chi = -\sqrt{7}/2)$ for SU(3)_P and $(\kappa = -1.0, \chi = \sqrt{7}/2)$ for SU(3)_O.

• **PES in the classical limit** $V(\beta, \gamma) = \frac{1}{N} \langle \beta, \gamma, N | \hat{H}_{CQ} | \beta, \gamma, N \rangle |_{N \to \infty}$ $= \varepsilon \frac{\beta^2}{(1+\beta^2)} + \delta \frac{6\beta^2}{(1+\beta^2)}$ $+ \kappa \frac{4\beta^2}{(1+\beta^2)^2} \left[1 - \sqrt{\frac{2}{7}} \chi \beta \cos(3\gamma) + \frac{1}{14} \chi^2 \beta^2 \right]$ The consistent-Q Hamiltonian

D. D. Warner and R. F. Casten, Phys. Rev. C 28, 1798 (1983).

$$\hat{H}_{\rm CQ} = \varepsilon \, \hat{n}_d + \kappa \frac{1}{N} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}$$

 $\hat{n}_d = d^{\dagger} \cdot \tilde{d}$ and $\hat{Q}_u^{\chi} = (d^{\dagger}s + s^{\dagger}\tilde{d})_u^{(2)} + \chi (d^{\dagger} \times \tilde{d})_u^{(2)}$

- ϵ/κ , χ determine the deformation
- $d^{\dagger} \cdot \tilde{d}$ generators for U(5), n_d number conserved
- N total boson number
- The Hamiltonian spans the (β,γ) space and incorporate following dynamic symmetries:

U(5) when $\varepsilon > 0$ and $\kappa = 0$;

O(6) when $\varepsilon = 0$, $\kappa < 0$ and $\chi = 0$;

SU(3) when $\varepsilon = 0$, $\kappa < 0$ and $\chi = \pm \sqrt{7}/2$.

No triaxial minimum or rotor mode

Ground state triaxial deformation

P. Möller, et al., At. Data Nucl. Data Tables 94 (2008) 758

PES from deformed Woods-Saxon for ¹⁷²Pt

Triaxiality in CQ Hamiltonian with higher order terms

FIG. 12: (Color online) Potential energy surfaces for the CCQH for $\chi = -\sqrt{7}/2$ and $\xi = 0.5$, with different values of k_3 indicated in the figure. The observed minima range from an axially deformed prolate minimum for $k_3 = 0.0$ and $k_3 = 1.5$ to an oblate one for $k_3 = 2.0$ and $k_3 = 3.0$, passing through the triaxial region. The triaxial minimum when $k_3 = 1.77$ is not apparent from this figure, because it is very shallow (see next figure).

The SU(3) theory for the rotor mode

In body-fixed principle axis system

 $H_{\text{rot}} = A_1 L_1^2 + A_2 L_2^2 + A_3 L_3^2$ (1) Geometric $H_{\text{rot}} = a L^2 + b X_3^c + c X_4^c$, (2) Algebraic

$$\gamma_{s} = \tan^{-1}\left(\frac{\sqrt{3}(\mu+1)}{2\lambda+\mu+3}\right)$$
$$k_{0}\beta_{s} = k\sqrt{\lambda^{2}+\mu^{2}+\lambda\mu+3\lambda+3\mu+3}$$

 $\sqrt{2}(..... | 1)$

$$X_{3}^{c} = \sum_{\alpha\beta} L_{\alpha} Q_{\alpha\beta}^{c} L_{\beta} = \lambda_{1} L_{1}^{2} + \lambda_{2} L_{2}^{2} + \lambda_{3} L_{3}^{2},$$
$$X_{4}^{c} = \sum_{\alpha\beta\gamma} L_{\alpha} Q_{\alpha\beta}^{c} Q_{\beta\gamma}^{c} L_{\gamma} = \lambda_{1}^{2} L_{1}^{2} + \lambda_{2}^{2} L_{2}^{2} + \lambda_{3}^{2} L_{3}^{2},$$

$$\langle \hat{Q} \rangle \propto \sqrt{\langle \hat{C}_2 \rangle} = \sqrt{\lambda^2 + \mu^2 + \lambda \mu + 3\lambda + 3\mu}$$

Y. Leschber and J. P. Draayer, Phys. Lett. B 190, 1 (1987).
O. Castaños, J. P. Draayer, and Y. Leschber, Z. Phys. A 329, 33 (1988).

A triaxial rotor Hamiltonian

$$\hat{H}_{SU(3)} = a\hat{C}_{2} + b\hat{C}_{2}^{2} + c\hat{C}_{3} + dX_{3} + eX_{4} + f\hat{L}^{2} + g\hat{L}^{4} + h\hat{C}_{2}\hat{L}^{2}$$

$$\hat{H}_{Tri} = \hat{H}_{S} + \hat{H}_{D}$$

$$\hat{C}_{2}[SU(3)] = 2\hat{Q} \cdot \hat{Q} + \frac{3}{4}\hat{L}^{2},$$

$$\hat{C}_{3}[SU(3)] = -\frac{4\sqrt{35}}{9}(\hat{Q} \times \hat{Q} \times \hat{Q})_{0}^{(0)} - \frac{\sqrt{15}}{2}(\hat{L} \times \hat{Q} \times \hat{L})_{0}^{(0)}$$

$$\begin{split} \hat{H}_{\rm S} &= \frac{a_1}{N} \hat{C}_2[{\rm SU}(3)] + \frac{a_2}{N^3} \hat{C}_2[{\rm SU}(3)]^2 + \frac{a_3}{N^2} \hat{C}_3[{\rm SU}(3)], \\ \hat{H}_{\rm D} &= t_1 \hat{L}^2 + t_2 (\hat{L} \times \hat{Q} \times \hat{L})^{(0)} + t_3 (\hat{L} \times \hat{Q})^{(1)} \cdot (\hat{L} \times \hat{Q})^{(1)} \end{split}$$

$$\begin{aligned} X_3^b &= \sum_{\alpha\beta} L_{\alpha}^b Q_{\alpha\beta}^b L_{\beta}^b = \frac{\sqrt{30}}{6} (L^b \times Q^b \times L^b)^{(0)} \\ X_4^b &= \sum_{\alpha\beta\gamma} L_{\alpha} Q_{\alpha\beta}^c Q_{\beta\gamma}^c L_{\gamma} \\ &= \frac{-5\sqrt{3}}{18} [(L^b \times Q^b)^{(1)} \times (L^b \times Q^b)^{(1)}]^{(0)}, \end{aligned}$$

$$\begin{split} & \langle \hat{C}_2[\mathrm{SU}(3)] \rangle = \lambda^2 + \mu^2 + 3\lambda + 3\mu + \lambda\mu, \\ & \langle \hat{C}_3[\mathrm{SU}(3)] \rangle = \frac{1}{9}(\lambda - \mu)(2\lambda + \mu + 3)(\lambda + 2\mu + 3). \end{split}$$

$$\gamma_{\rm S} = \tan^{-1}(\frac{\sqrt{3}(\mu+1)}{2\lambda+\mu+3})$$

$$k_0 \beta_{\rm S} = \sqrt{\lambda^2 + \mu^2 + \lambda \mu + 3\lambda + 3\mu + 3},$$

Y. F. Smirnov, N. A. Smirnova, and P. Van Isacker, Phys. Rev. Y. Zhang, F. Pan, L. R. Dai, and J. P. Draayer, Phys. Rev. C 90, 044310 (2014).

 $\hat{H}_{\rm S} = \frac{a_1}{N} \hat{C}_2[{\rm SU}(3)] + \frac{a_2}{N^3} \hat{C}_2[{\rm SU}(3)]^2 + \frac{a_3}{N^2} \hat{C}_3[{\rm SU}(3)]$

(6)

FIG. 4: Contour plots generated from (14) with $a_1 : a_2 : a_3 = (A) - \frac{27+10N}{3N} : 1 : 1;$ (B) -7.5 : 1 : 5; (C) $-\frac{24+8N}{3N} : 1 : 0;$ (D) $-\frac{2N+3}{3N} : 0 : 1.$

A consistent Q Hamiltonian with triaxiality

$$\hat{H} = \hat{H}_{\rm CQ} + \hat{H}_{\rm Tri}$$

 $\hat{H}_{\rm CQ} = \epsilon \hat{n}_d + \kappa \frac{1}{N} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}$

 $\hat{H}_{\text{Tri}} = \hat{H}_{\text{S}} + \hat{H}_{\text{D}}$

$$\begin{split} \hat{H}_{\rm S} &= \frac{a_1}{N} \hat{C}_2[{\rm SU}(3)] + \frac{a_2}{N^3} \hat{C}_2[{\rm SU}(3)]^2 + \frac{a_3}{N^2} \hat{C}_3[{\rm SU}(3)], \\ \hat{H}_{\rm D} &= t_1 \hat{L}^2 + t_2 (\hat{L} \times \hat{Q} \times \hat{L})^{(0)} + t_3 (\hat{L} \times \hat{Q})^{(1)} \cdot (\hat{L} \times \hat{Q})^{(1)} \end{split}$$

$$\hat{C}_{2}[SU(3)] = 2\hat{Q} \cdot \hat{Q} + \frac{3}{4}\hat{L}^{2},$$
$$\hat{C}_{3}[SU(3)] = -\frac{4\sqrt{35}}{9}(\hat{Q} \times \hat{Q} \times \hat{Q})_{0}^{(0)} - \frac{\sqrt{15}}{2}(\hat{L} \times \hat{Q} \times \hat{L})_{0}^{(0)}.$$

Included: Spherical vibrator, Prolate rotor, Oblate rotor, Gamma-soft rotor, Triaxial rotor

A 8-boson system with 4 (6) proton holes and 12 (10) neutrons

$$\begin{array}{rl} (\lambda,\mu) &=& (16,0), (12,2), (8,4), (4,6), (0,8) \\ && (10,0), (6,2), (2,4), (4,0), (0,2) \end{array}$$

https://www.nndc.bnl.gov/nudat3/

Neutron-deficient nuclei around N=90-100

PHYSICAL REVIEW LETTERS 121, 022502 (2018)

Lifetime Measurements of Excited States in ¹⁷²Pt and the Variation of Quadrupole **Transition Strength with Angular Momentum**

B. Cederwall,^{1,*} M. Doncel,² Ö. Aktas,¹ A. Ertoprak,^{1,3} R. Liotta,¹ C. Qi,¹ T. Grahn,⁴ D. M Cullen,⁵ D. Hodge,⁵ M. Giles,⁵ S. Stolze,⁴ H. Badran,⁴ T. Braunroth,⁶ T. Calverley,⁴ D. M. Cox,^{4,†} Y. D. Fang,⁷

P. T. Greenlees,⁴ J. Hilton,⁴ E. Ideguchi,⁷ R. Julin,⁴ S. Juutinen,⁴ M. Kumar Raju,⁷ H. Li,⁸ H. Liu,¹ S. Matta,¹ V. Modamio,⁹ J. Pakarinen,⁴ P. Papadakis,^{4,‡} J. Partanen,⁴ C. M. Petrache,¹⁰ P. Rahkila,⁴ P. Ruotsalainen,⁴ M. Sandzelius,⁴ J. Sarén,⁴ C. Scholey,⁴ J. Sorri,^{4,12,§} P. Subramaniam,¹ M. J. Taylor,¹¹

J. Uusitalo,⁴ and J. J. Valiente-Dobón¹²

TABLE I. Energies of the $2^+_1 \rightarrow 0^+_{gs}$ and $4^+_1 \rightarrow 2^+_1$ transitions (E_{γ}) , deduced lifetime values (τ) for the 2^{+}_{1} and 4^{+}_{1} states, and corresponding reduced transition probabilities $[B(E2\downarrow)_{exp}]$ in Weisskopf units (W.u.).

Transition	E_{γ} (keV)	τ (ps)	$B(E2\downarrow)_{exp}$ (W.u.)
$\overline{2^+_1 \rightarrow 0^+_{gs}}$	458	15(3)	49(11)
$4^+_1 \rightarrow 2^+_1$	612	6.2(17)	27(7)

 $R_{4/2}=2.34$ $B_{4/2}=0.55(19)$

- Several ee nuclei in that region including ¹⁶⁶W, ^{168,170}Os and ¹⁷²Pt and a few of their odd-A neighbors show strongly suppressed $B_{4/2}$
- 172Pt is "not" far from the Z=82 shell closure
- LSSM in $\pi gd_{5/2}d_{3/2}sh$ -vhfpi space with a large variety of effective interactions cannot reproduce B_{4/2} and B(E2) simultaneously

FIG. 7. (Color online) The PN-VAP potential energy surface for 170 Os (top left panel) and collective wave functions for the ground state (top right) as well as the yrast 2^+ (bottom left) and 4^+ (bottom

A. Goasduff, J. Ljungvall, T.R. Rodríguez, F.L. Bello Garrote, A. Etile, et al.. B(E2) anomalies in the yrast band of ¹⁷⁰Os. Phys.Rev.C, 2019, 100 (3), pp.034302. 10.1103/PhysRevC.100.034302.

A consistent Q Hamiltonian with triaxiality

 $\hat{H} = \hat{H}_{CQ} + \hat{H}_{Tri}$ $\hat{H}_{CQ} = \varepsilon \hat{n}_d + \kappa \frac{1}{N} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}$ $\hat{H}_{Tri} = \hat{H}_S + \hat{H}_D$

Including: Spherical vibrator, Prolate rotor, Oblate rotor, Gamma-soft rotor, Triaxial rotor

172Pt and 168Os

A 8-boson system with 4 (6) proton holes and 12 (10) neutrons

 $\begin{array}{rl} (\lambda,\mu) &=& (16,0), (12,2), (8,4), (4,6), (0,8) \\ && (10,0), (6,2), (2,4), (4,0), (0,2) \end{array}$

A surprising mode emerging from the SU(3) theory already at step one!!

 $\gamma_{s} = \tan^{-1}(\frac{\sqrt{3}(\mu+1)}{2\lambda+\mu+3})$

(in practice the last step)

 $t_1 = 3, t_2 = 0.553283, t_3 = -0.0226757$ $A_1 : A_2 : A_3 = 3 : 1 : 4$ $t_1 = 3, t_2 = 0.133551, t_3 = -0.00132118, t_2 = 0.133551, t_3 = -0.00132118, t_4 = -0.00132118, t_5 = -0.00132118, t_6 = -0.00132118, t_7 = -0.00132118, t_8 = -0.0013218, t_8 = -0.0013218, t_8 = -0.0014, t_8 = -0.0014, t_8 = -0.0014, t_8 =$

$$\hat{T}_{u}^{(E2)}(\text{Rotor}) = q\beta \left[\cos\gamma D_{u,0}^{(2)} + \frac{1}{\sqrt{2}} \sin\gamma \left(D_{u,2}^{(2)} + D_{u,-2}^{(2)} \right) \right]$$

Assumption: $\gamma = \gamma_s$

A consistent Q Hamiltonian with triaxiality

 $\hat{H} = \hat{H}_{CQ} + \hat{H}_{Tri}$ $\hat{H}_{CQ} = \varepsilon \hat{n}_d + \kappa \frac{1}{N} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}$ $\hat{H}_{Tri} = \hat{H}_{S} + \hat{H}_{D}$

Including: Spherical vibrator, Prolate rotor, Oblate rotor, Gamma-soft rotor, Triaxial rotor

172Pt and 168Os

A 8-boson system with 4 (6) proton holes and 12 (10) neutrons

E(MeV)	¹⁷² Pt	IBM _a	IBM _b	¹⁶⁸ Os	IBM _a	IBM_b
$E(2_{1}^{+})$	0.458	0.458	0.458	0.341	0.341	0.341
$E(4_{1}^{+})$	1.070	1.107	1.070	0.857	0.872	0.857
$E(6_{1}^{+})$	1.753	1.900	1.742	1.499	1.527	1.504
$E(8_{1}^{+})$	2.405	2.594	2.279	2.222	2.152	2.116
$E(2_{2}^{+})$	-	0.749	0.916	-	0.525	0.686
$E(0_{2}^{+})$	-	0.422	0.913	-	0.287	0.568
Transition	¹⁷² Pt	IBM _a	IBM_b	¹⁶⁸ Os	IBM _a	IBM _b
$2^+_1 \to 0^+_1$	1.0	1.0	1.0	1.0	1.0	1.0
$4^+_1 \mathop{\rightarrow} 2^+_1$	0.55(19)	0.677	0.552	0.34(18)	0.656	0.351
$6^+_1 \mathop{\rightarrow} 4^+_1$	-	0.174	0.131	-	0.111	0.121
$2^+_2 ightarrow 0^+_1$	-	0.005	0.201	-	0.001	0.353
$0^+_2 ightarrow 2^+_1$	-	0.331	0.007	-	0.237	0.004

 $\begin{aligned} (\lambda,\mu) \;\; = \;\; (16,0), (12,2), (8,4), (4,6), (0,8) \\ (10,0), (6,2), (2,4), (4,0), (0,2) \end{aligned}$

Band mixing within the SU(3) irrep (6,6)

LL+LQL

All together

Finite *N* **Effect**

of *N*. All the results are solved from \hat{H}_{Tri} with the parameters $a_1 : a_2 : a_3 = -\frac{27+10N}{3N} : 1 : 1$ generating $(\lambda_0, \mu_0) = (2N/3, 2N/3)$ and $t_i = g_i(\lambda_0, \mu_0, A_1, A_2, A_3)$. The dashed lines denote those solved directly from the triaxial rotor Hamiltonian (12).

$\begin{aligned} \hat{H}_{\text{Tri}} &= \hat{H}_{\text{S}} + \hat{H}_{\text{D}} \\ (\lambda, \mu) &= (2N, 0), (2N - 4, 2), ..., (0, N) \text{ or } (2, N - 1) \\ (2N - 6, 0), (2N - 10, 2), ... \end{aligned}$

B_{4/2} in rotor mode

$$\frac{B(E2:4_1^+\to 2_1^+)}{B(E2:2_1^+\to 0_1^+)} = \frac{10}{7} \left[\frac{(2N-2)(2N+5)}{(2N)(2N+3)} \right]$$

R.F. Casten, Nuclear Structure from a Simple Perspective, Oxford (1990)

⁴⁸Cr, ¹¹⁴Te

- A collective mode with B4/2<1.0 and R42>2.0 can naturally appear in the SU(3) theory for the triaxial rotor.
- > It is dominated by some triaxial irreps (λ,μ) as well mixture from other configurations.
- It can provide a simple description of the anomalous B(E2) neutrondeficient nuclei
- Systematical calculations on the triaxial and γ-soft nuclei; Generalization to IBM2; Mapping to shell model-like Hamiltonian?