Nuclear Tapas: the landscape of medium mass nuclei

Frédéric Nowacki, Alfredo Poves ${ }^{1}$

Nuclear Tapas: the shell model as a cornerstone of nuclear structure

April 27-28 2023
Centro Cultural "La Corrala", Madrid (Spain)

Unvengrit ot triaszounc

Landscape of medium mass nuclei

Number of authors	
Single author	6
- 10 authors or less	101
Exclude RPP	
Exclude Review of Particle Physics	192
Document Type	
\square article	161
published ()	156
conference paper	30
review	5
book chapter	1
Collahmeriors	
Frederic Nowacki	80
Silvia M. Lenzi	35
Gabriel Martínez-Pinedo	26
Daniel Ricardo Napoli	21
C.A. Ur	18
G. de Angelis	18

Landscape of medium mass nuclei

Landscape of medium mass nuclei

UNDERSTANDING REGULARITIES

for both SPHERICAL and DEFORMED systems

- Magic Numbers: ${ }^{24} \mathrm{O},{ }^{48} \mathrm{Ni},{ }^{54} \mathrm{Ca},{ }^{78} \mathrm{Ni},{ }^{100} \mathrm{Sn}$
- Islands of Deformation: ${ }^{12} \mathrm{Be},{ }^{32} \mathrm{Mg},{ }^{42} \mathrm{Si},{ }^{64} \mathrm{Cr},{ }^{80} \mathrm{Zr}$...
- Variety of phenomena dictated by shell structure
- Close connection between collective behaviour and underlying shell structure
-

$$
\mathcal{H}=\mathcal{H}_{m}+\mathcal{H}_{\mathcal{M}}
$$

Interplay between

- Monopole field (spherical mean field)
- Multipole correlations (pairing, Q.Q, ...)

The nuclear interaction: the complex view

E. Epelbaum, physics

The nuclear interaction: the simple view

Separation of the effective Hamiltonian

Multipole expansion:

$$
H=H_{\text {monopole }}+H_{\text {multipole }}
$$

- Spherical mean-field

$H_{\text {monopole }}$: • Evolution of the spherical single particle levels

A. Poves and A. Zuker (Phys. Report 70, 235 (1981))

- Correlations
- Energy gains
pairing, quadrupole

M. Dufour and A. Zuker (PRC 541996 1641)

$$
V=\sum_{J T} V_{i j k l}^{J T}\left[\left(a_{i}^{+} a_{j}^{+}\right)^{J T}\left(\tilde{a_{k}} \tilde{a}_{l}\right)^{J T}\right]^{00}
$$

In order to express the number of particles operators $n_{i}=a_{i}^{+} a_{i} \propto\left(a_{i}^{+} \tilde{a}_{i}\right)^{0}$,
particle-hole recoupling :

$$
\begin{gathered}
V=\sum_{\lambda \tau} W_{i k j l}^{\lambda \tau}\left[\left(a_{i}^{+} \tilde{a}_{k}\right)^{\lambda \tau}\left(a_{j}^{+} \tilde{a}_{l}\right)^{\lambda \tau}\right]^{00} \\
W_{i k j l}^{\lambda \tau} \propto \sum_{J T} V_{i j k l}^{J T}\left\{\begin{array}{ccc}
i & k & \lambda \\
j & l & \lambda \\
J & J & 0
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \tau \\
\frac{1}{2} & \frac{1}{2} & \tau \\
T & T & 0
\end{array}\right\}
\end{gathered}
$$

\mathcal{H}_{m} corresponds only to the terms $\lambda \tau=00$ and 01 which implies that $i=j$ and $k=I$ and writes as

$$
\mathcal{H}_{m}=\sum_{i} n_{i} \epsilon_{i}+\sum_{i \leq j} n_{i} . n_{j} V_{i j}
$$

$$
V=\sum_{J T} V_{i j k l}^{J T}\left[\left(a_{i}^{+} a_{j}^{+}\right)^{J T}\left(\tilde{a_{k}} \tilde{a}_{l}\right)^{J T}\right]^{00}
$$

In order to express the number of particles operators $n_{i}=a_{i}^{+} a_{i} \propto\left(a_{i}^{+} \tilde{a}_{i}\right)^{0}$,
\longrightarrow particle-hole recoupling :

$$
\begin{gathered}
V=\sum_{\lambda \tau} W_{i k j l}^{\lambda \tau}\left[\left(a_{i}^{+} \tilde{a}_{k}\right)^{\lambda \tau}\left(a_{j}^{+} \tilde{a}_{l}\right)^{\lambda \tau}\right]^{00} \\
W_{i k j l}^{\lambda \tau} \propto \sum_{J T} V_{i j k l}^{J T}\left\{\begin{array}{ccc}
i & k & \lambda \\
j & l & \lambda \\
J & J & 0
\end{array}\right\}\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \tau \\
\frac{1}{2} & \frac{1}{2} & \tau \\
T & T & 0
\end{array}\right\}
\end{gathered}
$$

\mathcal{H}_{m} corresponds only to the terms $\lambda \tau=00$ and 01 which implies that $i=j$ and $k=1$ and writes as

$$
\mathcal{H}_{m}=\sum_{i} n_{i} \epsilon_{i}+\sum_{i \leq j} n_{i} . n_{j} V_{i j}
$$

$$
\mathcal{H}_{M}=\mathcal{H}-\mathcal{H}_{m}
$$

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$				$\operatorname{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11	
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00	
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99	
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83	
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43	
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49	

$H_{\text {multipole }}$ and pe When cohere

- $L=$
- Ell
- $\vec{\sigma} \bar{\tau}$
- Oc

Besid

superfluid nucleus:

- Pairing regime: spherical nuclei Underlying SU2 symmetry ground state = pairs of like-particles coupled at $\mathrm{J}=0$ (seniority $\mathrm{v}=0$) 2^{+}state (break of pair; $v=2$) at high energy
 similar

Typical example: Tin isotopes

- Quadrupole regime: deformed nuclei Underlying SU3 symmetry

KB
US[CCE $\mathrm{NN}+$
NN-
prolate nucleus:

Typical example: open shell $\mathbf{N}=\mathbf{Z}$ nuclei
$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$						
	10	01	21	20	40	10	11
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$			$\operatorname{ph}(\lambda \tau)$				
	10	01	21	20	40	10	11	
KB	-5.83	-4.96	3.21	-3.53	-1.38	+1.61	+3.00	
USD-A	-5.62	-5.50	3.17	-3.24	-1.60	+1.56	+2.99	
CCEI	-6.79	-4.68	2.93	-3.40	-1.39	+1.21	+2.83	
NN+NNN-MBPT	-6.40	-4.36	2.91	-3.28	-1.23	+1.10	+2.43	
NN-MBPT	-6.06	-4.38	2.92	-3.35	-1.31	+1.03	+2.49	

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$				$\mathrm{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11	
KB	-5.83	-4.96	-3.2	-3.53	-1.38	+1.61	+3.00	
USD-A	-5.62	-5.50	-3.1	-3.24	-1.60	+1.56	+2.99	
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83	
NN+NNN-MBPT	-6.40	-4.36	-2.9	-3.28	-1.23	+1.10	+2.43	
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49	

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

F. N., A. Obertelli, A. Poves (PPNP 120 (2021) 103866)

Landscape of medium mass nuclei

Theoretical study of the very neutron-rich nuclei around $N=20$

A. Poves, J. Retamosa

Departamento de Física Teórica C-XI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Received 5 April 1991
(Revised 13 October 1993)
A. Poves, J. Retamosa / Very neutron-rich nuclei

Theoretical study of the very neutron-rich nuclei around $N=20$

A. Poves, J. Retamosa

Departamento de Física Teórica C-XI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Received 5 April 1991
(Revised 13 October 1993)
A. Poves, J. Retamosa / Very neutron-rich nuclei

Pioneer work at $\mathbf{N}=\mathbf{2 0}$

In the valence space of two major shells

EFFECTIVE INTERACTION: SDPF-U-MIX (update 2020)

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}-0 p_{\frac{1}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

Further away from Stability

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Shell Evolution favors natural geometry for low-lying M1 excitations

$$
\begin{aligned}
& \nu 1 s_{\frac{1}{2}} \\
& \nu 0 d_{\frac{3}{2}}
\end{aligned} \otimes \begin{aligned}
& \nu 1 p_{\frac{3}{2}} \\
& \nu 1 p_{\frac{1}{2}}
\end{aligned}
$$

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

Spherical, Deformed and Superdeformed states in ${ }^{32} \mathrm{Mg}$

Inverse shape coexistence Shell closure in ${ }^{32} \mathrm{Mg}$

Silicium and Magnesium chains

Landscape of medium mass nuclei

Island of inversion at N=40, an old story: 1996
The Physics around the doubly-magic ${ }^{78} \mathrm{Ni}$ Nucleus
Leaven, Be^{\prime} sum
November 4 5, 1996
A. Pones
${ }^{64} C_{r}$

$$
\begin{array}{cc}
& g(0 p h-2 p h)=5.70 \\
& g(0 p h-y p h)=8.30 \\
Q=-9.0 b^{2} & c S<1 \% \\
B E 2=19.8 b^{4} & u(d 5 / 2)=1.1 \\
\frac{E\left(y^{+}\right)}{E\left(z^{+}\right)}=2.7 & {\left[\frac{E\left(y^{+}\right)}{E\left(z^{+}\right)}=(3.2)(3.4)\right]}
\end{array}
$$

in the intinder configurations.
a stivation that reminds what IS KNOWN AT $N=20$ IFS.

PHYSICAL REVIEW C 81, 051304(R) (2010)
Collectivity at $N=40$ in neutron-rich ${ }^{64} \mathrm{Cr}$
A. Gade, ${ }^{1,2}$ R. V. F. Janssens, ${ }^{3}$ T. Baugher, ${ }^{1,2}$ D. Bazin, ${ }^{1}$ B. A. Brown, ${ }^{1,2}$ M. P. Carpenter, ${ }^{3}$ C. J. Chiara, ${ }^{3,4}$ A. N. Deacon, ${ }^{5}$ S. J. Freeman, ${ }^{5}$ G. F. Grinyer, ${ }^{1}$ C. R. Hoffman, ${ }^{3}$ B. P. Kay, ${ }^{3}$ F. G. Kondev, ${ }^{6}$ T. Lauritsen, ${ }^{3}$ S. McDaniel, ${ }^{1,2}$ K. Meierbachtol, ${ }^{1,7}$ A. Ratkiewicz, ${ }^{1,2}$ S. R. Stroberg,,1,2 K. A. Walsh, ${ }^{1,2}$ D. Weisshaar, ${ }^{1}$ R. Winkler, ${ }^{1}$ and S. Zhu ${ }^{3}$
${ }^{1}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

PHYSICAL REVIEW C 81, 061301(R) (2010)

Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?
J. Ljungvall, ${ }^{1,2,3}$ A. Görgen, ${ }^{1}$ A. Obertelli, ${ }^{1}$ W. Korten, ${ }^{1}$ E. Clément, ${ }^{2}$ G. de France, ${ }^{2}$ A. Bürger, ${ }^{4}$ J.-P. Delaroche, ${ }^{5}$ A. Dewald, ${ }^{6}$
A. Gadea, ${ }^{7}$ L. Gaudefroy, ${ }^{5}$ M. Girod, ${ }^{5}$ M. Hackstein, ${ }^{6}$ J. Libert, ${ }^{8}$ D. Mengoni, ${ }^{9}$ F. Nowacki, ${ }^{10}$ T. Pissulla, ${ }^{6}$ A. Poves, ${ }^{11}$
F. Recchia, ${ }^{12}$ M. Rejmund, ${ }^{2}$ W. Rother, ${ }^{6}$ E. Sahin, ${ }^{12}$ C. Schmitt, ${ }^{2}$ A. Shrivastava, ${ }^{2}$ K. Sieja, ${ }^{10}$ J. J. Valiente-Dobón, ${ }^{12}$ K. O. Zell, ${ }^{6}$ and M. Zielińska ${ }^{13}$
${ }^{1}$ CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
${ }^{2}$ GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France

Island of inversion around ${ }^{64} \mathrm{Cr}$

S．Lenzi，F．Nowacki，A．Poves and K．Sieja
Phys．Rev．C82，054301， 2010

－－－$-\mathrm{d} 5 / 2$
ーモー $99 / 2$

48

Ca

LNPS interaction：

－based on realistic TBME
－new fit of the pf shell（KB3GR，E．Caurier）
－monopole corrections
－$g_{9 / 2}-d_{5 / 2}$ gap now constrained to 2.5 Mev in ${ }^{68} \mathrm{Ni}$

Calculations：

－Up to $14 \hbar \omega$ excitations across $\mathrm{Z}=28$ and $\mathrm{N}=40$ gaps
－Matrix diagonalizations up to 2.10^{10}
－m－scheme code ANTOINE（non public parallel version）

Triple coexistence in ${ }^{68 \mathrm{Ni}}$

- at first approximation, ${ }^{68} \mathrm{Ni}$ has a double closed shell structure for GS
- But low lying structure much more complex
- three coexisting 0^{+}states appear between 0 and $\sim 2.5 \mathrm{MeV}$
- new location of O_{2}^{+}state !

Configuration mixing and relative transition rates between low-spin states in ${ }^{68} \mathrm{Ni}$:
F. Recchia et al.

Phys. Rev. C88, 041302(R) (2013)

- prediction of very low-lying
superdeformed band ($\beta_{2} \sim 0.4$) of
$6 p 6 h$ nature!
\bullet S. Lenzi et al.
Phys. Rev. C82, 054301 (2010)
-A. Dijon et al.
Phys. Rev. C85, 0311301(R) (2012)
shell model

Nucleus $\quad \nu g_{9 / 2} \quad \nu d_{5 / 2} \quad$ configuration

${ }^{68} \mathrm{Ni}$	0.98	0.10	0p0h(51\%)
${ }^{66} \mathrm{Fe}$	3.17	0.46	$4 \mathrm{p} 4 \mathrm{~h}(26 \%)$
${ }^{64} \mathrm{Cr}$	3.41	0.76	$6 p 6 h(23 \%)$
${ }^{62} \mathrm{Ti}$	3.17	1.09	$4 p 4 h(48 \%)$

Nucleus $\quad \nu g_{9 / 2} \quad \nu d_{5 / 2} \quad$ configuration

${ }^{68} \mathrm{Ni}$	0.98	0.10	Op0h(51\%)
${ }^{66} \mathrm{Fe}$	3.17	0.46	$4 \mathrm{p} 4 \mathrm{~h}(26 \%)$
${ }^{64} \mathrm{Cr}$	3.41	0.76	$6 p 6 h(23 \%)$
${ }^{62} \mathrm{Ti}$	3.17	1.09	$4 \mathrm{p} 4 \mathrm{~h}(48 \%)$

Nucleus $\quad \nu g_{9 / 2} \quad \nu d_{5 / 2} \quad$ configuration

${ }^{68} \mathrm{Ni}$	0.98	0.10	$0 p 0 h(51 \%)$
${ }^{66} \mathrm{Fe}$	3.17	0.46	$4 \mathrm{p} 4 \mathrm{~h}(26 \%)$
${ }^{64} \mathrm{Cr}$	3.41	0.76	$6 \mathrm{p} 6 \mathrm{~h}(23 \%)$
${ }^{62} \mathrm{Ti}$	3.17	1.09	$4 \mathrm{p} 4 \mathrm{~h}(48 \%)$

Neutron effective single particle energies

- reduction of the $\nu f_{5 / 2}-g_{9 / 2}$ gap with removing $f_{7 / 2}$ protons
- proximity of the quasi-SU3 partner $d_{5 / 2}$
- inversion of $d_{5 / 2}$ and $g_{9 / 2}$ orbitals same ordering as CC calculations
- reduction of the $\nu d_{3 / 2^{-}} f_{7 / 2}$ gap with removing $d_{5 / 2}$ protons
- proximity of the quasi-SU3 partner $p_{3 / 2}$
- inversion of $p_{3 / 2}$ and $f_{7 / 2}$ orbitals

Neutron effective single particle energies

G. Hagen et al.

Phys. Rev. Lett. 109, 032502 (2012)
removing $f_{7 / 2}$ protons

- proximity of the quasi-SU3 partner $d_{5 / 2}$
- inversion of $d_{5 / 2}$ and $g_{9 / 2}$ orbitals same ordering as CC calculations
- reduction of the $\nu d_{3 / 2^{-}-f_{7 / 2}}$ gap with removing $d_{5 / 2}$ protons
- proximity of the quasi-SU3 partner $p_{3 / 2}$
- inversion of $p_{3 / 2}$ and $f_{7 / 2}$ orbitals

- Evolution of $Z=28$ from $N=40$ to $N=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

- Evolution of $Z=14$ from $N=20$ to $N=28$
- Evolution of $\mathrm{Z}=28$ from $\mathrm{N}=40$ to $\mathrm{N}=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

- Evolution of $Z=14$ from $N=20$ to $N=28$
- Evolution of $\mathrm{Z}=28$ from $\mathrm{N}=40$ to $\mathrm{N}=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

- Evolution of $Z=14$ from $N=20$ to $N=28$
- Evolution of $Z=28$ from $N=40$ to $N=50$
- Evolution of $\mathrm{N}=50$ from $\mathrm{Z}=40$ to $\mathrm{Z}=28$

PFSDG-U interaction:
- realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections (3 N forces)
$\mathbf{s d g}$ - proton and neutrons gap ${ }^{78} \mathrm{Ni}$ fixed to phenomenological derived values

Calculations:

- excitations across $\mathrm{Z}=28$ and $\mathrm{N}=50$ gaps
- up to $5^{*} 10^{10}$ Slater Determinant basis states
- up to $3^{*} 10^{13}$ non-zero terms in the matrix!
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): $0.5^{*} 10^{9} \mathrm{~J}$ basis states
- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : - $0_{2}^{+}-2_{1}^{+}$predicted at $2.6-2.9 \mathrm{MeV}$ and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion

Constrained deformed HF in the SM basis
(Duy Duc Dao, DNO-SM calc., Strasbourg)

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : $-0_{2}^{+}-2_{1}^{+}$predicted at 2.6-2.9 MeV and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion F. Nowacki et al., PRL 177, 272501 (2016)
- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : - $\mathrm{O}_{2}^{+}-2_{1}^{+}$predicted at 2.6-2.9 MeV and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion F. Nowacki et al., PRL 177, 272501 (2016)
- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double closed shell structure for GS
- But very low-lying competing structures
- From the diagonalization, the first excited states in ${ }^{78} \mathrm{Ni}$ are : - $\mathrm{O}_{2}^{+}-2_{1}^{+}$predicted at 2.6-2.9 MeV and to be deformed intruders of a rotationnal band !!!
- "1p1h" 2_{2}^{+}predicted at $\sim 3.1 \mathrm{MeV}$
- Necessity to go beyond $\left(f p g_{\frac{9}{2}} d_{\frac{5}{2}}\right)$ LNPS space and beyond ab-initio description
- Portal to a new Island of Inversion F. Nowacki et al., PRL 177, 272501 (2016)

Shape coexistence in

- At first abproximation. ${ }^{78} \mathrm{Ni}$ has a double

$$
5{ }^{5} \mathrm{E}_{7^{+}}{ }^{+}
$$

R. Taniuchi et al., NATURE 569, 53-58 (2019)

Shape coexistence in

- At first approximation, ${ }^{78} \mathrm{Ni}$ has a double

${ }^{78} \mathrm{Ni}$ revealed as a doubly magic stronghold against nuclear deformation

R. Taniuchi ${ }^{1{ }^{1,2}}$, C. Santamaria ${ }^{2,3}$, P. Doornenbal ${ }^{2 *}$, A. Obertelli ${ }^{2,3,4}$, K. Yoneda ${ }^{2}$, G. Authelet ${ }^{3}$, H. Baba ${ }^{2}$, D. Calvet ${ }^{3}$, F. Château ${ }^{3}$,
A. Corsi ${ }^{3}$, A. Delbart ${ }^{3}$, J.-M. Gheller ${ }^{3}$, A. Gillibert ${ }^{3}$, J. D. Holt ${ }^{5}$, T. Isobe ${ }^{2}$, V. Lapoux ${ }^{3}$, M. Matsushita ${ }^{6}$, J. Menéndez ${ }^{6}$,
S. Momiyama ${ }^{1,2}$, T. Motobayashi ${ }^{2}$, M. Niikura ${ }^{1}$, F. Nowacki ${ }^{7}$, K. Ogata ${ }^{8,9}$, H. Otsu ${ }^{2}$, T. Otsuka ${ }^{1,2,6}$, C. Péron ${ }^{3}$, S. Péru ${ }^{10}$,
A. Peyaud ${ }^{3}$, E. C. Pollacco ${ }^{3}$, A. Poves ${ }^{11}$, J.-Y. Rousse ${ }^{3}$, H. Sakurai ${ }^{1,2}$, A. Schwenk ${ }^{4,12,13}$, Y. Shiga ${ }^{2,14}$, J. Simonis ${ }^{4,12,15}$,
S. R. Stroberg ${ }^{5,16}$, S. Takeuchi ${ }^{2}$, Y. Tsunoda ${ }^{6}$, T. Uesaka ${ }^{2}$, H. Wang ${ }^{2}$, F. Browne ${ }^{17}$, L. X. Chung ${ }^{18}$, Z. Dombradi ${ }^{19}$, S. Franchoo ${ }^{20}$,
F. Giacoppo ${ }^{21}$, A. Gottardo ${ }^{20}$, K. Hadyńska-Klęk ${ }^{21}$, Z. Korkulu ${ }^{19}$, S. Koyama ${ }^{1,2}$, Y. Kubota ${ }^{2,6}$, J. Lee ${ }^{22}$, M. Lettmann ${ }^{4}$, C. Louchart ${ }^{4}$, R. Lozeva ${ }^{7,23}$, K. Matsui ${ }^{1,2}$, T. Miyazaki ${ }^{1,2}$, S. Nishimura ${ }^{2}$, L. Olivier ${ }^{20}$, S. Ota ${ }^{6}$, Z. Patel ${ }^{24}$, E. Şahin ${ }^{21}$, C. Shand ${ }^{24}$, P.-A. Söderström ${ }^{2}$,
I. Stefan ${ }^{20}$, D. Steppenbeck ${ }^{6}$, T. Sumikama ${ }^{25}$, D. Suzuki ${ }^{20}$, Z. Vajta ${ }^{19}$, V. Werner ${ }^{4}$, J. Wu ${ }^{2,26} \&$ Z. Y. Xu ${ }^{22}$
R. Taniuchi et al., NATURE 569, 53-58 (2019)

Island of Inversion Mergers

Island of Inversion Mergers

The $\mathrm{N}=40$ and $\mathrm{N}=50$ lol's merge like the $\mathrm{N}=20$ and $\mathrm{N}=28$ lol's did

- Simple understanding of realistic effective interactions
- Pioneer work for description of neutron-rich systems
- Appealing similar mechanism for Island of inversion at $\mathrm{N}=20 / \mathrm{N}=40$ and $\mathrm{N}=28 / \mathrm{N}=50$
- Much more to follow ...

