The role of the GGOS network in the definition of high precision geodynamic parameters

Giuseppe Bianco ${ }^{1}$ and Cinzia Luceri²
${ }^{1}$ Head, Space Research Dept., Italian Space Agency
${ }^{2}$ Head, Matera Space Center, e-Geos S.p.A.

IV International Workshop on Gravitomagnetism and Large-Scale RotationMeasurement

Global Geodetic Observing System

Satellite Laser Ranging (SLR)

MLRO

Very Long Baseline Interférometry (VLBI)

ST Scl OPO • January 1995 • J. Bahcall (Princeton), NASA

Earth

20060 Reatrii

Apparent darmeter $8^{\prime} 08{ }^{\prime} 16.0$
Dpparenr darneler. 2 hou
Temperturue: 260 K

ITRF2020: Preliminary horizontal velocity field

Mean sea level change

ITRF2020: Preliminary vertical velocity field

Table 1| Main 2007 tests of the general theory of relativity

Phenomenon or principle tested	Method and 2007 experimental limit
Weak equivalence principle (test-particles fall with the same acceleration; this is at the foundations of geometrical (metric) theories of gravitation)	Laboratory experiments (accuracy of the order of 10^{-13}) Lunar laser ranging (accuracy of the order of 10^{-13})
Strong equivalence principle (this is at the foundations of the general theory of relativity)	Lunar laser ranging (accuracy of less than 10^{-3})
Gravitational time dilation or gravitational redshift (relative slowing down of clocks near a mass)	Gravity Probe A (with a clock on the ground and one on a rocket; accuracy of the order of 10^{-4})
Deflection of photons' path and travel time-delay of electromagnetic waves, or Shapiro time-delay, by a mass	VLBI (accuracy of the order of 2×10^{-4}) Cassini spacecraft tracking (accuracy of the order of 10^{-5})
Perihelion advance of Mercury	Mercury radar ranging (accuracy of the order of 10^{-3})
Periastron advance, time dilation, time delay, rate of change of the orbital period (accurately explained by the loss of energy due to the emission of gravitational waves from a binary system) and other relativistic parameters (these effects are characterized by strong gravitational field inside a pulsar)	Binary pulsar PSR1913+16 Other binary pulsars
Lense-Thirring effect, or frame-dragging of a gyroscope by the spin of a body	LAGEOS and LAGEOS2 laser ranging (accuracy of the order of 10^{-1}) Gravity Probe B (it might be detected by further GP-B data analysis)
Geodetic precession, or de Sitter effect (dragging of a gyroscope due to its motion in a static gravitational field)	Lunar laser ranging (accuracy of the order of 6×10^{-3}) Gravity Probe B (accuracy of the order of 1.5×10^{-2}; it should be improved by further Gravity Probe B data analysis) Binary pulsars

LUNAR LASER RANGING

Gravitomagnetic field (Lense-Thirring effect)

Metrology: the Italian Link for Frequency \& Time
(LIFT)

- H-Maser Absolute calibration in Matera
- Geodesy VLBI with common clock Medicina/Matera
- Italian Primary Metrological Standard provided by INRIM available at MLRO

Satellite-to-satellite tracking in the high-low (SST-HL) mode: measurement of accelerations of one low Earth orbiting (LEO) satellite.

The orbit of the satellite is determined using GNSS positioning. The differences with respect to a reference (unperturbed) orbit allow the determination of gravity field at a spatial resolution of 400 km for the static component and about 4,000 km for monthly solutions. The accelerometer records the nongravitational forces.

Satellite-to-satellite tracking in the low-low (SST-LL) mode:
measurement of acceleration differences between two low Earth orbiting (LEO) satellites.

The orbits of the two satellites are determined using GNSS. The distance between the two satellites is measured with the highest possible accuracy. The acceleration differences between the two satellites allow the determination of the gravity field with a spatial resolution of about 170 km for the static component and about 300 km for monthly solutions.

Satellite gravity gradiometry (SGG): in-situ measurement of acceleration gradients within one low Earth orbiting (LEO) satellite.

The satellite orbit is determined using GNSS. The gravity gradients are measured in all three components. This differential measurement allows a spatial resolution of $80-100 \mathrm{~km}$ for the static gravity field.

ITRF2020: Preliminary horizontal velocity field

ITRF Realization

Latest version of the International Terrestrial Reference Frame (ITRF), called ITRF2020, published on April 15, 2022.

IGN France is the ITRS Center of the International Earth Rotation and Reference Systems (IERS), in charge of the realization and maintenance of the ITRS

The ILRS Process Flow for ITRF

\checkmark Time series of weekly SSC and EOP (X, Y and LOD) estimated over 7-day arcs (15-day arcs for the period 1983-1992)
\checkmark SLR data acquired from the global tracking network: LAGEOS, LAGEOS-2, Etalon-1 and Etalon-2

- data span 1983-2020
- 1983 to 1992 LAGEOS data only
\checkmark Analysis contributors are generally free to follow their own computation model and/or analysis strategy but a set of guidelines has been agreed within the ILRS Analysis Standing C $\sqrt{\square}$ As Geodyn/Solve

BF Bernese

ITRF2020: Frame definition

Origin

- zero translation parameters at epoch 2015.0 and
- zero translation rates
between the ITRF2020 and the ILRS SLR long-term frame over the time-span 1993.02021.0

Scale

- zero scale and
- zero scale rate
between ITRF2020 and the scale and scale rate averages of VLBI selected sessions up to 2013.75 and SLR weekly solutions covering the time-span 1997.7-2021.0.

Orientation

- zero rotation parameters at epoch 2015.0 and
- zero rotation rates between the ITRF2020 and ITRF2014

Monitoring Geocenter Variations

Mass redistribution within the Earth system affects the position of the geocenter relative to a crust fixed frame.
The geocenter motion is defined as the motion of the center of mass of the Earth (CM) with respect to the geometric center of figure (CF) of the solid Earth surface.

The geocenter motion using SLR data can be estimated using :

Dynamic method

from degree one unnormalized Stokes coefficients
$\Delta X(t)=R_{e}{ }^{*} C_{1,1}(t)$
$\Delta Y(t)=R_{e} * S_{1,1}(t)$
$\Delta Z(t)=R_{e}{ }^{*} C_{1,0}(t)$
where R_{e} is the mean terrestrial radius

Geometric method
as cartesian coordinate offsets from ITRF

$$
\left(\begin{array}{l}
X_{I T R F} \\
Y_{I T R F} \\
Z_{I T R F}
\end{array}\right)=\left(\begin{array}{l}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right)+\left(\begin{array}{ccc}
1+d & -R_{z} & R_{y} \\
R_{z} & 1+d & -R_{x} \\
-R_{y} & R_{x} & 1+d
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

CM with respect to ITRF2020

The geocenter positions in ITRF2020

ASI 1993-2023 weekly geocenter

Polar motion

- The polar motion is the motion of the rotation axis of the Earth relative to the crust.
It has two major components :
(i) a free oscillation with period about 435 days (Chandler wobble)
(ii) an annual oscillation
- The Earth Orientation Center of the IERS is in charge of the combined EOPCO4 series resulting from a combination of operational EOP series, each of them associated with a given geodetic technique
- The most important mechanism exciting the Chandler wobble is found to be ocean bottom pressure variations (Gross, 2000)

Polar motion

The polar motion considered at time scale larger that 10 year, namely the low-frequency pole, has an irregular drift in in the direction to 80 deg West
The slow drift, about 20 m since 1900, is partly due to motions in the Earth's core and mantle, and partly to the redistribution of water mass as the Greenland ice sheet melts, and to isostatic rebound

Length of Day

- Improved estimates after 1980 wit the use of space geodetic techniques
- Seasonal and annual variations mainly due to changes in the atmosphere
- Decadal and longer-term variations due to core-mantle coupling
- a secular prolongation of the day by about 1.8 ms in 100 years due to tidal friction and long-term mass variations (*)

The Earth Gravity field

The non-rotating part of the geopotential is represented as a series expansion into spherical harmonics

$$
V=-\frac{G M}{r} \sum_{n=0}^{\infty}\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n} P_{n m}(\cos \theta)\left[C_{n m} \cos (m \lambda)+S_{n m} \sin (m \lambda)\right]
$$

Satellite Constellation: LAGEOS-1 and 2,
Etalon-1 and 2, Starlette,
Stella,
Ajisai and BEC

$\Delta \mathrm{C}_{2,1}$ and $\Delta \mathrm{S}_{2,1}$ estimates

The Earth figure axis is the axis of maximun inertia and is represented by the coefficients C21 and S21 of the geopotential

J3 Time Series from SLR data

NASA GSFC SLR C20 and C30 solutions LAGEOS-1/2, Stella, Starlette, AJISAI, Larets, LARES
LARES (launch date 2012) contribution vital due to its combination of low area-to-mass ratio, low altitude, and unique inclination of 69.5°

THANK YOU

