GRM4: IV International Workshop on Gravitomagnetism and large-scale Rotation Measurement

The ZAIGA Project

Mingsheng Zhan

Innovation Academy for Precision Measurement Science and Technology, CAS

(Former Wuhan Institute of Physics and Mathematics)

2023.6.14 Pisa

ZAIGA: Zhaoshan long-baseline Atom Interferometer Gravitation Antenna

Mingsheng Zhan, Jin Wang, Wei-Tou Ni et al., Intl. J. Mod. Phys. D 29,1940005 (2020); arXiv:1903.09288

A platform to test gravity theory with large scale atomic interferometers, gyros and optical clocks

- Equivalence Principle test — 10-m Als, 240-m Al
- Clock Experiments — Sr clocks
- Rotation Measurement
 20-m gyros
- Gravitational Wave detection
 Al array (0, //) clocks
- Dark Matter detection

— AI array (②, //) 、 clocks Geological and Geophysical measurement

- gravimeters, seismometers

ZAIGA-EP

Schematic diagram of long baseline AI

Largest Atomic Pisa Leaning Tower

Partial structure diagram of AI

ZAIGA-EP

Year

ZAIGA-EP

Comparison of EP test experiments with AI

TABLE I. Mass and energy tests of the equivalence principle with atoms. ΔE is the mass-energy difference of the test pair, in units of GeV (for mass) or GHz (for internal energy, 1 GHz = 4.14 μ eV). η_i is the measured Eötvös parameter. η_E is the internal energy violation parameter of reduced energy ratio *a*, where $a = hv_0/m_i^{85}c^2$ and $v_0 = 1$ GHz.

Mass pair	F- F'	ΔE	η_i	η_E	Ref.
⁸⁵ Rb - ⁸⁷ Rb	2-1	1.86 GeV	$(1.2 \pm 1.7) \times 10^{-7}$		Phys. Rev. Lett.(2004)
⁸⁵ Rb - ⁸⁷ Rb	mixed	1.86 GeV	$(1.2 \pm 3.2) \times 10^{-7}$		Phys. Rev. A (2013)
³⁹ K - ⁸⁷ Rb	mixed	44.66 GeV	$(0.3 \pm 5.4) \times 10^{-7}$		Phys. Rev. Lett.(2014)
⁸⁵ Rb - ⁸⁷ Rb	2-1	1.86 GeV	$(2.8 \pm 3.0) \times 10^{-8}$		Phys. Rev. Lett.(2015)
³⁹ K - ⁸⁷ Rb	mixed @ 0g	44.66 GeV	$(0.9 \pm 3.4) \times 10^{-4}$		Nat. Commun. (2016)
³⁹ K - ⁸⁷ Rb	mixed	44.66 GeV	$(-1.9 \pm 3.2) \times 10^{-7}$		Eur. Phys. J. D (2020)
⁸⁸ Sr - ⁸⁷ Sr	0-9/2	0.93 GeV	$(0.2 \pm 1.6) \times 10^{-7}$		Phys. Rev. Lett.(2014)
⁸⁵ Rb - ⁸⁷ Rb	3-2	1.86 GeV	$(1.6 \pm 3.8) \times 10^{-12}$		Phys. Rev. Lett.(2020)
⁸⁵ Rb	2-3	3.04 GHz	$(0.4 \pm 1.2) \times 10^{-7}$	$(0.1 \pm 0.4) \times 10^{-7}$	Phys. Rev. Lett.(2004)
⁸⁷ Rb	$m_F = \pm 1$		$(1.2 \pm 3.2) \times 10^{-7}$		Phys. Rev. Lett.(2016)
⁸⁷ Rb	1-2	6.83 GHz	$(1.4 \pm 2.8) \times 10^{-9}$	$(0.2 \pm 0.4) \times 10^{-9}$	Nat. Commun. (2017)
⁸⁷ Rb	$1-1 \oplus 2$		$(3.3 \pm 2.9) \times 10^{-9}$		Nat. Commun. (2017)
⁸⁷ Rb	1-2	6.83 GHz	$(0.9 \pm 2.7) \times 10^{-10}$	$(0.1 \pm 0.4) \times 10^{-10}$	Chin.Phys.Lett.(2020)
⁸⁵ Rb - ⁸⁷ Rb	2-1	1.86 GeV + 0.00 GHz	$\eta_1 = (1.5 \pm 3.2) \times 10^{-10}$		
⁸⁵ Rb - ⁸⁷ Rb	2-2	1.86 GeV + 6.83 GHz	$n_2 = (-0.6 \pm 3.7) \times 10^{-10}$		arXIV:
⁸⁵ Rb - ⁸⁷ Rb	3-1	1.86 GeV - 3.04 GHz	$\eta_3 = (-2.5 \pm 4.1) \times 10^{-10}$		This work
⁸⁵ Rb - ⁸⁷ Rb	3-2	1.86 GeV + 3.79 GHz	$\eta_4 = (-2.7 \pm 3.6) \times 10^{-10}$		
			$\eta_0 = (-0.8 \pm 1.4) \times 10^{-10}$	$(0.0 \pm 0.4) \times 10^{-10}$	Phys. Rev. A (2021)

The mass-energy joint test of EP was realized. The energy violation parameter $-_{E}$ value is given.

L. Zhou et al., Phys. Rev. A 104, 022822(2021)

MWWWWWWWWW

Gravitational redshift measurement:

to test the Local Position Invariance (LPI)

Pound-Rebka Experiment (PRE) with Photon

-1

```
Mass-energy equivalence: E = mc<sup>2</sup>
Constant speed of light c
WEP: the Universality of Free Fall (mass,
```


ZAGA

Rotation Measurement and Calibration

Measurement of Lense-Thirring effect

Test the general relativity

Туре	Area	Angle Random Walk (rad/s/Hz ^{1/2})	Bias Stability (rad/s)
iXblueFOG	200 m ²	2×10 ⁻⁸	4×10 ⁻¹⁰
Peking University FOG	2850 m ²	3×10-9	1×10 ⁻¹¹
G-Ring Laser	16 m ²	1.2×10 ⁻¹¹	7×10 ⁻¹³
LNGS Laser	13 m ²	1.8×10 ⁻¹¹	4×10 ⁻¹⁴
Hannover AIG	41 mm ²	1.2×10-7	2.6×10 ⁻⁸
APM, CAS AIG	1.2 cm ²	1.5×10-7	9.5×10 ⁻¹⁰
CNRS AIG (4 pulse)	11 cm ²	2×10 ⁻⁸	3×10^{-10}
HUST AIG (4 pulse)	5.92 cm ²	1.2×10-7	2.5×10 ⁻⁸
Yale-Stanford	24 mm ²	6×10 ⁻¹⁰	4.8×10 ⁻¹⁰
ZAIGA	24 cm ²	8×10 ⁻¹¹	8×10 ⁻¹²

Atom Interferometric Gyros

7 / 1		ΛΛ
ZAI	GP	IVI

	CNRS (2018)	Hannover (2015)	Stanford (2006)	Stanford (2011)	APM,CAS (2021)
Area(mm ²)	1100	41	24	17	120
Angle Random Walk (rad/s Hz ^{-1/2})	3×10 ⁻⁸	1.2×10-7	8.8×10 ⁻¹⁰	8.5×10-8	1.5×10-7
Bias stability (rad/s)	3×10 ⁻¹⁰	2.6×10-8	3.2×10 ⁻¹⁰		9.5×10 ⁻¹⁰

How to get a rotation resolution of 8×10⁻¹²rad/s Rotation resolution by AIG

ZAIGA-RM

	Area	Sampling Rate	Atom Temperature	Atom Number
Cold atoms	11 cm²	2 Hz	10 µK	10 ⁸
Ultra cold atoms		0.1 Hz	50 nK	10 ⁵
Atomic beam	24 mm ²	500 Hz	120 μK	10 ¹²

Large scale atom interferometer gyroscope

BEC/Atom cloud/Atom beam

Why atom beams?

shorter interrogation time : vibration noise, shorter launch height

ZAIGA-RM

- High data rate: continuous
- High signal noise ratio: lock-in amplifier

Challenge

- High flux atom source
- Narrow transverse velocity distribution
- Alignment of laser beams

Proposal

- Interference length 2L=20 m
- Atom flux 10¹² atoms/s
- > Transverse atom temperature 100 μ K(0.1 m/s)
- Hybrid interferometer

Environmental monitoring

GNSS, Earthquake, Rotation, Ground Water, Meteorological, Geogravity, Relativistic Geodesy, Dynamic Coordinate Reference Frame

ZAIGA-GW

(10⁻¹⁸-10⁻¹⁵ Hz) : Ground or space detector(BICEP3, Ali) Ultralow frequency band $(10^{-9}-10^{-7} \text{ Hz})$: Very low frequency band PPTA)

Low frequency band $(10^{-4}-10^{-1} \text{ Hz})$: High frequency band $(10-10^4 \text{ Hz})$:

Space-based laser interferometer(LISA, Taiji/Tianqin) Ground-b _₆ RGO,KAGRA) -10-12 Log₁₀(Strain [1/VHz]) -20-20 ssive Binar -22Extreme mass ratio in Resolvable galactic bin -24 -24Unresolvable galactic binarie Compact binary inspirals -26-2 -4 2 Log₁₀(Frequency [Hz])

Millisecond pulsar timing array (EPTA, NANOGrav,

Wei-Tou Ni, EPJ Web of Conferences **168**, 01004 (2018)

ZAIGA-GW

Parameters:

k, = 8.5×10⁶ m⁻¹

Height of atom interferometers:5 mFlux intensity:R=Photon momentum transfer:N=Arm length:L=

Laser wavelength: 780 nm

5 m, T=1 s R=10¹⁴ atoms/s N=1000 L= 1000 m /3000 m.

.=1 km

Frequency (Hz)

Strain sensitivity (Hz^{-1/2})

10-1

10-20

0.1

• Atomic shot noise

Seismic Newtonian Noise (Seismic NN)

 $\Delta \phi_{\text{tot}} = 2k_{\text{eff}}hL\sin^2\left(\frac{\omega T}{2}\right)\sin(\phi_0)$ $k_{\text{eff}} = 2Nk_l$

• Infrasound Newtonian Noise (Infrasound NN)

M. S. Zhan, J. Wang, W. -T. Ni, et al., Intl. J. Mod. Phys. D 29, 1940005(2020)

10

ZAIGA-GW

Event estimation

Medium-frequency GW source: Medium mass Black Hole binary system (10²-10⁴ times the solar mass)

Medium-band GW detector : is possible to solve the problem of whether there are medium mass Black Holes

Atomic interferometer: can detect the GW source in the blank frequency band (0.1~10 Hz) between LIGO and LISA

Detection performance with 50 times NN reduction assumed

 10^{0}

Frequency (Hz)

101

 $10^{-21} \ 10^{-1}$

Signal to noise ratio vs. detectable distance

Theoretical model of ultralight dark matter

$$S = \int d^4 x \sqrt{|g|} \left\{ \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) + L_{\rm SM} + L_{\phi} \right\}$$

 $L_{\rm sm}$ Lagrangian in the standard model of particle physics

$$L_{\phi} = \kappa \phi \left[\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{A\mu\nu} - \frac{d_m m_e \overline{e} e}{2g_3} - \frac{d_m m_e \overline{e} e}{2g_3} - \sum_{i=u,d} \left(d_{m_i} + \gamma_{m_i} d_g \right) m_i \overline{\psi}_i \psi_i \right]$$

coupling coefficients: $d_{e}, d_{g}, d_{m_{e}}, d_{m_{u}}, d_{m_{d}}$

It is necessary to determine whether they are zero through experiments.

Self-interaction between dark matter

$$V(\phi) = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{3} a_{\phi} \phi^3 + \frac{1}{4} \lambda_{\phi} \phi^4$$

ZAIGA-DM

Detect ultralight dark matter by ZAIGA-DM

W. Zhao, X. T. Mei, D. F. Gao, J. Wang, and M. S. Zhan, Int. J. Mod. Phys. D 31, 2250037 (2022)

ZAIGA-DM

Constraints on the DM coupling parameters For the horizontal AI pair

Table 2. The technical parameters for a pair of horizontally separated AIs.

	Free evolution time (T)	Phase sensitivity	Momentum transfer (n)	Integration time $(t_{ m int})$	$\begin{array}{c} \text{Arm-} \\ \text{length} (L) \end{array}$
Near term Future	$1 \mathrm{s}$ $1 \mathrm{s}$	$\frac{10^{-3} \operatorname{rad}/\sqrt{\operatorname{Hz}}}{10^{-7} \operatorname{rad}/\sqrt{\operatorname{Hz}}}$	$\frac{4}{10^3}$	$\frac{10^4 \text{ s}}{10^6 \text{ s}}$	1 km 3 km

ZAIGA-DM

Constraints on the DM coupling parameters For the vertical AI pair

Table 1.	The technical	parameters for	a pair of	vertically	separated	AIs
----------	---------------	----------------	-----------	------------	-----------	-----

	Free evolution time (T)	Phase sensitivity	Momentum transfer (n)	Integration time $(t_{ m int})$	$\begin{array}{c} \text{Arm-} \\ \text{length} (L) \end{array}$
Near term Future	$1.4\mathrm{s}$ $1.4\mathrm{s}$	$10^{-3} \operatorname{rad}/\sqrt{\operatorname{Hz}}$ $10^{-4} \operatorname{rad}/\sqrt{\operatorname{Hz}}$	$\frac{4}{10^4}$	$\begin{array}{c} 10^4 \ \mathrm{s} \\ 10^6 \ \mathrm{s} \end{array}$	300 m 300 m

The Site

location

Mission assignment

3 Phases

Item	Project Goal
AI baseline (Free fall time)	240 m (T 6 s)
Atom species for AI	⁸⁵ Rb ⁸⁷ Rb ⁸⁷ Sr ⁸⁸ Sr
Gravity measurement	1 10 ⁻¹² g
Rotation measurement	8 10 ⁻¹² rad/s (2 10 ⁻⁶ ▼/h)
Stability of Sr/Yb optical clock	2 10-18
Local gravity monitoring	1 剂Gal

design and sketch

The scientific research park (on the mountain foot, 10000 m²)

Phase I

design and sketch

ZAGA

▽ 130.00

A 94.60

The shaft and the Experimental hall

Phase I

design and sketch

Recent Progress1 m Atomic Beam Test Setup

ZAGA

Atom Temperature: 100 μK (Sub-Doppler Cooling)

Recent Progress 1 m Atomic Beam Test Setup

Raman transitions in the co-propagating

Comparison between the counter-propagating and co-propagating transitions

ZAIGA

EP test at the 10-m AI

EP test 4WDR

2015, mass test 3.0×10-8

Lin Zhou, et al., Phys. Rev. Lett. 115,013004(2015)

2019, mass test 6.7×10⁻¹⁰

Lin Zhou, *et al.*, *arXiv:1904.07096 [quant-ph]* (2019)

2021, mass-energy joint test 1.4 ×10⁻¹⁰ 0.4 ×10⁻¹⁰

Lin Zhou, et al., Phys. Rev. A 104, 022822(2021)

⁸⁵Rb-⁸⁷Rb dual-species AI Lin Zhou, et al., Phys. Mass-energy joint test of EP First time: energy violation parameters for EP Opens a new way: mass-energy joint quantum test of EP

Recent Progress

EP test at the 10-m AI

Atom interference fringes @ launch up 10 m

Shear Interference Detection

Launch height	Free falling time	EPT precision
10 m	2T=2.6 s	Expected 10 ⁻¹³

Roadmap of WEP test with AI@APM

EP test

Recent Progress

WEP test in China Space Station

Dual-species Space Al

Tianzhou-5 cargo spacecraft Launched: Nov. 12, 2022

Now working well, optimizing, collecting data

Acknowledgments

http://cap.apm.ac.cn/

Jin Wang

Runbing Li

Peng Xu

Xiaodong He

Lin Zhou

Min Liu

Wei-Tou Ni

Xi Chen

Jiagi Zhong

Biao Tang

Dongfeng Gao Zhongyuan Xiong

Min Ke

Ministry of Sci & Tech of China (MOST) Chinese Academy of Sciences (CAS) **Natural Science Foundation of China (NSFC)**

All of you, for your attention!