Doppler Gyroscopes: Frequency vs Phase Estimation

-John Howell (Chapman, HUJI)
-Merav Kahn (HUJI)
-Ziv Roi (HUJI)
-Einav Grynszpan (HUJI)
-Prof. Nadav Katz (HUJI)

-Stefania Residori (Nice)
-Umberto Bortolozzo (Nice)

-Ziv Cohen, JH, Merav Kahn, Einav Grynszpan, Dvir Jacobovic

Positions available!

- Superoscillations
- Radar/Lidar
- Entangled Photons
- Radiative Cooling
- AI
- Precision Measurements
- Compressive Sensing
- Phase estimation standard quantum limit. Preview: we beat it by orders of magnitude
- Frequency vs phase estimation
- Gyroscope fundamentals (Doppler?)
- Experiment
- Results

Standard Quantum Limit: Phase Estimation

Multiple ways to arrive at SQL (coherent states)

- Fisher information for independent measurements
- Central limit theorem
- Phase space quadratures

Simple ad hoc description Field uncertainty: 1/2
Distance from origin: $|\alpha|$

$$
\alpha \Delta \theta=\frac{1}{2}
$$

Quantum Metrology Beyond SQL

[1] Carlton M Caves, "Quantum-mechenical noise in an interierometer," Physical Revjew D 23, 1693 (1981).
[2] MJ IIolland and K Burnett, "Interferometric deteztion of optical phase shifts at she heisenberg lixit," Plysical eeview letters 71, 1355 (1953).
[3] Agedi N. Boto, Pieter Kole, Daniel S. Abrame. Samuel L. Braunctein, Colin P. Williamf, and Jonathon P. Dcwling, 'Quantum interfermmetric optical lithography: Exploiting eatanglement to beat the diffraction limit," Phys. Rev Lett. $65,2733-2735$ ((оиण)
[4] Nioslas Treps, Nicolai Grosse, Warwick P Bowen, Caude Fabee, Hens-A Bacior, and Ping Koy Lam, "A quantum lase: pointer," Science 301, 940-943 (2003).
 keisenberg-limited phase estimation," Nature 450, 393-396 (2707).
[6] Hugc Cable and Gabriel A. Durkin, "Parameter eetimation witk enaangled photons prodaced by parametric downconversion." Phys. Rev. Lett. 105, 0. 3603 (2016).
 (2011).
[8] Xiao-Ye Xu, Yaron Kedem. Kal Sin, Lev Vaidmen, Chuan-Feng Li, ard Guang-Can Guo, "Phase estimation with weak neeasuremelt using a white light sumue," Pliysical review letters 111, 033604 (2013).
[9] Junaic Aasi, J Abadic, BP Abbott, Fichard Abbott, TD Abbott, MR Abernaihy, Car' Adams, Thomas Adama, Paclo Addcsso, RX Adhilari, of at, 'Enhenesd sэnsitivity of tac ligo gravitaticnal wave detcetor by using squeczed states of light," Nature Photonics 7, 613-6:9 (2013).
10] GJ Fryde, S Slussarenko, MM Weston, HM Chrzanowski, LK Shalm, VH Verma, and SW Nam:, "Uncondit:onal shot-rotse-limit violation in photonic quantum met:ology, in Confereace on Lasers and Electro-Optacs/Pocxfic Ram (Optical Soclety of America, 2018) pE. Th4J-1.
[11] Emanuele Poline, Mauro Valeri. Nizolò Spagnelo, and Fabio Sciarrino, "Phetoaic quantum metrolcgy," AVS Quantum Scicnoz 2, C24703 (2)20).

Quantum Metrology Beyond SQL: NOON States

Quantum Interferometric Optical Iithogruphy: Exploiting Entanglement to Beat the Ditfraction I.imit
 Conlin P Villians, ani Jonallan P. Duwlite ${ }^{1,1}$

LETTERS	napic photonics

Unconditional violation of the shot-noise limit in photonic quantum metrology
 Verune. Verma', Sac Wos Hem^{1} and Ceaff A Mrydet

Quantum Metrology Beyond SQL: Squeezed States

nature
photonics

LETTERS

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
The LGGO Scientific Collaboration*

Breakthrough in RLGs

Sub-shot-noise sensitivity in a ring laser gyroscope
Angela D. V. Di Virgilio ${ }^{1}$, Francesco Bajardi ${ }^{2,3}$, Andrea Basti ${ }^{1,4}$, Nicolò Beverini ${ }^{4}$, Giorgio Carelli ${ }^{1,4}$, Donatella Ciampini ${ }^{1,4}$, Giuseppe Di Somma ${ }^{1,4}$, Francesco Fuso ${ }^{1,4}$, Enrico Maccioni ${ }^{1,4}$, Paolo Marsili ${ }^{1,4}$, Antonello Ortolan ${ }^{5}$, Alberto Porzio ${ }^{2,6}$, ${ }^{*}$ and David Vitali ${ }^{7,8}$

Precision Doppler measurements with steep dispersion

Umberta Bortalogzo, ${ }^{\text {Ls }}$ Steffania Residori. ${ }^{1}$ and John C.. Howell ${ }^{2}$

Frequency Estimation Liquid Crystal Light Valve

Frequency vs Phase

Shift theorem in Fourier transforms:
Relating phase gradients and frequency offsets

$$
\mathscr{F}\{g(t-\tau)\}=G e^{-i \omega \tau}
$$

Active vs Passive Gyroscopes

Sagnac Effect

$$
\Delta \theta=\frac{8 \pi A \Omega}{\lambda c}
$$

CLOSED System!
Light folds back onto itself

Verifying the Ashworth-Davies Doppler Shift

$$
\begin{aligned}
f_{f} & =f_{i} \frac{\left[\tan \alpha+\frac{v}{c} \sin \phi\right]^{2}+\left[1-\frac{v}{c} \cos \phi\right]^{2}}{1-\frac{v^{2}}{c^{2}}+\tan ^{2} \alpha} \\
v & \Delta f=-\frac{2 v}{\lambda} \cos \beta \cos \alpha
\end{aligned}
$$

Verifying the Ashworth-Davies Doppler Shift

Arguments against Doppler shift in Sagnac effect

The Sagnac effect: correct and incorrect explanations

G B Malykin

1. Emitter and receiver the same for closed loop (beamsplitter)
2. In material medium of index n, Doppler predicts $2 n^{2}$-fold larger signal

Our Broken Symmetry System

Our Actual Setup: Mach-Zehnder

Phys. Rev. Lett. 129, 113901

LCLV - Frequency Measurement

Way Below SQL Phase Estimation

Phys. Rev. Lett. 129, 113901

Allan

Generalized Theory

Theory vs Experiment for large radius rotations

Beat SQL for phase estimation by orders

 of magnitude. Theoretically up to 5 orders of magnitude, experimentally by 2 .Strong evidence Doppler shifts do exist within Sagnac effect.

Takeaways

Sensitivity linear in length, not area.

Sensitivity linear dependent on position of interferometer relative to axis of rotation.

