Lorentz Violation and Sagnac Gyroscopes

Jay D. Tasson

Carleton College

jtasson@carleton.edu

June 14, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

1

- introduction
 - Lorentz violation & the Standard-Model Extension (SME)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- gravity
- tests: recent and proposed tests
 - gravimeters
 - Sagnac gyroscopes
 - gravitational waves

Lorentz violation

Lorentz symmetry

Lorentz violation

motivation

motivation

options for probing experimentally

galaxy-sized accelerator

- suppressed effects in sensitive experiments
 Lorentz and CPT violation
- can arise in theories of new physics
- difficult to mimic with conventional effects

the Standard-Model Extension (SME)

effective field theory which contains:

- General Relativity (GR)
- Standard Model (SM)
- arbitrary coordinate-independent CPT & Lorentz violation $L_{\rm SME} = L_{\rm GR} + L_{\rm SM} + L_{\rm LV}$
- · CPT violation comes with Lorentz violation
- CPT & Lorentz-violating terms
 - · constructed from GR and SM fields
 - parameterized by coefficients for Lorentz violation
 - samples

 $\psi a_{\mu}\gamma^{\mu}\psi$

Colladay & Kostelecký PRD '97, '98 Kostelecký PRD '04

the Standard-Model Extension (SME)

effective field theory which contains:

- General Relativity (GR)

Colladay & Kostelecký PRD '97, '98 Kostelecký PRD '04

Recent Gravitational Tests

E.g.				
Pihan-le Bars <i>et al.</i>	PRL 123, 231102 (2019)			
Flowers et al.	PRL 119, 201101 (2017)			
Hees <i>et al.</i>	PRD 92, 064049 (2015)			
Bourgoin <i>et al.</i>	PRL 117, 241301 (2016)			
LIGO,Virgo,	ApJL 848, L13 (2017)			
FermiGBM,Integral				
Hohensee <i>et al.</i>	PRL 111, 151102 (2013)			
L. Shao	PRL 112, 111103 (2014)			
CG. Shao <i>et al.</i>	PRL 122, 011102 (2019)			
Le Poncin-Lafitte <i>et al.</i>	PRD 94, 125030 (2016)			
For a full list, see,				
Kostelecký & Russell, Data tables for Lorentz and CPT violation,				
arXiv:0801.0287				
updated annually				
	E.g. Pihan-le Bars <i>et al.</i> Flowers <i>et al.</i> Hees <i>et al.</i> Bourgoin <i>et al.</i> LIGO,Virgo, FermiGBM,Integral Hohensee <i>et al.</i> L. Shao CG. Shao <i>et al.</i> Le Poncin-Lafitte <i>et al.</i> For a full list, see, sell, <i>Data tables for Loren</i> arXiv:0801.0287 updated annually			

known physics
$$SM + GR$$
 + \circ + \circ + \cdot + ... = quantum gravity

$$\mathcal{L} = \frac{1}{4} h_{\mu\nu} \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} h_{\rho\sigma} \qquad \qquad \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma\epsilon_{1}\epsilon_{2}...\epsilon_{d-2}} \partial_{\epsilon_{1}} \partial_{\epsilon_{2}} ... \partial_{\epsilon_{d-2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{array}{c} \mathsf{known \ physics} \\ \mathsf{SM} + \mathsf{GR} \end{array} + \phantom{\mathsf{o}} + \phantom{\mathsf{o}} + \phantom{\mathsf{o}} + \phantom{\mathsf{o}} + \ldots = \begin{array}{c} \mathsf{quantum} \\ \mathsf{gravity} \end{array}$$

 $\mathcal{L} = \frac{1}{4} h_{\mu\nu} \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} h_{\rho\sigma} \qquad \qquad \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma\epsilon_{1}\epsilon_{2}\ldots\epsilon_{d-2}} \partial_{\epsilon_{1}} \partial_{\epsilon_{2}}\ldots\partial_{\epsilon_{d-2}}$

0) gauge-structure preserving operators $\widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} \xrightarrow[tensor decomposition]{} \widehat{s}^{(d)\mu\nu\rho\sigma} + \widehat{k}^{(d)\mu\nu\rho\sigma} + \widehat{q}^{(d)\mu\nu\rho\sigma} + \dots$

$$\begin{array}{c} \mathsf{known \ physics} \\ \mathsf{SM} + \mathsf{GR} \end{array} + \phantom{\mathsf{o}} + \phantom{\mathsf{o}} + \phantom{\mathsf{o}} + \phantom{\mathsf{o}} + \ldots = \begin{array}{c} \mathsf{quantum} \\ \mathsf{gravity} \end{array}$$

 $\mathcal{L} = \frac{1}{4} h_{\mu\nu} \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} h_{\rho\sigma} \qquad \qquad \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma\epsilon_{1}\epsilon_{2}\ldots\epsilon_{d-2}} \partial_{\epsilon_{1}} \partial_{\epsilon_{2}} \ldots \partial_{\epsilon_{d-2}}$

- 0) gauge-structure preserving operators $\widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} \xrightarrow[\text{tensor decomposition}]{} \widehat{s}^{(d)\mu\nu\rho\sigma} + \widehat{k}^{(d)\mu\nu\rho\sigma} + \widehat{q}^{(d)\mu\nu\rho\sigma} + \dots$
- 1) linearized limit of Einstein-Hilbert $\hat{s}^{(4)\mu\nu\rho\sigma} \rightarrow \epsilon^{\mu\rho\alpha\kappa}\epsilon^{\nu\sigma\beta\lambda}\eta_{\kappa\lambda}\partial_{\alpha}\partial_{\beta}$

$$\begin{array}{c} {\sf known \ physics} \\ {\sf SM} + {\sf GR} \end{array} + {\sf o} + {\sf o} + {\sf .} + ... = \begin{array}{c} {\sf quantum} \\ {\sf gravity} \end{array}$$

 $\mathcal{L} = \frac{1}{4} h_{\mu\nu} \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} h_{\rho\sigma} \qquad \qquad \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma\epsilon_{1}\epsilon_{2}\ldots\epsilon_{d-2}} \partial_{\epsilon_{1}} \partial_{\epsilon_{2}} \ldots \partial_{\epsilon_{d-2}}$

- 0) gauge-structure preserving operators $\widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} \xrightarrow[\text{tensor decomposition}]{} \widehat{s}^{(d)\mu\nu\rho\sigma} + \widehat{k}^{(d)\mu\nu\rho\sigma} + \widehat{q}^{(d)\mu\nu\rho\sigma} + \dots$
- 1) linearized limit of Einstein-Hilbert $\hat{s}^{(4)\mu\nu\rho\sigma} \rightarrow \epsilon^{\mu\rho\alpha\kappa}\epsilon^{\nu\sigma\beta\lambda}\eta_{\kappa\lambda}\partial_{\alpha}\partial_{\beta}$
- 2) d = 4 (minimal) Lorentz violation $\hat{s}^{(4)\mu\nu\rho\sigma} \rightarrow s^{(4)\mu\nu\rho\sigma\alpha\beta}\partial_{\alpha}\partial_{\beta} = \epsilon^{\mu\rho\alpha\kappa}\epsilon^{\nu\sigma\beta\lambda}\overline{s}_{\kappa\lambda}\partial_{\alpha}\partial_{\beta}$

$$\begin{array}{c} {\sf known \ physics} \\ {\sf SM} + {\sf GR} \end{array} + {\sf o} + {\sf o} + {\sf .} + ... = \begin{array}{c} {\sf quantum} \\ {\sf gravity} \end{array}$$

 $\mathcal{L} = \frac{1}{4} h_{\mu\nu} \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} h_{\rho\sigma} \qquad \qquad \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma\epsilon_{1}\epsilon_{2}\ldots\epsilon_{d-2}} \partial_{\epsilon_{1}} \partial_{\epsilon_{2}} \ldots \partial_{\epsilon_{d-2}}$

- 0) gauge-structure preserving operators $\widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} \xrightarrow[\text{tensor decomposition}]{} \widehat{s}^{(d)\mu\nu\rho\sigma} + \widehat{k}^{(d)\mu\nu\rho\sigma} + \widehat{q}^{(d)\mu\nu\rho\sigma} + \dots$
- 1) linearized limit of Einstein-Hilbert $\hat{s}^{(4)\mu\nu\rho\sigma} \rightarrow \epsilon^{\mu\rho\alpha\kappa}\epsilon^{\nu\sigma\beta\lambda}\eta_{\kappa\lambda}\partial_{\alpha}\partial_{\beta}$
- 2) d = 4 (minimal) Lorentz violation $\hat{s}^{(4)\mu\nu\rho\sigma} \rightarrow s^{(4)\mu\nu\rho\sigma\alpha\beta}\partial_{\alpha}\partial_{\beta} = \epsilon^{\mu\rho\alpha\kappa}\epsilon^{\nu\sigma\beta\lambda}\overline{s}_{\kappa\lambda}\partial_{\alpha}\partial_{\beta}$
- 3) d = 5 example $\widehat{q}^{(5)\mu\nu\rho\nu\sigma} \rightarrow q^{(5)\mu\rho\alpha\nu\beta\sigma\gamma}\partial_{\alpha}\partial_{\beta}\partial\gamma$

action to metric via spontaneous breaking

$$g_{00} = -1 + 2U + 3\overline{s}^{00}U + \overline{s}^{jk}U^{jk}$$

$$g_{0j} = -\overline{s}^{0j}U - \overline{s}^{0k}U^{jk} + \frac{1}{2}\hat{Q}^{j}\chi$$

$$g_{jk} = \delta^{jk} + (2 - \overline{s}^{00})\delta^{jk}U$$

$$+ (\overline{s}^{lm}\delta^{jk} - \overline{s}^{jl}\delta^{mk} - \overline{s}^{kl}\delta^{jm} + 2\overline{s}^{00}\delta^{jl}\delta^{km})U^{lm}$$

$$U = G \int d^3x' \frac{\rho(\vec{x'}, t)}{R}$$

$$\chi = -G \int d^3 x' \rho(\vec{x}', t) R$$

$$U^{jk} = \partial_j \partial_k \chi + \delta_{jk} U$$

(日)、(型)、(E)、(E)、(E)、(D)、(O)、(O)

(c.f. solar system 10^{-12} , astrophysics 10^{-14})

Flowers, Goodge, Tasson PRL'17; C.-G. Shao et al. PRD'18

(c.f. solar system 10^{-12} , astrophysics 10^{-14})

Flowers, Goodge, Tasson PRL'17; C.-G. Shao et al. PRD'18

Sagnac gyros – Minkowski spacetime

Arrival time difference

$$\Delta t \approx \frac{2\Omega rt}{c}$$

$$= \frac{2\Omega r 2\pi r}{c^2}$$

$$= \frac{4\Omega A}{c^2}$$

$$\to 4 \int \vec{\Omega} \cdot d\vec{A}$$

Phase difference per orbit $\Delta \psi = 2\pi \frac{c\Delta t}{\lambda}$

N – orbits to be in phase $2\pi = N\Delta\psi$ $N = \frac{\lambda}{c\Delta t}$

beat period/frequency via perimeter P $T = N\frac{P}{c} \Rightarrow f_b = \frac{\Delta t}{\lambda P}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Sagnac via the metric

... in rotating detector frame

light-like geodesics $0 = g_{00}dt^2 + \underline{2g_{0j}dtdx^j} + g_{jk}dx^jdx^k$

quadratic in dt with 2 solutions $\Delta t = 2 \oint \frac{g_{0j}}{g_{00}} dx^j$

in the cases of interest $\Delta au pprox 2 \oint g_{0j} dx^j$

note that $2\Omega_j = \epsilon_{jkl} \partial_k g_{0l}$

Ampere's law analogy $\Delta \tau \approx 4 \int \vec{\Omega} \cdot d\vec{A}$

<u>Conclusion</u>: take the same approach for other contributions to g_{0j} in the detector frame

- gravitomagnetism
- Lorentz violation

SME results

beat frequency³

$$\frac{4AGM_{\oplus}}{\lambda PR_{\oplus}^{2}} \sin \alpha \left[\cos \beta (\overline{s}^{TX} \sin \phi - \ldots) + \sin \beta (\cos \theta (\overline{s}^{TX} \cos \phi + \overline{s}^{TY} \sin \phi) + \ldots) \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

post-Newtonian metric² $g_{0j} = -\overline{s}^{0j}U - \overline{s}^{0k}U^{jk} + \frac{1}{2}\hat{Q}^{j}\chi$ (U = Newton potential; $U^{jk}, \chi =$ post-Newton potentials) where $\hat{Q}^{j} = [q^{(5)0jk0/0m} + q^{(5)n0knljm} + q^{(5)njknl0m}]\partial_{k}\partial_{l}\partial_{m}$ look gravitomagnetic but the source is at rest

²Bailey&Havert PRD'17

³Moseley et al. PRD'19

SME results

beat frequency³ $\frac{4AGM_{\oplus}}{\lambda PR_{\oplus}^{2}} \sin \alpha \left[\cos \beta (\overline{s}^{TX} \sin \phi - \ldots) + \sin \beta (\cos \theta (\overline{s}^{TX} \cos \phi + \overline{s}^{TY} \sin \phi) + \ldots) \right]$ - sidereal dependence $\phi = \omega_{\oplus} t + \phi_{0}$ - orientation dependence - $q^{5} \Rightarrow$ additional harmonics - lab-competitive \overline{s} sensitivities

- best q^5 sensitivities

post-Newtonian metric² $g_{0j} = -\overline{s}^{0j}U - \overline{s}^{0k}U^{jk} + \frac{1}{2}\hat{Q}^{j}\chi$ (U = Newton potential; U^{jk}, χ = post-Newton potentials) where $\hat{Q}^{j} = [q^{(5)0jk0/0m} + q^{(5)n0knljm} + q^{(5)njknl0m}]\partial_{k}\partial_{l}\partial_{m}$ look gravitomagnetic but the source is at rest

²Bailey&Havert PRD'17

³Moseley et al. PRD'19

the experiment...G-ring

- G-ring, Germany
- insensitive to minimal Lorentz violation

the experiment...GINGER

- GINGERINO, Gyroscopes IN GEneral Relativity, Italy
- sensitive to both minimal and d = 5 Lorentz violation

15 days of G-ring

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• polar motion corrected

preliminary maximum reach sensitivities

K _{xxxy}	K _{xxxz}	K _{xxyy}	K _{xxyz}	K _{xxzz}	K _{xyyy}	K _{xyyz}	K _{xyzz}
-16 m	10 m	-113 m	32 m	113 m	48 m	-10 m	-16 m

K _{xzzz}	K _{yxxz}	K _{yxyz}	K _{yxzz}	K	K _{yyzz}	K _{yzzz}
190 m	10 m	-5 m	-16 m	8 m	-113 m	48 m

• compare with pulsar results

 $K_{XXXY} = \frac{1}{3} \left(-q^{TXYTXTX} + q^{TXYXYXY} + q^{TXYXZXZ} - q^{XYZXZXT} \right)$

Coefficient	1- σ limit [m]	Coefficient	1- σ limit [m]
q ^{TXYTXTX}	22	q^{TXYTXTY}	11
q^{TXYTYTY}	10	q^{TXYTYTZ}	5.7
q^{TXYXYXY}	8.0	q^{TXYXYXZ}	8.3

15 days of G-ring

• polar motion corrected

what needs doing? Uncertainty!

• We see a signal at some of the frequencies of interest

- what is the uncertainty in the polar motion correction?
- is the polar motion modeling trained on data?
- systematics at the solar day frequency?
- how should we quantify uncertainty?
 - $\bullet\,$ rms of neighboring frequencies \rightarrow more resolution needed
 - understanding of systematics and modeling uncertainties

• want to collaborate?

summary

- systematic search for new physics
- basic theory in place for many gravitational tests
- expanding phenomenological & experimental breadth & depth

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Sagnac Gyroscopes can be an interesting test
- More data/better understanding of error needed