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Motivation for atom interferometry rotation sensors
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Applications in navigation, geodesy, fundamental physics

Providing absolute, long-term stable measurements

Complementary to established sensors (MEMS, ring laser gyros, fibre gyros, …)

Potential for miniaturisation – intermediate sized sensor with high performance



Atom interferometry

3

Interferometer phase, 𝜙𝑖 imprinted at pulse i: 𝜙𝑡𝑜𝑡 = 𝜙1 − 2𝜙2 + 𝜙3
Acceleration റ𝑎, effective wave vector 𝑘 : 𝜙𝑎𝑐𝑐 = 𝒌 ∙ റ𝑎 𝑻2

Forward drift velocity റ𝑣, rotation Ω, enclosed area A : 𝜙𝑟𝑜𝑡 = 2 𝒌 × റ𝑣 ∙ Ω 𝑻2 ~ 𝑨 ⋅ Ω
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Absolute, stable measurements; atoms in free fall, Mach-Zehnder like π/2 – π – π/2 pulse geometry:



3-pulse atom interferometer (AI), Mach-Zehnder like:

Colder atoms / low expansion rates → increased C, k, T

High flux sources → increased N, decreased Tc

Shot noise limit
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𝜎𝑎,𝑠𝑛 =
1

𝐶 𝑁 ⋅ 2 ⋅ 𝑘 ⋅ 𝑣 ⋅ 𝑇2

𝑇𝑐
𝜏

C: contrast

N: number of atoms

k: effective wave number

v: drift velocity, v ⊥ 𝑘
T: free evolution time

Tc: cycle time

τ: integration time

→ reduced shot noise



4-pulse geometry
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[Images and results from: 1) Gautier et al., Sci. Adv. 8, eabn8009 (2022), CC BY 4.0, https://creativecommons.org/licenses/by/4.0/; see also: Stockton et al., 

PRL 107, 133001 (2011); Canuel et al., PRL 97, 010402 (2006)]

Free-fall time 𝑇, effective wave vector 𝑘, 

gravitational acceleration റ𝑔, rotation Ω:

𝜙𝑟𝑜𝑡 =
𝑇3

2
𝒌 × റ𝑔 ∙ Ω

Atoms in free fall, π/2 – π – π – π/2 pulse geometry

Image from [1]



State of the art in AI-based quantum sensors
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Rotation sensors

Stability:

• 30 nrad/s in 1s

• 0.1 nrad/s after averaging

Uncertainty:

• Few nrad/s to 10 nrad/s

Gravimeters

Stability:

• 42 nm/s2 in 1s

• 0.5 nm/s2 after averaging

Systematic uncertainty:

• 40 nm/s2

• Limited by wave front 

distortions 1)

Transportable, sea, flight, 

commercial versions

Gravity gradiometers

Stability:

• 3·10-8 1/s2 in 1s

Systematic uncertainty

• 8·10-8 1/s2

Determination of gravitational 

constant

[From: Chen et al., arXiv:2303.00239; Gautier et al., Sci. Adv. 8, eabn8009 (2022); Berg at al., PRL 114, 063002 (2015); Stockton et al., PRL 107, 133001 

(2011); Gauguet et al., PRA 80, 063604 (2009); Gillot et al., Metrologia 51, L15-L17 (2014); 1) reduced in Karcher et al., NJP 20, 113041 (2018); Freier et al., 

JoP:CS 723, 012050 (2016); Hu et al., PRA88, 043610 (2013); Wu et al., Sci. Adv. 5, eaax0800 (2019); Bidel et al., Nat.Comm. 9, 2041 (2018); Bidel et al., JoG

94, 1432 (2020); muquans.com; McGuirk et al., PRA 65, 033608 (2002); Fixler et al., Science 315, 74 (2007); Biedermann et al., PRA 91, 033629 (2015); Chiow

et al., PRA 93, PRA 93, 013602 (2016); Rosi et al., Nature 510, 518 (2014); Asenbaum et al. PRL 118, 183602 (2017)]



Cold atom Sagnac interferometer (CASI)
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[Images and results from: 1) Schubert, Dissertation, Leibniz Universität Hannover (2012); 2) Schubert, Dissertation, Leibniz Universität Hannover (2012), thanks 

to G. Tackmann for providing the image; see also: Berg at al., PRL 114, 063002 (2015); Tackmann et al., New J. Phys. 14, 015002, (2012)]

Double interferometer for measuring the rotation Ω𝑦:

• 2 double MOT systems provide molasses cooled 87Rb atoms at 10 µK

• Moving molasses launch to 𝑣𝑥,1 = 2.79 m/s, 𝑣𝑥,2 = −2.79 m/s; subsequent velocity filter

• 3 spatially separated interaction zones for Raman type beam splitters

• State-selective fluorescence detection detects 106 atoms per interferometer

Source 1

Source 2

Aperture

Detection beam 

Retro reflection mirrors

Beam splitters

Launch trajectory

Beam splitters

Source 2

Detection photo diode
Blow away beam

Source 1

Image (modified) from [1] Image (modified)

from [2]



Discriminating rotations and accelerations
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Signal of the two atom interferometers: 𝜙1,2 𝑘1,2, 𝑣𝑥,1,2 = 2 𝑘1,2 ⋅ 𝑣𝑥,1,2 ∙ Ω𝑦 𝑇2+ 𝑘1,2 ∙ 𝑎𝑧 𝑇
2+ 𝜙𝑜𝑡ℎ𝑒𝑟,1,2

𝑘1 = −𝑘2 = 𝑘, 𝑣𝑥,1 = −𝑣𝑥,2 = 𝑣

Differential signal – acceleration: 𝝓𝒅𝒊𝒇𝒇 = 𝜙1 − 𝑘, 𝑣 𝜙1 −𝑘,−𝑣 /2 = 𝒌 ∙ 𝒂𝒛 𝑻
𝟐+ 𝜙𝑜𝑡ℎ𝑒𝑟,𝑑𝑖𝑓𝑓

Sum signal – rotation: 𝝓𝒔𝒖𝒎 = 𝜙1 𝑘, 𝑣 + 𝜙1 −𝑘,−𝑣 /2 = 𝟐 𝒌 ⋅ 𝒗 ∙ 𝜴𝒚 𝑻
𝟐+ 𝜙𝑜𝑡ℎ𝑒𝑟,𝑠𝑢𝑚



Symmetrized composite-pulse interferometer (SCI)
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[Images and results from: 1) Berg at al., PRL 114, 063002 (2015); 2) Tackmann et al., New J. Phys. 14, 015002, (2012)]

SCI – larger k, noise suppression:

TSCI = 25 ms, kSCI = 8π/(780 nm), Tc = 0.5s

CSCI = 19%

Short-term instability SCI: 120 rad/s in 1 s

MZI:

TMZI = 24.7 ms, kMZI = 4π/(780 nm), Tc = 0.5 s

CMZI = 18 % (36 % at TMZI = 23 ms)

Short-term instability MZI: 610 nrad/s in 1 s

Image

from [1]

Image

from [1]



Results and limits of CASI in SCI configuration
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[Results from: Berg at al., PRL 114, 063002 (2015)]

Results:

▪ Short-term instability: 120 rad/s in 1 s

▪ Estimated intrinsic noise: 77 nrad/s in 1 s (detection, technical noise)

▪ Averaging: 26 rad/s in 100 s (higher background noise during operation, 260 rad/s in 1 s)

▪ Systematic uncertainty: 600 nrad/s (uncertainty of launch velocity & starting position + wave front errors)

Possible improvements:

▪ Ultracold atoms / Bose-Einstein condensates (BECs) → improved contrast, reduced systematic error

▪ Lattice launch → improved control of launch vector / drift velocity

▪ Large momentum transfer → larger phase shift / improved sensitivity



Rapid BEC generation on an atom chip
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Atom-chip based BEC source for interferometry:

[Images and results from: 1) Rudolph et al., NJP 17, 065001 (2015), CC BY 3.0, https://creativecommons.org/licenses/by/3.0/; 2) Deppner et al., PRL 127, 

100401 (2021); 3) Gebbe et al., Nat. Comm. 12, 2544 (2021); Szigeti et al., NJP 14, 023009 (2012); Louchet-Chauvet et al., NJP 13, 065025 (2011); Debs et 

al., Phys. Rev. A 84, 033610 (2011); Heine et al., EPJD 74, 174 (2020); Schkolnik et al., APB 120, 311 (2015); see also for rapid evaporation in optical dipole 

traps: Roy et al., arxiv:1601.05103; Albers et al., Comm. Phys. 5, 60 (2022)]

Image from [1]

Challenge:

• Providing high flux with low expansion rates of the atoms

Solution:

• Atom-chip based BEC generation + delta-kick collimation

Demonstrated flux [1]:

• {105, 4∙105} 87Rb atoms (BEC) in {1 s, 1.6 s}

Delta-kick collimation – lowering the velocity spread [2]:

• Down to a kinetic energy of (3/2)𝑘𝐵 ⋅ 38−7
+6 pK (3D)

→ Reducing systematic errors, increasing short-term stability [3]



(Re)launching atoms
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Retro-reflected beam setup – well-defined pointing of launch vector normal to mirror surface:

[Images and results from: 1) Abend et al., PRL 117, 203003 (2016); see also: Dickerson et al., PRL 111, 083001 (2013)]

Image from [1]

Challenge:

• Losses due to simultaneous interaction with two 

moving lattices

Solution [1]:

• (De-)acceleration via Bloch oscillations (BO)

• 16 ħk double-Bragg pulse (DBD) inverts 

momentum around 0 momentum

Demonstrated results [1]:

• Launch efficiency of 75 % observed

→ Control of launch vector / drift velocity



Large momentum transfer – twin lattice atom 
interferometer
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Increasing the enclosed area / effectively 𝑘:

→ Increasing the scale factor for future interferometers

[Images and results from: 1) Gebbe et al., Nat. Comm. 12, 2544 (2021), CC BY 4.0; other LMTs: Lévèque et al., PRL 103, 080405 (2009); Müller et al., PRL 102,

240403 (2009); Chiow et al., PRL 107, 130403 (2011); Rudolph et al., PRL 124, 083604 (2020); ...]

Challenge:

• Increasing 𝑘 without losing contrast

Solution:

• Delta-kick collimated BEC

• Combining Bloch oscillations and 

double Bragg diffraction

Experimental results [1]:

• Realisation of interferometers with up 

to 408∙ħk beam splitters

• Total transfer of up to 1632 ħk

• Remaining contrast: 14%



Differential BEC interferometer
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Demonstrating a double-interferometer scheme with a single BEC source:

[Images and results from: 1) Gersemann et al., EPJD 74, 203 (2020), CC BY 4.0]

Short-term instability: 1.7 mrad/s in 15 s
(compatible with estimated shot noise limit)

T = 5 ms, k = 4π/(780nm), 

v = ħk/m ≈ 24 mm/s, Tc = 15 s



Novel multi-loop scheme – motivation
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Stable, absolute rotation measurement with freely falling atoms

• Multiple round trips of the atoms → linear increase in effectively 

enclosed area similar to fibre optical gyroscopes [1] → boosted 

sensitivity without increasing the size of the vacuum vessel / sensor 

head [2]

• Multi-loop scheme based on symmetric beam splitting and 

relaunches [2]

• Anticipated sensitivity: 2 ⋅ 10−11 rad/s in 1 s [2], comparable to the 

large ring laser gyroscope in Wettzell [3]

Relaunch

Launch

Beam splitter

[1) Jekeli, Navigation 52, 1–14 (2005); 2) Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0; 3) Gebauer et al., PRL 125, 033605 (2020)]



Previously published results & features of novel multi-
loop scheme  
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Previous implementations [1-3]:

• Based on 3-pulse, Mach-Zehnder-like or 4-pulse, ‘butterfly’ geometries

• Thermal Cs beam, molasses cooled Cs / Rb injected into the interferometer

• Tuneability of pulse-separation time typically limited by optical access / spatially separated beam splitters

• Spatially separated atom-light-interaction zones require fine adjustment

Features of proposed scheme [4]:

• Tunable free-fall time → scalable area

• Coherent atom-light interactions imprint velocities → well-defined area

• Beam splitting on single axis → no relative alignment required

• Symmetric beam splitting → reduced biases due to light shifts 

• Multiple beam splitting axes → compatible with measurements of tilt, gravity

[1) Durfee et al., PRL 97, 240801 (2006); 2) Gauguet et al., PRA 80, 063604 (2009); Stockton et al., PRL 107, 133001 (2011); Berg et al., PRL 114, 063002 

(2015); 3) Savoie et al. Sci. Adv. 4, eaau7948 (2018); Gautier et al., Sci. Adv. 8, eabn8009 (2022); 4) Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0]



Implementation of the multi-loop geometry
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[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

BEC

• Launch BEC (small initial momentum & low expansion rate)



Implementation of the multi-loop geometry
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[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

• Launch BEC (small initial momentum & low expansion rate)

• Horizontal beam splitter: two wave packets drifting apart (a)



Implementation of the multi-loop geometry
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[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

• Launch BEC (small initial momentum & low expansion rate)

• Horizontal beam splitter: two wave packets drifting apart (a)

• After time T, invert the movement of the atoms (b,d)



Implementation of the multi-loop geometry
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[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

• Launch BEC (small initial momentum & low expansion rate)

• Horizontal beam splitter: two wave packets drifting apart (a)

• After time T, invert the movement of the atoms (b,d)

• After time 2T, relaunch atoms and revert momentum (c)



Implementation of the multi-loop geometry

21

[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

• Launch BEC (small initial momentum & low expansion rate)

• Horizontal beam splitter: two wave packets drifting apart (a)

• After time T, invert the movement of the atoms (b,d)

• After time 2T, relaunch atoms and revert momentum (c)

• After time 3T, deflect atoms towards each other (b,d) 



Implementation of the multi-loop geometry
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[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

• Launch BEC (small initial momentum & low expansion rate)

• Horizontal beam splitter: two wave packets drifting apart (a)

• After time T, invert the movement of the atoms (b,d)

• After time 2T, relaunch atoms and revert momentum (c)

• After time 3T, deflect atoms towards each other (b,d) 

• After time 4T, atoms cross falling downwards (a)



Implementation of the multi-loop geometry
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[Schubert et al., Sci. Rep. 11, 16121 (2021); slide (modified) from M. Gersemann, LUH]

• Launch BEC (small initial momentum & low expansion rate)

• Horizontal beam splitter: two wave packets drifting apart (a)

• After time T, invert the movement of the atoms (b,d)

• After time 2T, relaunch atoms and revert momentum (c)

• After time 3T, deflect atoms towards each other (b,d) 

• After time 4T, atoms cross falling downwards (a)

Two options:

1. Repeat sequence → form another 2n loop

2. Close interferometer and read out phase 



Multi-loop geometry
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Single (~butterfly / double loop) or multiple round trips

Relaunch velocity: 𝑣𝑟𝑙 = 𝒗𝑟𝑙 = 3𝑔𝑇

Enclosed area: 𝐴 = 𝑛 ⋅ 2
ℏ𝑘

𝑚
𝑔𝑇3

Phase shift: Δ𝜙𝑆𝑎𝑔𝑛𝑎𝑐 = 𝑛 ⋅ 𝒌 × 𝒈 𝜴𝑇3

Wavevector 𝒌, gravitational acceleration 𝒈, rotation 𝜴, 

atomic mass 𝑚, number of round trips 𝑛

[Image and results from: 2) Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0]



Pulse timings
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Single round trip – 2 loops:

• 4 beam splitting pulses: 𝜋/2 – 𝜋 – 𝜋 – 𝜋/2
• Pulse separation: T – 2T – T

• Relaunch at 2T

• Recombination at 4T

Extension to multi-loop operation by relaunch 

instead of recombination

Beam splitter intensity Ibs, relaunch pulse intensity 

Irl (not to scale)

[Image and results from: Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0]



Anticipated sensitivities
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Drop distance: 𝐷 = 3𝑇/2 2 ⋅ 𝑔/2

Maximum trajectory separation: 𝑆 = ℏ𝑘𝑇/𝑚

Quantum projection noise limit: 𝜎Ω 𝑡 =
1

𝐶 𝑁⋅𝑛⋅ 4𝑘𝑔𝑇3

𝑡𝑝𝑟𝑒𝑝+𝑛⋅4𝑇+𝑡𝑑𝑒𝑡

𝑡

[Table and results from: Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0]

Double-loop dependent contrast: 𝐶 𝑛 = 𝐶 1 𝑛

Loss factor: 𝑙𝑛−1 with 𝑙 = 0.9 for 2𝑛 loops

Contrast 𝐶, number of atoms 𝑁 (modified by losses), 

averaging time 𝑡, preparation time 𝑡𝑝𝑟𝑒𝑝, detection 

time 𝑡𝑑𝑒𝑡



Error terms due to relaunch and other couplings
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Assumptions:

• Phase errors 10𝑛 times below the quantum projection noise limit (∼ 1/ 𝑁); †velocity acceptance; ‡position w.r.t. beam

• Γ𝑥 = Γ𝑦 = 0.5Γ𝑧 = 1.5 ⋅ 10−6 s−2, Ω𝑥 = Ω𝑦 = Ω𝑧 = 7.27 ⋅ 10−5 rad/s, *gradient compensation to 0.1Γ

Error terms due to imperfect pointing of the relaunch vector 𝒗𝑟𝑙:
• Relaunch tilt 𝛼 and timing error 𝛿𝜏: Δ𝜙𝛼,𝜏 = −𝑘𝑣𝑟𝑙𝛼𝛿𝜏 = −3𝑘𝑔𝑇𝛼𝛿𝜏

• Relaunch tilt 𝛼 and gravity gradient Γ: Δ𝜙𝛼,Γ = 𝒌Γ𝒗𝑟𝑙𝑇
3 = 3𝑘𝛼Γ𝑥𝑔𝑇

4

• Relaunch tilt 𝛽 and rotation Ω: Δ𝜙𝛽,Ω = 2 𝒌 × 𝒗𝑟𝑙 𝛀𝐓
𝟐 = 6𝑘𝛽𝑔Ω𝑧𝑇

3

Dominant error terms depending on starting position 𝑥0, 𝑦0, 𝑧0 / velocity 𝒗 and others:

• Velocity 𝑣𝑥: Δ𝜙𝑣𝑥 = 4𝑘𝑇3 Γ𝑥 + 3 Ω𝑦
2 + Ω𝑧

2 𝑣𝑥

• Velocity 𝑣𝑦: Δ𝜙𝑣𝑦 = −4𝑘𝑇3 3Ω𝑥Ω𝑦 + 4𝑇 Γ𝑥 + Γ𝑦 Ω𝑧 𝑣𝑦
• Velocity 𝑣𝑧: Δ𝜙𝑣𝑧 = −4𝑘𝑇3 3Ω𝑥Ω𝑧 + 4𝑇 Γ𝑧 + Γ𝑥 Ω𝑦 𝑣𝑧

[Table and results from: Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0]

• Position 𝑦0: Δ𝜙𝑦0 = 8𝑘𝑇3Γ𝑦Ω𝑧𝑦0
• Position 𝑧0: Δ𝜙𝑧0 = −8𝑘𝑇3Γ𝑧Ω𝑦𝑧0
• Others: Δ𝜙Γ𝑥 = 18𝑘𝑇5Ω𝑦Γ𝑥, Δ𝜙Γ𝑧 = 18𝑘𝑇5Ω𝑦Γ𝑧



Perspectives
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Multi-loop rotation sensor:

▪ Compact sensor: 1.2 ⋅ 10−7 (rad/s)/ Hz within a volume of 20 mm3

▪ Highly sensitive setup: 1.7 ⋅ 10−11 (rad/s)/ Hz within a meter-sized vacuum vessel

▪ Compatible with implementing tilt & gravity measurements in the same setup

▪ Detection of multiple rotation axes by adding perpendicular horizontal beam splitter

[Schubert et al., Sci. Rep. 11, 16121 (2021), CC BY 4.0]



Summary & conclusion
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Features & status:

▪ Atom interferometry: a tool for absolute, long-term stable rotation (and acceleration) measurements

▪ Demonstrated instability: 30 nrad/s in 1 s, 0.1 nrad/s after averaging

▪ Systematic uncertainty: few 100 nrad/s; systematic error limited by wave front distortions

Pathways for improvement:

▪ Ultracold atoms / BEC + DKC

▪ Lattice (re)launch

▪ Large momentum transfer (e.g. twin-lattice atom interferometer)

▪ Multi-loop schemes – up to 1.7 ⋅ 10−11 (rad/s)/ Hz within a meter-sized vacuum vessel



THANK YOU
Christian.Schubert@dlr.de

30



Summary & conclusion
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Features & status:

▪ Atom interferometry: a tool for absolute, long-term stable rotation (and acceleration) measurements

▪ Demonstrated instability: 30 nrad/s in 1 s, 0.1 nrad/s after averaging

▪ Systematic uncertainty: few 100 nrad/s; systematic error limited by wave front distortions

Pathways for improvement:

▪ Ultracold atoms / BEC + DKC

▪ Lattice (re)launch

▪ Large momentum transfer (e.g. twin-lattice atom interferometer)

▪ Multi-loop schemes – up to 1.7 ⋅ 10−11 (rad/s)/ Hz within a meter-sized vacuum vessel

See poster by M. Gersemann Positions available!


