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Hollow Core Photonic Crystal Fibers (HC-PCFs) are a novel type of optical fibers, featuring several physical characteristic making

them suitable for the development of high precision, next generation optical and optomechanical sensors. The hollow core and

single-material structure allow for high power delivery and strongly increase the stability of interferometric fiber optic gyroscopes

(IFOGs) and resonant fiber optic gyroscopes (RFOGs) by reducing non-reciprocal noise due to temperature fluctuations and

electromagnetic radiation [1, 2, 3, 4, 5]. We report on the characterization of optical guiding properties of HC-PCFs as well as their

application as high-resolution temperature sensors through optical trapping and guidance of dielectric probes in the hollow core.
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HC-PCFs can improve accuracy of IFOGs [1, 2, 3]

(Fig. 1) and RFOGs [4, 5] (Fig. 2) by offering

reduced non-reciprocal noise compared to

traditional fibers: light propagation in the hollow

core improves stability to temperature (Shupe

effect) and radiation (Kerr effect). Different HC-

PCFs types may be best suited for IFOGs or

RFOGs depending on favorable parameters, such

as low bending loss or large mode area.
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Optical modes and forces in HC-PCFs

Optical modes propagating in HC-PCFs (fig. 3) can be computed through

numerical simulations (fig. 4): the resulting modes resemble cylindrical

vector modes propagating in traditional fibers. Such modes can be used to

compute optical forces on optically trapped particles through a Generalized

Lorenz-Mie Theory (GLMT) [6]. Expansion of cylindrical EM fields through a

GLMT can be determined analytically [7], allowing for accurate prediction of

size dependent features of optical forces, such as Mie resonances (fig. 5).
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Silica particles, 𝝀 = 𝟏𝟎𝟔𝟒 𝒏𝒎,

Power= 𝟓𝟎 𝒎𝑾, Core Radius = 𝟐𝟖 𝝁𝒎

Trapping particles in HC-PCFs

Particles behave as probes inside HC-PCFs. A dual beam trap can be 

tuned through the numerical aperture of coupled beams [8]. Particles are 

launched through increased in-coupled optical power (fig. 6). A standing 

wave pattern inside the HC-PCF can obtained by counter propagating 

beams in the same polarization state, useful to finely control nanoparticles 

[9]. Multimode conveyor belts can be used to control micron-sized 

particles instead [10] (fig. 7).
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Measuring Temperature with HC-PCFs

Hollow core photonic crystal fibers can be used to 

measure temperature in a non-invasive way through 

the change in viscosity of air (fig. 8). In particular, the 

viscosity of the fluid is related to the damping of the 

particle motion, which can be inferred through time-of-

flight experiments [11] or Brownian motion analysis.
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