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Comparative analysis of local deformations 
between GNSS stations and the Ring Laser 
Gyroscope GINGERINO

References

ω1 =
|v1 |
|r1 |

sin(α1 − θ1)

σω1
= ( ∂ω1

∂v1 )
2

σ2
v1

+ ( ∂ω1

∂r1 )
2

σ2
r1

+ ( ∂ω1

∂α1 )
2

σ2
α1

+ ( ∂ω1

∂θ1 )
2

σ2
θ1

v1 = v2
E + v2

N α1 = arctan ( vN

vE )

 are evaluated with a MonteCarlo method, because they are 
obtained with the “distance” function of Matlab
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Rotation around Gingerino: equations for single stationCurl z-component seen from GNSS calculated in Gingerino position
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To determine the actual 
degree of coherence between 
the two signals, we conducted 
tests using the mscohere 
function along with simulated 
white noises. Employing a 
Monte Carlo simulation 
approach. We enhanced the angular 

speeds obtained through 
the aforementioned 
methods by introducing a 
simulated signal that 
exhibited spikes over a 
duration of 7 days. This 
simulated signal had a 
variable amplitude, 
reaching up to two orders 
of magnitude lower than 
the actual signal.

It is noteworthy that the signals obtained, 
with two different methods, share a 
common feature: they exhibit identical 
amplitudes, with some points even 
reaching peak values, and display 
coinciding trends.
On the left we have a signals of duration about a 
year, while below we have the coherence made with 
the Gingerino signal.

On the right we have the coherence obtained without 
subtracting the contribution of the tides, clear 
structures are clear with the 2-point fit.

On the left, we observe the coherence achieved 
through the resolution of tides in Gingerino. The usual 
tidal peaks are reduced, revealing previously hidden 
structures with periods exceeding 20 days.

We have on the right the Gingerino 
signal in which systematic laser 
corrections and terrestrial rotational 
componete, including polar motion and 
Chandler wobble (obtained from IERS 
measurements [1]) were removed.

As you can see by solving the tides, the 
amplitude drops by an order of 
magnitude, thus becoming compatible 
with the signals obtained from the GNSS 
stations, in which the tides were resolved.

To ensure consistency with the analysis 
conducted on GNSS stations, we applied a 
24-hour average to the Gingerino signal. 
This approach yielded a single data point 
per day, resulting in a total of 359 days of 
signal data that we present here.

The detection of local deformations is a hot topic in 
geodesy. In our analysis for the first time a comparison 
between these instruments has been performed, we 
compare the signal from Gingerino with the ones from 
the GNSS stations, homogeneously selected around the 
position of Gingerino.

At the bottom, we observe coherence across all 
time periods. On the right side, our focus is on 
identifying a shared peak among all periods, 
but no clear topographical pattern emerges.

Using Gingerino position as the 
pole, the rotational component of 
each individual station is derived 
and then the rotation vector 
associated to the area circumscribed 
by the stations is obtained by 
performing a weighted average.

In a method of extracting a rotation vector 
from the displacement signal of GNSS 
stations, we calculate the z-component of the 
curl of the area circumscribed by the 
constellation of stations at Gingerino position 
[3].

Since we are solely considering the stations and 
their positions relative to Gingerino, a direct 
comparison becomes challenging. To address 
this, we employ two distinct methods to compare 
the rotations observed by the GNSS stations with 
the Gingerino signal, which inherently represents 
a rotation.

Noise Simulation

Results and conclusions

At the bottom we have the Gingerino 
signal, obtained starting from the 
previous one, in which we solved and 
subtracted the tides through the use 
of the GOTIC2_mod program [2].
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EWe use GEOCENTRIC 
coordinates to get GNSS station 
speeds for Curl calculation

We use the LONGITUDE and 
LATITUDE coordinates as North-
East axes for the calculation of the 
rotation vector around Gingerino 
seen from the individual stations
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