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"Requirements for space geodesy" or what is the
motivation to build large ring lasers

Establishment of exact positions and the structure of extra-galactic radio sources
(quasars)

Determination of precise global, regional and local 3D coordinates (navigation, global
change)

Determination of the instantaneous earth rotation axis and the rate of rotation as a
function of time. (This allows the transformation between terrestrial and celestial
reference frame)

Determination of the gravity field of the earth and its variation over time (mass
transport phenomena)

What did we find on the roadside?

A lot of ground motion and heaps of seismological signals...



Earth rotation shows a complex behavior
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b) gravitational attraction of sun and
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c) mass redistribution on Earth and the |
fact that the figure axis and the axis WSS
of Inertia are not coinciding, give rise
to polar motion



What signals do we have to expect:

Chandler motion 5.1 ppm Q¢

LoD (fortnightly)
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Bilger et al., "Ring lasers for geodesy,” IEEE Transactions on log f
Instrumentation and Measurement, vol. 44, no. 2, pp. 468-470, (1995)



Very Long Baseline Interferometry provides a very stable link by
looking into the universe outside

LoD:
50 - 100 ws

| Correlator

Orientation:
10 - 100 wmas




There are different concepts for the estimation of the motion of the earth

Star Compass Inertial Compass

The measured rotational motion is not identical, since VLBI is not sensitive to relativistic effects



There are different concepts for the estimation of the motion of the earth

Eos, Vol. 72, No. 49, December 3, 1991

As the World Turns, II

PAGES 550-551

B. Fong Chao

—Come to think of it no one ever said
the Earth'’s rotation could not be measured
with an apparatus in the comfort of a win-
dowless basement.

The measured rotational motion is not identical, since VLBI is not sensitive to relativistic effects



Geodetic Observatory Wettzell...

..one of 6 globally distributed fundamental stations



Sagnac interferometer (1913)

GP-B: 2.56 x 10-!! rad/s/sqrt(Hz)

(1.35 x 10-13 rad/s @ 10h)

PRL 106, 221101 (2011)

PASSIVE

FOG: (large scale factor... but sensitivity, stability

insufficient for geodesy)
AQ <10 x 10-8 rad/s/sqrt(Hz)  (Optics LETTERS 38, 1092-1094 (2013))

externally injected stabilized laser beams:

(concept shown, backscatter the same as in RLGS)
AQ <1 x 10-° rad/s/sqrt(Hz) (Optics LETTERS 44, 2732-2735 (2019))

ACTIVE
Large Ring Laser: operational
1.2 x 10-! rad/s/sqrt(Hz) (PRL 107, 173904 (2011))

(3 x 10-13 rad/s @ 10h)

atom interferometry: (short-term)
6 x 10-10 rad/s/sqrt(Hz) (Class. Quant. Grav. 17, 2385-2398 (2000))

JOSQPhSOI"I effect: delicate + small,
8 x 10-° rad/s/sqrt(Hz) (Rep. Prog. Phys. 75, 016401, (2012))



DAMNNNN N

Large
Ring Lasers




Ring laser essentials

A ring laser gyroscope is defined by a closed light path around a
contour

It contains a laser gain medium (neutral atom gas) all around the cavity
The sensitivity is given by the scale factor
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The gyro is entirely insensitive to translations and has a linear transfer
function

The rotation signal is encoded in frequency modulation (beat note)
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Ring laser essentials

® The experienced rotation rate is entirely a matter
of the cavity

® The enclosed area and the losses determine the
ulfimately achievable sensor resolution

e We use light and optical interference to probe
the rotation sensing ability

e Therefore active and passive systems are entirely
equivalent and this includes FOGs as well.

cp [nr e Things however become tricky when we wish to
AQ = : : :
440\ Pt extract the rotation rate at very high resolution

and stability

/

sensitive parameters




Sagnac interferometry and the ring laser G

For an active cavity, HeNe is the gain medium of choice: It is a neutral atom gas laser with suitable isotopic
shift of ~ 800 MHz to decouple the 2 beams (no mode competition) and ensures a very narrow line-width

Example G (monolithic)

Perimeter: 16 m
Area: 16 m?
Losses: = 46 ppm

circ. power: 153 mW

Q=wt =5 x 10!

AQ = 3.17 10-4 rad/s/sqrt(Hz)

...internal shot noise limit,
but we cannot access that !l



We can only access the light leakage through a
mirror, which is small in order to make the losses
low

This provides the single mode sensor resolution,
where Px now is 28 nW and AQ comes to

8.9 10 x 10-! rad/s/sqrt(Hz)

Further complications are a limited quantum
efficiency 1], of the detector as well as the
contrast in the interferogram (astigmatism)

More issues follow from the intrinsic electronic
noise sources:

detector, digitizer, frequency estimator, coating and
substrate noise (fluctuation, dissipation theorem)

All this only addresses sensitivity. An entirely

different story is sensor stability and accuracy.
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HeNe
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Shawlow - Townes Limit of G is: = 6 uHz

The mechanical limit of the cavity is = 1 kHz

Most of that noise is in “common mode” for Sagnac

ring lasers are perfect spectroscopic systems, because of a very narrow linewidth
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Geodetic signals that we get from the G ring laser
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Heterolithic concept: UG-1/2 RLG with up to 834 m2 of area

Michelson/Gale

. o L4 ouns “‘:@;; wooD
University of Chicago Photographic Archive [apfl-04511r]

UG-2 is a stainless steel rectangular ring laser structure and about 8 orders
of magnitude more sensitive than the Michelson - Gale installation



Heterolithic concept: UG-1/2 RLG with up to 834 m2 of area

Laser Beam

-
-

Terrain and sensor deformation caused by local
tilt generate beam wander, scale factor variation
and a change in sensor orientation

Out-of-plane position (mm)
o
o
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tilt residuals

University of Chicago Photographic Archive [apfl-04509r]
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ROMY - A 4 component ring laser structure

Hand, E. (2017): Lord of the rings; Science; Vol. 356; Issue 6335; pp. 236-238; doi: 10.1126/science.356.6335.236
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Polar motion derived by the ROMY array...
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The literature usually presents precision!
however, we need accuracy and stability and that is much more difficult
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Error contributions

Scale Factor

Effect Value for G

G(?OS Hanchen 1+ 8786-8
Displacement

Refractive Index 1 -6.616e-7

Mirrors and Piasma 1~ 252787

Beam Abberation 1+ 4.11e-8

Error (ppb)

1.6

1.6

0.2

0.3

in the G ring laser gyro

Correction [mHZ]

Laser Dynamics
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Beam intensities have never been equal (nullshift)

Plasma Dispersion Function
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Sensor noise
(mirror substrate, electronics, frequency estimator and finally the earth)

80 | | |

ULE substrates

fused silica substrates

— (8uHz) on low noise detector

58470 58480 58490 58500 58510
Time [mJD]

—> Interferometer is not yet limited by micro-seismics under low noise conditions



ADEV [Q/Q_]

Noise contributions on G...
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quantum noise limit of G
observed G performance

coating and cavity noise



Sensor noise
(mirror substrate, electronics, frequency estimator and finally the earth)

Frequency in Hz

10° 1071 102
10-19 4 ROMY-Z 2019
] — RLAS 2019
— RLNM
0.6
1020 E
0.5
10721 -
>
+
C
Bl o, 0.4 ©
B[N, 107775 a
C >
" +
O —
O
g} 0.3 ©
10723 5 o
] O
el
(al
10_24 i B 02
10_25 4 X - 0.1
‘ _7 //,_J-— e
1026 - . e - - - —_— - 0.0
100 101! 102

Period in seconds Figure courtesy of A. Brotzer



N-S Sensor Tilt [yrad]

O
o

There is a smoking gun in the tiltmeters

O
o

-0.5 L'\,
1.0 |
1.5 |
2.0 |

-2.5 |
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Tiltmeter 5

Tilt from Residuals [urad]
Tiltmeter 1
tmeter 2
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urad
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59550

59650 59750
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The tiltmeters show significant systematics
and their contribution is considerably large

3 nrad in tilt = correspond to 1 uHz in
Sagnac (note that LoD has about 5 uHz,,)

The apparent drift between the tiltmeters is
much larger than the respective deviation in
Sagnac

If we convert the trend of the ring laser
residuals to ftilt, we get the red curve

There is a little more “small scale” variability
In the red curve compared to the various
tiltmeters



rotation noise [rad/sAHz]
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rotation noise [rad/sA/Hz]
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Sum of Geophysical Signals [uHZ]

Orientation related observables for G
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(2 related observable for G from mass transport phenomena

A Length of Day during 2015
15 | | [
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A LoD [uHZ]
o
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-5 ] | |
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For comparison: Q. at the level of 1% requires = 35 nHz resolution and above all accuracy
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The extended ring laser equation for a single component gyro

backscatter mean value

measured correction nullshift bias of Sagnac frequency

beat note correction

\ v /
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Excellent agreement between
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AQ) [prad/s]

Global versus local Measurements (time domain)
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¢ Measurements 1 data point per hour (a) and 1 data point in 3 hours (b)

e LoD signal (black) derived from IERS daily finals (one value per day)



LoD [mS]

Ring Laser Observation of LoD
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The black curve shows the
measurements

The red curve indicates
the LoD signal from the
IERS website

However, we still have a
mix of global and local
rotation to deal with
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Variability introduced by the tilt measurement
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This all said: This is the first ever measurement of the variation in the rotation rate of
the Earth with a local inertial sensor at much higher rate and without smoothing.
Compared to the time series obtained from GNSS and VLBI one has to expect differences.
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Flight Control,
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Significantly reduced gain, but scale factor up
to 20% larger and backscatter much reduced,
due to smaller spot size.
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Spectral Power Density [Hz/sqrt(Hz)]

The highest frequency component in "LoD” is at 1 uHz (fortnightly period)

108 | LoD (IERS) N

107 L

1()'10 | 11 “““ L
1077 10° 10

Frequency [HZ]

ring laser

e A joint plot of IERS data and ring
laser observations clearly shows
that G detects the contribution of
LoD in its measurements

e The SNR is not yet overwhelming,
nevertheless it is the first ever
measurement of LoD from an
inertial sensor

® The seasonal part of LoD is larger
but about 1 decade lower in
frequency
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..but signal SNR depends on the

available gain
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Going to 543 nm is promising, but comes at a price. The gain is 1/17 that of 632.8 nm.
It does not only require a long gain tube, it also causes fancy gas dynamics in the form acoustic resonances in 1
electro magnetic field of the laser excitation.
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Polar Motion and Solid Earth Tides show up in all Gyros from 1 - 400 m2 with
progressive difficulties from lacking stability above 16 m?2



Ring lasers and mirrors
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Figure 4.39 The placement of a strong rare earth magnet behind the mirror holder Mean spot size [mm2]

(see fig. 4.38) caused an offset of about 80 i, which did not depend on the actual
laser beam power.
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Figure 4.40 The magnet was placed with about 20 mm clearance over the plasma
in the gaintube section. This caused an offset in the in the observed beatnote of
more than 1.845 mHz.



In the end we have to find out what is the true "Length of Day” variation
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A Global Temperature [°C]

Global mean surface temperature over the last 24000 years
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System Earth - Relevant Timescales

[ Lithosphere: A

Plate Tectonics < Earthquakes

Millions of Years < several Seconds
cm/year < km/s

-
-

~
J

Hydrosphere:
Sea Level Rise < Tsunami
3 mm/year < 300 m/s

-
-

Atmosphere: k
Climate < Weather
years - decades < hours - days
N y,

— Requirements
Measurement techniques of extremely high resolution and stability

Quantification of very small and slow processes vs. highly dynamic realtime



Friedrich Robert Helmert:
"Geodesy is the science of the measurement and mapping of the earth surface”

We want positioning (navigation) on earth, but our observed targets (satellites, quasars and stars)
are represented Iin space

ITRF solution DTRF2020 ICRF: Space fixed Reference Frame
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ITRF: Earth fixed Reference Frame



Global Geodetic Observing System

> ,Internal” Goal

Evolution of GGOS and the geodetic observation
technologies to establish an Earth fixed reference
frame with a relative accuracy of at least

Geokinematics

109 =1 ppb

10-9

/ Reference
frames

with high spatial and temporal resolution.

> External" Goal

Integration of GGOS as an important Earth Gravity

contributor into Earth System Research rotase. | field

(Modeling of physical, chemical and biological
processes).

Contributions: Mass transport, dynamics, surface
deformations.
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G performance in 2022 (post error correction)
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Relative Sagnac frequency (Af — Af,) / Af,
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