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General Relativity
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• Describes the gravitational interaction  by  spacetime curvature. 
The  foundation is the Equivalence Principle.

• Successfully passes the Solar System Tests

• In a static and spherically Symmetric background

Schwarzschild  Metric



Shortcomings of GR

Large Scales  (IR)                                                                                                       No theory is capable of solving 
these problems at once so far

Ø Universe accelerated expansion
Ø Galaxy Rotation Curve 
Ø Dark Energy
Ø Dark Matter
Ø Tensions of cosmological parameters
Ø H0 tension

Small Scales (UV)
Ø Renormalizability
Ø GR cannot be quantized
Ø GR cannot be treated under the same

standard of other gauge theories
Ø Discrepancy between theoretical

and experimental value of Λ
Ø Spacetime singularities
Ø No quantum description of spacetime
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E. Berti et al. CQG 32 (2015) 243001 

Most theories can be reduced to GR +scalar fields by the Lovelock Theorem
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Most theories can be reduced to the following classes 

Horava-Lifshits Gravity Scalar-Tensor Gravity
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Kinetic term: general function of φ

Both provide the Schwarzschild solution as a particular limit



Scalar-Tensor Gravity

Field equations

Klein-Gordon equation

Properties:

Explain late and early time evolution without DM and DE

Fit the experimental observations at the astrophysical level



Horava-Lifshitz Theory
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Properties:

Effective quantum gravity capable of solving 
the small-scale shortcomings of GR

Lorentz-Invariance emerges at large distances

Successfully passes the Solar System Tests

spherically symmetric
solution:

𝑔!! = (𝑔"") #"=

Constant

Schwarzschild solution:



Is it possible to find out probes and test-beds for 
Theories of Gravity?
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Ø Geodesic motions around compact objects (e.g- SgrA*)

Ø Lense-Thirring effect

Ø Torsion-balance experiments

Ø Microgravity experiments 

Ø Free-fall in atomic physics

Ø Violation of Equivalence Principle 

Ø effective masses related to further  gravitational  degrees of freedom

G. Tino, L. Cacciapuoti, S. Capozziello et al. Prog.Part.Nucl.Phys. 112 (2020) 103772



Lense Thirring Effect
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Correction to the precession of a 
gyroscope near a large rotating mass, 
due to the dragging of the spacetime

Rµ⌫ � 1

2
gµ⌫R =

8⇡G

c4
Tµ⌫
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This effect can be obtained starting from a Kerr-like metric

Angular
Momentum



The typical values of the Newtonian gravitational 
potential Φ are larger than 10−5 in the Solar System (in 
geometrized units, Φ is dimensionless).

Linearization of the metric tensor

Weak-Field limit
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Motivations:
Often exact solutions in TGs cannot be found analytically

Scheme:



Linearization of the metric tensor

• Three potentials arise: two scalar potentials and one vector potential 

• Φ, Ψ are proportional to the power c−2 (Newtonian limit) while Ai is proportional to  c−3 and Ξ to c−4
(post-Newtonian limit)

12

Weak field in  Scalar-Tensor Gravity

Kerr spacetime



The function f, up to the c−4 order, can be developed as:
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Weak field in Scalar-Tensor Gravity

By means of the decomposition of the metric
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Weak field in Scalar-Tensor Gravity

Vector potential

Scalar potential

with the definitions:
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Lense-Thirring precession in Scalar-Tensor Gravity

For fY → 0 i.e. mY → ∞, we obtain the same outcome for the gravitational 
potential of  f(R, ϕ)-theory



Experimental constraints
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Experimental constrains by  GP-B

The  changes in the direction of spin gyroscopes, contained in the satellite orbiting at h 
= 650 km of altitude and crossing directly over the poles, have been measured with 
extreme precision

and 
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The Gravity Probe B (GP-B) four gyroscopes aboard an Earth-orbiting satellite
allowed to measure the frame-dragging effect with an error of about 19%

GR=general relativity
EG= extended gravity
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Experimental constrains: GP-B

Results

1)

2)



The Laser Relativity Satellite (LARES) mission of the Italian Space Agency is designed 
to test the frame dragging and the Lense-Thirring effect, to within 1% of the value 
predicted in the framework of GR

The body of this satellite has a diameter of about 36.4 cm and weights
about 400 kg

It was inserted in an orbit with 1450 
km of perigee, an inclination of 69.5 ±
1 degrees and eccentricity
9.54 × 10−4

It allows to obtain a stronger 
constraint    for mY:

From  which we obtain          mY ≥ 1.2 ×10−6m−1
19

Experimental constrains by LARES

S. Capozziello, G. Lambiase et al. 
Phys.Rev.D 91 (2015) 4, 044012



Summing up, using data from the Gravity Probe B and LARES missions, we obtain  
constraints on mY.

These results show that  space-based experiments can be used to 
test extensively parameters of fundamental theories

LARES and GP-B 
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GP-B LARES

Further limits by GINGER
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GINGER: the case of 
Horava-Lifshitz Gravity



Weak field limit in 
Horava-Lifshitz Gravity
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Linearization of the metric tensor

With similar computations as in the previous case, the ratio between
the Horava-Lifshitz and General Relativity Gyroscopic precession is

𝑎", 𝑎$ constants to be constrained
Gyroscopic precession

G is the effective gravitational constant



Constraining 𝑎!, 𝑎"
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𝑎", 𝑎$ are then related to the potentials and can be constrained by GINGER

Motivations: It has been shown that, in order for
the matter coupling to be consistent with solar
system tests, the gauge field and the Newtonian
potential must be coupled to matter in a specific
way, but there are no indication on how to obtain
the precise prescription from the action principle.
Recently such a prescription has been generalised
and a scalar-tensor extension of the theory has
been developed to allow the needed coupling to
emerge in the IR regime without spoiling the
power-counting renormalizability of the theory.

Matter action

Lapse function

Scalar Potential

Vector
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GINGER measures the difference in frequency of light of two beams circulating in a 
laser cavity in opposite directions. This translates into a time difference between the 
right-handed beam propagation time and the left-handed one 

The difference in time can be linked to the Sagnac frequence𝝮%, measured by GINGER

Splitting in terms of frequency 
between the two beams

Perimeter Laser wavelength

Wavelength difference

P= 20-24 m,  wave length = 632 nm



GINGER in Horava-Lifshitz Gravity
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Sagnac term
Lense-Thirring term• A

• α
• θ
• Ω&
• 𝐼&
• P
• 𝞴

Area encircled by the light beams

Angle between the local radial direction and the normal to the plane of the array-laser ring
Colatitude of the laboratory

Rotation rate of the Earth as measured in the local reference frame
Momentum of Inertia
Perimeter

Laser wavelength

In Horava-Lifshitz, it is



Horava-Lifshitz vs General Relativity
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General Relativity

Horava-Lifshitz Gravity

𝐺 = 𝐺'

𝐺
=
𝐺
'

𝐺 = 𝐺'



Advantages of using GINGER
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• The  precision of GINGERINO is 1/1000 in the geodesic term, 1/100 in the LT term 

• GINGER experiment should overcome such uncertainty providing a precision of 1/1000 in
the LT term

• The presence of two rings yields a dynamical measurement  of the angle 𝛂

Geodesic Term LT Term

Measurement  of  LT term  constrains the value of G,  measurement of  geodesic term 
constrains 𝑎" and 𝑎$
The precision of GINGERINO  close to 10#"( rad/s  corresponds to a precision of 1.4 / 10#)
with respect to the dominant term. 

•

•
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Perspectives

In 𝑓(𝑅, 𝑅*+𝑅*+, φ) gravity, GP-B and LARES satellites provide

constraint on 𝒎𝒚 by GINGER

In Horava-Lifshitz gravity, the weak-field limit provide

constraints on 𝑎", 𝑎$ by GINGER



Perspectives
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• Fixing a1 and a2 by GINGER allows to retain or reject viable theories
• GINGER could select effective models for Quantum Gravity in the weak field limit
• With respect to satellite experiments, results can be tuned and reproduced.


