Earth's Rock'n'Roll:

Measuring rotational motions in Geodesy and Seismology

Heiner Igel ${ }^{1}$, Andreas Brotzer ${ }^{1}$, Felix Bernauer ${ }^{1}$, Sabrina Keil ${ }^{1}$, Chin-Jen Lin¹,9, Frederic Guattari ${ }^{7}$, Fabian Lindner ${ }^{1,3}$, Karl Ulrich Schreiber ${ }^{2}$, Frank Vernon ${ }^{4}$, Joachim Wassermann ${ }^{1}$, Shihao Yuan ${ }^{1}$ and others

[^0]${ }^{4}$ UCSD, La Jolla, CA
${ }^{5}$ UC Santa Barbara, CA
${ }^{6}$ University of Pisa, Italy
${ }^{7}$ iXblue, St. Germain
${ }^{8}$ University of Nantes
${ }^{9}$ Academia Sinica, Taipei

Outline

$>$ How do ring lasers measure Earth's rotation?
> How their noise sparked a new field in seismology (rotational seismology)
$>$ A portable rotation sensor for seismology
$>$ Rotational ground motions, what are they good for?

> Structural inversion
> Volcano seismology
> Seismic source tracking
> Seismic anisotropy and mantle flow
> Planetary seismology
$>$ Ocean bottom seismology
$>$ Earthquake engineering
$>$ Outlook

How to observe Earth's
 (and local ground) rotations
 (without VLBI and satellites)?

Geodetic Observatory Wettzell, SE Germany

Fundamentalstation Wettrel

„FM radio" - Earth's rotation

Rotation rate seismogram

...One person's noise ...

Earth's constant rotation

rotation rate

time
nd local vertical axis after
arthquake December 2004

Sagnac Effect - Measuring Earth's rotation and more ...

A surface of the ring laser (vector)
Ω imposed rotation rate (Earth's rotation + earthquake $+\ldots$)
$\lambda \quad$ laser wavelength (e.g. $632 \mathrm{~nm}, \mathrm{He}-\mathrm{Ne}$)
$P \quad$ perimeter (e.g. 4-36m)
Δf Sagnac frequency (e.g. $348,6 \mathrm{~Hz}$ sampled at 1000 Hz)
G-ring WET (Since summer 2009) resolution down to $\boldsymbol{\sim} \mathbf{0 . 0 7} \mathrm{prad} / \mathrm{s}$ ROMY resolution expected $\sim 0.04 \mathrm{prad} / \mathrm{s}$

Earth‘ Background Rotations

> Background noise for ROMY (top) and G-ring (bottom) in 2019
> Theoretical rotational low noise model for Earth (dashed line)

Measuring the complete rotation vector:
 The ROMY Ring Laser

The ERC ROMY Project

3-component planned -> finally 4 components (redundancy)

Hand, „Lord of the rings", Science, 2017 (video on youtube)

Polar Motion - Rate change (world record, but ...)

Gebauer et al., PRL, 2020, Editor's Highlight

Angular Resolution

Conclusions - Geodetic applications

$>$ Most accurate direct observation of Earth's complete vector of rotation
$>$ Stability over one week less than 0.1 asec of polar motion (3m)
$>4 \times 10-7$ relative resolution of Earth's rotation rate (over one week)
$>$ We observe drifts (settling of concrete structure?)
> Lasing difficult to stabilize due to proximity of resonance frequencies -> split mode (benefit and curse of ring laser size)
$>$ Exact mixing of isotopes for two beam directions critical
$>$ Efficient extraction of Hydrogen atoms crucial (getter)

Future:
$>$ Geometry stabilization for better long term stability and resolution

What about seismology?

seismic instrumentation for ground motion?

Many components
Very sensitive Difficult installation

Nodal arrays Low sensitivity "Cheap"

Single point

... any combination ...

But how?
myshake.berkeley.edu

Billions of sensors

ROMY ring laser

distributed acoustic sensing (DAS) Graphics, silixa.com

Complete ground motion - Translation, strain, rotation

$$
\begin{aligned}
\mathbf{u}(\mathbf{x}+\delta \mathbf{x}) & \approx \mathbf{u}(\mathbf{x})+\mathbf{G} \delta \mathbf{x} \\
& =\mathbf{u}(\mathbf{x})+\boldsymbol{\varepsilon} \delta \mathbf{x}+\boldsymbol{\Omega} \delta \mathbf{x} \\
& =\mathbf{u}(\mathbf{x})+\boldsymbol{\varepsilon} \delta \mathbf{x}+\boldsymbol{\omega} \times \delta \mathbf{x}
\end{aligned}
$$

translation

6 DoF seismic observations for seismology

Ground velocity Seismometer

Rotation rate Rotation sensor

Primer - Rotational Seismology

Plane transversely polarized (S or Love) wave propagating in x-direction with phase velocity c

rotation rate - transverse acceleration

Rotation rate and acceleration should be in phase and the amplitudes scaled by two times the horizontal phase velocity

Real data - P.N.G. M7.6, 2019 (Igel et al., GJI, 2021)

Why 6+ DoF (same ideas apply to strain!)?

6+ DoF point observations provide wavefield information similar to small-scale seismic arrays (slowness, backazimuth, phase separation)
(e.g., Schlüter 1903; Sollberger et al., GJI, 2017; Sollberger et al., Sensors, 2020)

... wide range of applications ...

Seismology needs a portable sensor!

SP2-vertical, $1.0 \mathrm{~Hz}-40 \mathrm{~Hz}, \mathrm{cc}=0.9525$

IS-3A ROTATIONAL SEISMOMETER HIGH-GRADE 3-COMPONENT ミISMOMETER FOR LAND APPLICATIONS zosciences the possibility to explore rotational ground motion. Recognized Ior its mastery of Fiber Optic Gyroscope (FOG), the iXBlue group stands as a ts 30 years' unchallenged expertise, iXBlue revolutionizes geosciences by roduct that seismology has always been looking for. BlueSeis-3A is today able answer to the rotational seismometer need: 3 -axis, broadband, lowge and flat passband solution with "geosciences-ready" interfaces including

BENEFITS

OG] for - Rotation as a new observable in seismology!
-Easy to deploy: no calibration, no tilt range limitation.
insensitive to enviromental conditions
Heading provided by the system

- 2 -in-1: "weak motion" low-noise + "strong motion" dynamic - Plug and play interfaces
ggraphy • Volcanology • Earthquake physics • Geophysical exploration

Measuring site effects in an urban environment

Microzonation Downtown Munich

Single-site seismic tomography

Microzonation Downtown Munich- City Noise

Rotation Rate

The spectral ratio leads to phase velocities -> (dispersion)

Local 1D velocity - 6 DoF and H/N

Keil et al., J. of Seis., 2020
AGU OSPA 2020

Anisotropy from rotations

Anisotropy from rotations

(a)

(b)

> Azimuthal variations of surface wave velocity from point observations of rotations and translations
> Clear evidence for azimuthal anisotropy (upper mantle tectonic flow)

Anisotropy and mantle flow

> Azimuthal variations of surface wave velocity from point observations of rotations and translations
> Clear evidence for azimuthal anisotropy (upper mantle tectonic flow)
> Fast velocity directions compatible with GPS observations

Tang et al. (to be submitted)

Tracking seismic sources

Singe-station speed control (Yuan et al., JGR, 2021)

Caldera collaps: Strong ground motions

Before - After

6 DoF Observations Hawaii

Static Rotation Observations

First dynamic observation of static rotation changes with blueSeis

- Additional constraints on caldera collapse
- Tilt correction for displacement sensors
(Wassermann et al., GRL, 2020)

Not shown here ...

> 6C allows correcting tilt contamination (OBS, strong ground motion) - Lindner et al. (2016), Bernauer et al. (2020a)
> 6C allows new ways of seismic tomography without travel times - Fichtner et al. (2009), Bernauer et al. (2012)
> 6C is interesting for planetary seismology, prototype in development - Bernauer et al. (2020b)
$>6 \mathrm{C}$ is interesting for structural health monitoring - GIOTTO project, see youtube movie (https://youtu.be/szYqnmuEoNw)
> 6 C has benefits when inverting for moment tensors - Donner et al. $(2018,2020)$
> 6C has benefits for finite-source inversion - Bernauer et al. (2014), Reinwald et al. (2016)

Outlook

Robotic seismic networks

> Wave propagation in strongly scattering media
> Coda wave interferometry
> Near surface imaging
> Gradient observations (rotations, strain)
> Characteristic wavefields for target objects
> ice-bearing rocks
> Cavities
$>$ Robotic concepts
$>$ Navigation
> Distributed computing
$>$ Tomography
> Mobility

Monitoring permafrost change - Mt Zugspitze, Germany

(Substantially) increased sensitivity of gradient observations (strain, rotations) w.r.t. near-receiver structure!

Conclusions

$>$ Ring lasers deliver most accurate rotation sensing for geodesy and seismology
$>$ Fibre-optic gyros are the most promising rotation sensing instruments for 6C broadband seismology (but ...)
$>$ Seismology now has a portable broadband rotation sensor (blueSeis-3A family)
$>$ Field studies are only now beginning
$>$ The most promising application domains are:
> Microzonation (in cities)
$>$ Volcano monitoring
$>$ Ocean-bottom seismology
$>$ Earthquake physics (source studies)
$>$ Earthquake engineering (building vibrations)
$>$ Environmental seismology (permafrost, groundwater)
> Planetary seismology (active seismics, lander interaction)
Interested? Check out:
> www.rotational-seismology.org
$>$ www.romy-erc.eu
> https://www.mdpi.com/journal/sensors/special issues/Rotatin Rate Sensors

Thank you for your attention!

[^0]: ${ }^{1}$ LMU Munich, Germany
 ${ }^{2}$ TU Munich, Germany
 ${ }^{3}$ ETH Zurich, Switzerland

