

Earth's Rock'n'Roll: Measuring rotational motions in Geodesy and Seismology

Heiner Igel¹, Andreas Brotzer¹, Felix Bernauer¹, Sabrina Keil¹, Chin-Jen Lin^{1,9}, Frederic Guattari⁷, Fabian Lindner^{1,3}, *Karl Ulrich Schreiber*², Frank Vernon⁴, Joachim Wassermann¹, Shihao Yuan¹ and others

¹ LMU Munich, Germany
 ² TU Munich, Germany
 ³ ETH Zurich, Switzerland

⁴ UCSD, La Jolla, CA
⁵ UC Santa Barbara, CA
⁶University of Pisa, Italy

⁷ iXblue, St. Germain
⁸ University of Nantes
⁹ Academia Sinica, Taipei

Outline

- How do *ring lasers* measure Earth's rotation?
- How their noise sparked a new field in seismology (rotational seismology)
- A portable rotation sensor for seismology
- Rotational ground motions, what are they good for?
 - Structural inversion
 - Volcano seismology
 - Seismic source tracking
 - Seismic anisotropy and mantle flow
 - Planetary seismology
 - Ocean bottom seismology
 - Earthquake engineering
- Outlook

How to observe Earth's (and local ground) rotations (without VLBI and satellites)?

Geodetic Observatory Wettzell, SE Germany

#4

"FM radio" – Earth's rotation

...One person's noise ...

Sagnac Effect – Measuring Earth's rotation and more ...

$$\Delta f_{sagnac} = \frac{4\mathbf{\Omega} \cdot \mathbf{A}}{\lambda P}$$

- A surface of the ring laser (vector)
- Ω imposed rotation rate (Earth's rotation + earthquake +...)
- λ laser wavelength (e.g. 632 nm, He-Ne)
- P perimeter (e.g. 4-36m)
- Δf Sagnac frequency (e.g. 348,6 Hz sampled at 1000Hz)

G-ring WET (Since summer 2009) resolution down to ~0.07 prad/s ROMY resolution expected ~0.04 prad/s

Earth' Background Rotations

- Background noise for ROMY (top) and G-ring (bottom) in 2019
- Theoretical rotational low noise model for Earth (dashed line)

Brotzer et al., 2023 (SRL, submitted)

Measuring the complete rotation vector: **The ROMY Ring Laser**

The ERC ROMY Project

3-component planned -> finally 4 components (redundancy)

Polar Motion – Rate change (world record, but ...)

Gebauer et al., PRL, 2020, *Editor's Highlight*

Angular Resolution

- Most accurate direct observation of Earth's complete vector of rotation
- Stability over one week less than 0.1 asec of **polar motion** (3m)
- ➤ 4 x 10-7 relative resolution of Earth's rotation rate (over one week)
- We observe drifts (settling of concrete structure?)
- Lasing difficult to stabilize due to proximity of resonance frequencies -> split mode (benefit and curse of ring laser size)
- Exact mixing of isotopes for two beam directions critical
- Efficient extraction of Hydrogen atoms crucial (getter)

Future:

Geometry stabilization for better long term stability and resolution

What about seismology?

... seismic instrumentation for ground motion?

Complete ground motion - Translation, strain, rotation

$$\begin{aligned} \mathbf{u}(\mathbf{x} + \delta \mathbf{x}) &\approx \mathbf{u}(\mathbf{x}) + \mathbf{G} \, \delta \mathbf{x} \\ &= \mathbf{u}(\mathbf{x}) + \boldsymbol{\varepsilon} \, \delta \mathbf{x} + \boldsymbol{\Omega} \, \delta \mathbf{x} \\ &= \mathbf{u}(\mathbf{x}) + \boldsymbol{\varepsilon} \, \delta \mathbf{x} + \boldsymbol{\omega} \times \delta \mathbf{x} \end{aligned}$$

6 DoF seismic observations for seismology

Primer - Rotational Seismology

Plane transversely polarized (S or Love) wave propagating in x-direction with phase velocity c

rotation rate – transverse acceleration

Rotation rate and acceleration should be in phase and the amplitudes scaled by two times the horizontal phase velocity

Real data – P.N.G. M7.6, 2019 (Igel et al., GJI, 2021)

Why 6+ DoF (same ideas apply to strain!)?

6+ DoF <u>point observations</u> provide wavefield information <u>similar to small-scale seismic</u> arrays (slowness, backazimuth, phase separation)

(e.g., Schlüter 1903; Sollberger et al., GJI, 2017; Sollberger et al., Sensors, 2020)

... wide range of applications ...

Seismology needs a portable sensor!

SP2-vertical, 1.0 Hz - 40 Hz, cc = 0.9525

IS-3A ROTATIONAL SEISMOMETER

HIGH-GRADE 3-COMPONENT EISMOMETER FOR LAND APPLICATIONS

eosciences the possibility to explore rotational ground motion. Recognized for its mastery of Fiber Optic Gyroscope (FOG), the **iXBlue** group stands as a high-grade applications such as inertial navigation, hydrography and satellite ts 30 years' unchallenged expertise, **iXBlue** revolutionizes geosciences by roduct that seismology has always been looking for. **BlueSeis-3A** is today able answer to the rotational seismometer need: 3-axis, broadband, lowge and flat passband solution with "geosciences-ready" interfaces including ing.

BENEFITS

Rotation as a new observable in seismology!

- Easy to deploy: no calibration, no tilt range limitation, insensitive to environmental conditions
- Heading provided by the system
- 2-in-1: "weak motion" low-noise + "strong motion" dynamic
 Plug and play interfaces

ography • Volcanology • Earthquake physics • Geophysical exploration

OG) for

Measuring site effects in an urban environment

Microzonation Downtown Munich

Single-site seismic tomography

Microzonation Downtown Munich- City Noise

Acceleration

Rotation Rate

The spectral ratio leads to phase velocities -> (dispersion)

Local 1D velocity – 6 DoF and H/V

Anisotropy from rotations

30

Anisotropy from rotations

- Azimuthal variations of surface wave velocity from **point observations** of rotations and translations
- Clear evidence for azimuthal anisotropy (upper mantle tectonic flow)

Anisotropy and mantle flow

- Azimuthal variations of surface wave velocity from **point observations** of rotations and translations
- Clear evidence for azimuthal anisotropy (upper mantle tectonic flow)
- Fast velocity directions compatible with GPS observations

Tang et al. (to be submitted)

Tracking seismic sources

Singe-station speed control (Yuan et al., JGR, 2021)

Caldera collaps: Strong ground motions

Before - After

6 DoF Observations Hawaii

(Wassermann et al., GRL, 2020)

Static Rotation Observations

First dynamic observation of **static rotation changes** with blueSeis

- Additional constraints on caldera collapse
- Tilt correction for displacement sensors

(Wassermann et al., GRL, 2020)

Not shown here ...

- 6C allows correcting tilt contamination (OBS, strong ground motion) Lindner et al. (2016), Bernauer et al. (2020a)
- 6C allows new ways of seismic tomography without travel times Fichtner et al. (2009), Bernauer et al. (2012)
- > 6C is interesting for planetary seismology, prototype in development Bernauer et al. (2020b)
- 6C is interesting for structural health monitoring GIOTTO project, see youtube movie (https://youtu.be/szYqnmuEoNw)
- > 6C has benefits when inverting for **moment tensors** Donner et al. (2018,2020)
- > 6C has benefits for **finite-source inversion** Bernauer et al. (2014), Reinwald et al. (2016)

Outlook

Robotic seismic networks

- > Wave propagation in strongly scattering media
- Coda wave interferometry
- > Near surface imaging
- Gradient observations (rotations, strain)
- Characteristic wavefields for target objects
 - ➢ ice-bearing rocks
 - Cavities
- > Robotic concepts
 - > Navigation
 - Distributed computing
 - Tomography
 - > Mobility

Monitoring permafrost change – Mt Zugspitze, Germany

42

Conclusions

- > Ring lasers deliver most accurate rotation sensing for geodesy and seismology
- Fibre-optic gyros are the most promising rotation sensing instruments for 6C broadband seismology (but ...)
- > Seismology now has a **portable broadband rotation sensor** (blueSeis-3A family)
- Field studies are only now beginning
- The most promising application domains are:
 - Microzonation (in cities)
 - Volcano monitoring
 - Ocean-bottom seismology
 - Earthquake physics (source studies)
 - Earthquake engineering (building vibrations)
 - Environmental seismology (permafrost, groundwater)
 - Planetary seismology (active seismics, lander interaction)

Interested? Check out:

- www.rotational-seismology.org
- www.romy-erc.eu
- https://www.mdpi.com/journal/sensors/special_issues/Rotatin_Rate_Sensors

Thank you for your attention!