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Example: ML for Higgs discovery

15

๏ We were not supposed to discover the Higgs boson as early as 2012 

๏ Given how the machine progressed, we expected discovery by end 2015 /mid 
2016 

๏ We made it earlier thanks (also) to Machine Learning 
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learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement.

The emergence of deep learning
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded.

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56.

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in  
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS.

Computer vision for neutrino experiments
Loosely inspired by the structure of the visual cortex, CNNs use a strategy  
that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 
in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large 
homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses.

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71.

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image 
classification and object detection.

RNNs for beauty-quark identification
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre-  
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced  

Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson

Analysis
Years of data 
collection

Sensitivity  
without machine  
learning

Sensitivity 
with machine 
learning

Ratio 
of P 
values

Additional 
data  
required

CMS24 
H → γγ

2011–2012 2.2σ,  
P = 0.014

2.7σ, 
P = 0.0035

4.0 51%

ATLAS43 
H → τ+τ−

2011–2012 2.5σ,  
P = 0.0062

3.4σ, 
P = 0.00034

18 85%

ATLAS99 
VH → bb

2011–2012 1.9σ,  
P = 0.029

2.5σ, 
P = 0.0062

4.7 73%

ATLAS41 
VH → bb

2015–2016 2.8σ,  
P = 0.0026

3.0σ, 
P = 0.00135

1.9 15%

CMS100 
VH → bb

2011–2012 1.4σ,  
P = 0.081

2.1σ, 
P = 0.018

4.5 125%

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative "gure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%.
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GPT-3: 175 billion parameters (0.16% of the human brain)

Nature: Robo-writers

2023?

GPT-4: 100 trillion?!

https://www.nature.com/articles/d41586-021-00530-0
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• JetClass is inclusive: 
• 10 types of jets 
• Kinematics, 
• PID, 
• trajectory displacement 

• JetClass is large:
• 100M jets for training à 10M each class
• 5M for validation
• 20M for test à 2M each class

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

"Particle Transformer For Jet Tagging" H. Qu, C. Li, S. Qian  

100 million jets for training

https://arxiv.org/abs/2202.03772








No truth label for individual events,  
can only hope to constrain !αS

What  makes  par t ic le  phys ics  spec ia l?

Pdata = αSPS + αBPB

Dijet invariant mass

dPn
data = |MS + MB |2 dp1dp2 . . . dpn

MSMB * +MBMS *



10−18m 10−15m 10−6m 100m

Experimental particle physics workflow

This is what happens in the experiment

This is what we want t know

O(10) O(103) O(1010)
Dimensions



~40 quadrillion collisions recorded at LHC

LumiPublicResults 

CMSOfflineComputingResults 

6

Why simulation ?

pp collisions up to 
production of stable 

particles

detector response 
simulation with GEANT4

Energy deposits→digital 
signals→reconstructed by 
the reconstruction software

Fully detailed simulation is computationally intensive 

• Geant4 enables accurate simulation : 
 - Simulation problem is defined by a set of components / input 
parameters : geometry of the detector, materials, physics…  
 - MC method is used to solve particle transport equations given the input 
parameters  
 - Based largely on first principles, in some cases tuned to test beam data 

• Geant4 is sequential ! 

O(1) trillion simulated events 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Unsupervised

• No signal prior, completely data driven 

 

Weakly supervised

• Requires physics knowledge to define 

regions enriched in signal/background


Fully supervised

• Requires truth labels

• Only possible using simulation


6

Why simulation ?

pp collisions up to 
production of stable 

particles

detector response 
simulation with GEANT4

Energy deposits→digital 
signals→reconstructed by 
the reconstruction software

Fully detailed simulation is computationally intensive 

• Geant4 enables accurate simulation : 
 - Simulation problem is defined by a set of components / input 
parameters : geometry of the detector, materials, physics…  
 - MC method is used to solve particle transport equations given the input 
parameters  
 - Based largely on first principles, in some cases tuned to test beam data 

• Geant4 is sequential ! 
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JET REPRESENTATION: PARTICLE CLOUD

14

Particle Cloud

Jet as a “particle cloud” 

an unordered set of particles, distributed in the η — φ space 

spatial distribution of particles => radiation patterns, aka “substructure”, of jets

proton beams

collision point

outgoing particles

η

ϕ

Jet

η

ϕ

18Jesse Thaler (MIT) — Machine Learning for Fundamental Physics
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7

×

MLJet

First and foremost: 
How to represent the data?
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Image

Image-Based Jet Analysis 3

the detector measurements directly, rather than relying on jet features de-
veloped using physics domain knowledge, additional discrimination power
could be extracted. Deep learning approaches surpass such linear meth-
ods, but build on this notion of learning discriminating information from
detector observables rather than engineered features.

Fig. 1.: An example jet image of a Lorentz boosted top quark jet after
preprocessing has been applied [10].

While designed to take advantage of advances in computer vision, jet im-
ages have notable di↵erences with respect to typical natural images in CV.
Jet images are sparse, with most pixels in the image having zero content.
This is markedly di↵erent from natural images that tend to have all pixels
containing content. Moreover, jet images tend to have multiple localized
regions of high density in addition to di↵usely located pixels throughout
the image, as opposed to the smooth structures typically found in natural
images. An example top quark jet image illustrating these features can
be seen in Figure 1. These di↵erences can lead to notable challenges, for
instance the number of parameters used in jet image models (and conse-
quently the training time) tend to be large to account for the size of the
image, even though most pixels carry no information. Some techniques
exist for sparse-image computer vision approaches [11], but have not been
explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Section 2. The

Convert to 2D/3D image => Computer vision  

then use convolutional neural networks (CNNs) 

but:  

inhomogeneous geometry, high sparsity, …

e.g., de Oliveira, Kagan, Mackey, Nachman, Schwartzman, arXiv: 1511.05190

proton beams

collision point

outgoing particles

η

ϕ

Jet

arXiv:1511.05190 

Image

https://arxiv.org/abs/1511.05190
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quently the training time) tend to be large to account for the size of the
image, even though most pixels carry no information. Some techniques
exist for sparse-image computer vision approaches [11], but have not been
explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Section 2. The
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Sequence

S1 S2 Sn. . .

I1 I2 In. . .
Input

Sequence

LSTM

States

MLP

Output

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson
arXiv: 1607.08633

Convert to a sequence => Natural language processing (NLP) 

recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.

proton beams

collision point

outgoing particles

η

ϕ

Jet

arXiv:1511.05190 

Image Sequence

arXiv:1607.08633 

https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1607.08633
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SequenceJet

Limitations 

while words are naturally ordered in natural languages, particles are intrinsically unordered in a collision event 

an ordering has to be imposed (pT, distance, …), which can limit the learning performance

1

2

3

1 2 3

3

1

2

31 2

=

Permutation 
invariance

How are you

1 2 3

≠

Howare you

1 2 3
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the detector measurements directly, rather than relying on jet features de-
veloped using physics domain knowledge, additional discrimination power
could be extracted. Deep learning approaches surpass such linear meth-
ods, but build on this notion of learning discriminating information from
detector observables rather than engineered features.

Fig. 1.: An example jet image of a Lorentz boosted top quark jet after
preprocessing has been applied [10].

While designed to take advantage of advances in computer vision, jet im-
ages have notable di↵erences with respect to typical natural images in CV.
Jet images are sparse, with most pixels in the image having zero content.
This is markedly di↵erent from natural images that tend to have all pixels
containing content. Moreover, jet images tend to have multiple localized
regions of high density in addition to di↵usely located pixels throughout
the image, as opposed to the smooth structures typically found in natural
images. An example top quark jet image illustrating these features can
be seen in Figure 1. These di↵erences can lead to notable challenges, for
instance the number of parameters used in jet image models (and conse-
quently the training time) tend to be large to account for the size of the
image, even though most pixels carry no information. Some techniques
exist for sparse-image computer vision approaches [11], but have not been
explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Section 2. The
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e.g., de Oliveira, Kagan, Mackey, Nachman, Schwartzman, arXiv: 1511.05190
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Sequence

S1 S2 Sn. . .

I1 I2 In. . .
Input

Sequence

LSTM

States

MLP

Output

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson
arXiv: 1607.08633

Convert to a sequence => Natural language processing (NLP) 

recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.
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JET REPRESENTATION: PARTICLE CLOUD
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Particle Cloud

Jet as a “particle cloud” 

an unordered set of particles, distributed in the η — φ space 

spatial distribution of particles => radiation patterns, aka “substructure”, of jets

proton beams

collision point

outgoing particles

η

ϕ

Jet

η

ϕ

arXiv:1511.05190 arXiv:1607.08633 PRD:101.056019 

Image Sequence Poin t  C loud

https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1607.08633
https://doi.org/10.1103/PhysRevD.101.056019
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Point cloud 

an unordered set of points in space 

typically produced by a LiDAR / 3D scanner 

spatial distribution of points 

=> geometric structure of the objects
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Particle Cloud

Jet as a “particle cloud” 

an unordered set of particles, distributed in the η — φ space 

spatial distribution of particles => radiation patterns, aka “substructure”, of jets

proton beams
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outgoing particles
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ϕ

Jet
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ϕ
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L

p/p

n/n
<latexit sha1_base64="I5feN0vDsiYXYL8H+w04WPPQDZU=">AAACcHicdZHLbhMxFIadoUA73MJlgdQFhggJsUhnKgR0F8EGqV20EmkrxSHyOGcSU99kn0GKRvNwPAZPwJbyAAhP0kLL5UiWPv3nZv8unJIBs+xLJ7mydvXa9fWN9MbNW7fvdO/eOwy28gKGwirr jwseQEkDQ5So4Nh54LpQcFScvG3zR5/AB2nNe1w4GGs+M7KUgmOUJt0Rm3GtOWUshQ/M6RaYrn6hk+e4+xuyyV4LbovZOLtdXbumVcwFxTSTbi/r72T5zsuc/g15P1tGb/CALGN/0v3BplZUGgwKxUMY5ZnDcc09SqGgSVkVwHFxwmcwimi4hjCulyY09GlUprS0Ph6D dKle7Ki5DmGhi1ipOc7Dn7lW/FduVGH5elxL4yoEI1aLykpRtLR1lE6lB4FqEYELL+NdqZhzzwVG3y9tKWFhtIvvCBA/ysxwXrOPFps633bYpGk07NwV+n843O7nWT8/eNEbvFk5R9bJJnlCnpGcvCID8o7skyER5DP5Sr6R08735GHyKHm8Kk06Zz33yaVInv8E2CW+JQ==</latexit><latexit sha1_base64="I5feN0vDsiYXYL8H+w04WPPQDZU=">AAACcHicdZHLbhMxFIadoUA73MJlgdQFhggJsUhnKgR0F8EGqV20EmkrxSHyOGcSU99kn0GKRvNwPAZPwJbyAAhP0kLL5UiWPv3nZv8unJIBs+xLJ7mydvXa9fWN9MbNW7fvdO/eOwy28gKGwirr jwseQEkDQ5So4Nh54LpQcFScvG3zR5/AB2nNe1w4GGs+M7KUgmOUJt0Rm3GtOWUshQ/M6RaYrn6hk+e4+xuyyV4LbovZOLtdXbumVcwFxTSTbi/r72T5zsuc/g15P1tGb/CALGN/0v3BplZUGgwKxUMY5ZnDcc09SqGgSVkVwHFxwmcwimi4hjCulyY09GlUprS0Ph6D dKle7Ki5DmGhi1ipOc7Dn7lW/FduVGH5elxL4yoEI1aLykpRtLR1lE6lB4FqEYELL+NdqZhzzwVG3y9tKWFhtIvvCBA/ysxwXrOPFps633bYpGk07NwV+n843O7nWT8/eNEbvFk5R9bJJnlCnpGcvCID8o7skyER5DP5Sr6R08735GHyKHm8Kk06Zz33yaVInv8E2CW+JQ==</latexit><latexit sha1_base64="I5feN0vDsiYXYL8H+w04WPPQDZU=">AAACcHicdZHLbhMxFIadoUA73MJlgdQFhggJsUhnKgR0F8EGqV20EmkrxSHyOGcSU99kn0GKRvNwPAZPwJbyAAhP0kLL5UiWPv3nZv8unJIBs+xLJ7mydvXa9fWN9MbNW7fvdO/eOwy28gKGwirr jwseQEkDQ5So4Nh54LpQcFScvG3zR5/AB2nNe1w4GGs+M7KUgmOUJt0Rm3GtOWUshQ/M6RaYrn6hk+e4+xuyyV4LbovZOLtdXbumVcwFxTSTbi/r72T5zsuc/g15P1tGb/CALGN/0v3BplZUGgwKxUMY5ZnDcc09SqGgSVkVwHFxwmcwimi4hjCulyY09GlUprS0Ph6D dKle7Ki5DmGhi1ipOc7Dn7lW/FduVGH5elxL4yoEI1aLykpRtLR1lE6lB4FqEYELL+NdqZhzzwVG3y9tKWFhtIvvCBA/ysxwXrOPFps633bYpGk07NwV+n843O7nWT8/eNEbvFk5R9bJJnlCnpGcvCID8o7skyER5DP5Sr6R08735GHyKHm8Kk06Zz33yaVInv8E2CW+JQ==</latexit><latexit sha1_base64="sq3NwMbqYsSgSL8dY37oOFdft70=">AAACcHicdZHdahQxFMezo9U6VrvVG8ELYxdBvNjOFKn2ruiNoBcV3LawWZdM9sxu2nyRnBGWYR7Ox/AJvFUfQMxst9rW9kDgx/98Jf8UTsmAWfatk9y4uXLr9uqd9O7avfvr3Y0HB8FWXsBAWGX9 UcEDKGlggBIVHDkPXBcKDouTt23+8Av4IK35hHMHI82nRpZScIzSuDtkU641p4yl8Jk53QLT1V908gzf/4Ns/KEFt8VsnN2url3TKuacYppxt5f1d7N8dyen/0PezxbRI8vYH3d/s4kVlQaDQvEQhnnmcFRzj1IoaFJWBXBcnPApDCMariGM6oUJDX0WlQktrY/HIF2o 5ztqrkOY6yJWao6zcDnXilflhhWWr0e1NK5CMOJ0UVkpipa2jtKJ9CBQzSNw4WW8KxUz7rnA6PuFLSXMjXbxHQHiR5kpzmp2bLGp822HTZpGw85codfDwXY/z/r5x5e9vTdL61bJY7JJnpOcvCJ75B3ZJwMiyFfynfwgPzu/kkfJk+TpaWnSWfY8JBciefEHV5m90Q==</latexit>

T E H MCollider Event
Collection of points in (momentum) space

Jet





v1 = (E1,px,1,py,1,,pz,1)

v2 = (E2,px,2,py,2,,pz,2)

v3

e1→5 = g(v⃗1,v⃗5)

v5  = (E5,px,5,py,5,,pz,5)
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Fully connected
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vjeij = MLP(vi, vj, vij) vij

e1→5 = MLP(v⃗1,v⃗5)

Lund-like features



 
SOTA: Graph Neural Networks acting on point cloud data


• ParticleNet (GNN on point cloud)  
LundNet (GNN,Lund plane) 
ABCNet (GNN, attention) 
Point Cloud Transformers (transformer, attention)  
ParticleNeXt (GNN, attention, Lund) 
ParT (transformer, attention)
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Fully connected

Aggregate (mean/max/sum)

S B

Fully connected

vi

vjeij = MLP(vi, vj, vij) vij

e1→5 = MLP(v⃗1,v⃗5)

Lund-like features

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/2012.08526f
https://arxiv.org/abs/2001.05311
https://arxiv.org/abs/2102.05073
https://indico.cern.ch/event/980214/contributions/4413544/
https://arxiv.org/abs/2202.03772
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SOTA: Graph Neural Networks acting on point cloud data


• ParticleNet (GNN on point cloud)  
LundNet (GNN,Lund plane) 
ABCNet (GNN, attention) 
Point Cloud Transformers (transformer, attention)  
ParticleNeXt (GNN, attention, Lund) 
ParT (transformer, attention)


 
 
 
 
 
 
 

e1→5 = MLP(v⃗1,v⃗5)
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Fully connected

Aggregate (mean/max/sum)

S B

Fully connected
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https://arxiv.org/abs/2102.05073
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Transformers  and  (se l f - )a t tent ion

(Self-)Attention

• Allows inputs to interact with each other (“self”) and find out who 

they should pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


Google AI blog 

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


xi

xj

Weighted sum over all input vectors:

 

 

Weight (how related inputs are):

 

 

Map to [0,1]:

(Self-)Attention

• Allows inputs to interact with each other (“self”) and find out who 

they should pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


Transformers  and  (se l f - )a t tent ion



xi

xj

Weighted sum over all input vectors:

 

 

Weight (how related inputs are):

 

 

Map to [0,1]:

xj→MLP(xJ)

xi→MLP(xi)

(Self-)Attention

• Allows inputs to interact with each other (“self”) and find out who 

they should pay more attention to (“attention”). 

• Outputs: aggregates of interactions and attention scores


Transformers  and  (se l f - )a t tent ion



xi

xj

Weighted sum over all input vectors:

 

 

Weight (how related inputs are):

 

 

Map to [0,1]:

xj→MLP(xJ)

xi→MLP(xi)

(Self-)Attention

• Allows inputs to interact with each other (“self”) and find out who 

they should pay more attention to (“attention”). 
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ABCNet:  
Pixel intensity =  particle importance w.r.t most energetic particle in jet, from attention weights


No substructure information given,  learned through attention layers!
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8. Visualization

The SA module defines the relative importance between all points in the set through the

attention weights. We can use this information to identify the regions inside a jet that

have high importance for a chosen particle. To visualize the particle importance, the

HLS4ML LHC jet dataset is used to create a pixelated image of a jet in the transverse

plane. The average jet image of 100k examples in the evaluation set is used. For each

image, a simple preprocessing strategy is applied to align the di↵erent images. First,

the whole jet is translated such that the particle with the highest transverse momentum

in the jet is centered at (0,0). This particle is also used as the reference particle from

where attention weights are shown. Next, the full jet image is rotated, making the

second most energetic particle aligned with the positive y-coordinate. Lastly, the image

is flipped in the x-coordinate in case the third most energetic particle is located on the

negative x-axis, otherwise the image is left as is. These transformations are also used in

other jet image studies such as [34, 18]. The pixel intensity for each jet image is taken

from the attention weights after the softmax operation is applied, expressing the particle

importance with respect to the most energetic particle in the event. A comparison of

the extracted images for each SA layer and for each jet category is shown in Fig. 3 .
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Figure 3. Average jet image for each jet category (columns) and for each self-attention
layer (rows). The pixel intensities represent the overall particle importance compared
to the most energetic particle in the jet.

The di↵erent SA layers are able to extract di↵erent information for each jet. In

particular, the jet substructure is exploited, resulting in an increased relevance to harder

subjets in the case of Z boson, W boson, and top quark initiated jets. On the other

hand, light quark and gluon initiated jets have a more homogeneous radiation pattern,

resulting also in a more homogeneous picture.

ABCNet

W� W+

q̄0

q

q̄0

q

AK8

AK4
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https://arxiv.org/abs/2001.05311


Machine learning plays an increasing 
role in all of these steps
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FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-

2212.00046

2018 - CNNs

2019 - Message passing

graphs

2022 - Transformers

~pre-deep learning

Immense progress of machine learning in HEP (and outside, of 
course) over the last years.


Corresponding increase in number of applications and 
sophistication

arXiv:2212:00046 

Physics-informed networks respecting Lorentz group symmetries!

BETTER

https://arxiv.org/abs/2212.00046
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Easy to plot!

(similar to CNN
filter activation)

Ê

Latent space of dim !

S
(

J
)

= F
(

V1, V2, . . . , V!

)

<latexit sha1_base64="CLDgcpZzt8LjDFfYB3vgYAEsbYs=">AAADCXiclVLdihMxFM6Mf2tX3a56502wCLtQSjJuu7MXQlEQ8WpF213oDCWTZrphM5khyQhlyBP4At7qG3gn3voUvoDPYWa6gp2K4IHAxznfd87Jx0kKwbVB6IfnX7t+4+atndud3Tt37+119+9P dV4qyiY0F7k6T4hmgks2MdwIdl4oRrJEsLPk8kVdP3vPlOa5fGdWBYszspQ85ZQYl5rve7tV1HSZqWUSV2gwCo9HI9RHgyDAJ3joAMLDcHhk39oo4csD2OKjJvpbwEYZMReUiOq1tbCWHsJn8GXTo9XiaYBxuNFiGITBychO59j22wP/wQ4cOxKL3Oj/UUVMiOZvh/Nu 7zcBbgN8BXrjh6CJ03n3Z7TIaZkxaaggWs8wKkxcEWU4Fcx2olKzgtBLsmQzByXJmI6rZjELn7jMAqa5ck8a2GT/VFQk03qVJY5ZW6nbtTr5t9qsNGkYV1wWpWGSrgelpYAmh/UJwAVXjBqxcoBQxd2ukF4QRahxh7IxJWUrmRW244zBbRu2wTQYYDTAb4564+drh8AO eAQegwOAwTEYg1fgFEwA9ZT30fvkffY/+F/8r/63NdX3rjQPwEb4338BDDHi8Q==</latexit><latexit sha1_base64="CLDgcpZzt8LjDFfYB3vgYAEsbYs=">AAADCXiclVLdihMxFM6Mf2tX3a56502wCLtQSjJuu7MXQlEQ8WpF213oDCWTZrphM5khyQhlyBP4At7qG3gn3voUvoDPYWa6gp2K4IHAxznfd87Jx0kKwbVB6IfnX7t+4+atndud3Tt37+119+9P dV4qyiY0F7k6T4hmgks2MdwIdl4oRrJEsLPk8kVdP3vPlOa5fGdWBYszspQ85ZQYl5rve7tV1HSZqWUSV2gwCo9HI9RHgyDAJ3joAMLDcHhk39oo4csD2OKjJvpbwEYZMReUiOq1tbCWHsJn8GXTo9XiaYBxuNFiGITBychO59j22wP/wQ4cOxKL3Oj/UUVMiOZvh/Nu 7zcBbgN8BXrjh6CJ03n3Z7TIaZkxaaggWs8wKkxcEWU4Fcx2olKzgtBLsmQzByXJmI6rZjELn7jMAqa5ck8a2GT/VFQk03qVJY5ZW6nbtTr5t9qsNGkYV1wWpWGSrgelpYAmh/UJwAVXjBqxcoBQxd2ukF4QRahxh7IxJWUrmRW244zBbRu2wTQYYDTAb4564+drh8AO eAQegwOAwTEYg1fgFEwA9ZT30fvkffY/+F/8r/63NdX3rjQPwEb4338BDDHi8Q==</latexit><latexit sha1_base64="CLDgcpZzt8LjDFfYB3vgYAEsbYs=">AAADCXiclVLdihMxFM6Mf2tX3a56502wCLtQSjJuu7MXQlEQ8WpF213oDCWTZrphM5khyQhlyBP4At7qG3gn3voUvoDPYWa6gp2K4IHAxznfd87Jx0kKwbVB6IfnX7t+4+atndud3Tt37+119+9P dV4qyiY0F7k6T4hmgks2MdwIdl4oRrJEsLPk8kVdP3vPlOa5fGdWBYszspQ85ZQYl5rve7tV1HSZqWUSV2gwCo9HI9RHgyDAJ3joAMLDcHhk39oo4csD2OKjJvpbwEYZMReUiOq1tbCWHsJn8GXTo9XiaYBxuNFiGITBychO59j22wP/wQ4cOxKL3Oj/UUVMiOZvh/Nu 7zcBbgN8BXrjh6CJ03n3Z7TIaZkxaaggWs8wKkxcEWU4Fcx2olKzgtBLsmQzByXJmI6rZjELn7jMAqa5ck8a2GT/VFQk03qVJY5ZW6nbtTr5t9qsNGkYV1wWpWGSrgelpYAmh/UJwAVXjBqxcoBQxd2ukF4QRahxh7IxJWUrmRW244zBbRu2wTQYYDTAb4564+drh8AO eAQegwOAwTEYg1fgFEwA9ZT30fvkffY/+F/8r/63NdX3rjQPwEb4338BDDHi8Q==</latexit><latexit sha1_base64="m/9yOAvQkiM1IzQxy4IXGAhHNgk=">AAADCXiclVLdatswFJa9vy7dT7pd7kYsDFoIQfKa1L0YlA7G2FXHlrQQmyArcioqy0aSB8HoCfYCu23foHdjt3uKvcCeY7KbweKMwQ4IPs75vnOOPk5SCK4NQj88/9btO3fvbd3vbD94+Ohxd+fJ ROelomxMc5Grs4RoJrhkY8ONYGeFYiRLBDtNLl7X9dNPTGmey49mWbA4IwvJU06JcanZjrddRU2XqVokcYUGo/BgNEJ9NAgCfIiHDiA8DIf79oONEr7YhS0+aqK/AWyUEXNOiajeWQtr6R58Bd80PVotXgYYh2sthkEYHI7sZIZtvz3wH+zAsSMxz43+H1XEhGj+tjfr 9n4T4CbAK9ADqziZdX9G85yWGZOGCqL1FKPCxBVRhlPBbCcqNSsIvSALNnVQkozpuGoWs/CFy8xhmiv3pIFN9k9FRTKtl1nimLWVul2rk3+rTUuThnHFZVEaJunNoLQU0OSwPgE454pRI5YOEKq42xXSc6IINe5Q1qakbCmzwnacMbhtwyaYBAOMBvj9fu/oeGXRFngG noNdgMEBOAJvwQkYA+op74t36V35n/1r/6v/7YbqeyvNU7AW/vdfk3binQ==</latexit>

Va

(

J
)

=
∑

i∈J

Ei Φa(n̂i)

<latexit sha1_base64="+NXHWecmei+FQJ/kuD+SU735mn4=">AAAC8XicnZLNahsxEMe126/U/XLS3noRNQUHglmtE8c5FExLofTkQu2EepdFK2ttEa12kbQBIwS9tm+QW+i1T9QX6BP0Aapdp6Vx2ksHBD9m5j8zGiktOVM6CL55/o2bt27f2brbunf/wcNH7e2d qSoqSeiEFLyQJylWlDNBJ5ppTk9KSXGecnqcnr6q48dnVCpWiPd6VdI4xwvBMkawdq6k/cNETZGZXKSxCXr9EKFhsBf0gsYcHITD8Ghgpwm2UcoWXbih+J24ATbKsV4SzM1ba2Et3YUvYKSqPDEMRkz8VyH7T9U+GvYHhw5CFBwN+ta8TljdeA9G4yVLcDdaYm2ETdhu0u78EsLrgC6hM3oCGhsn7e/RvCBVToUmHCs1Q0GpY4OlZoRT24oqRUtMTvGCzhwKnFMVm2ZOC587zxxmhXRHaNh4/1QYnCu1ylOXWV9UbcZq599is0pnw9gwUVaaCrJulFUc6gLWTw3nTFKi+coBJpK5WSFZYomJdh/iSpeMrkRe2pZbDNpcw3WYhj0U9NC7/c7o5XpD YAs8Bc9AFyBwCEbgDRiDCSDeB++j98n77Cv/3L/wv6xTfe9S8xhcMf/rT68o34U=</latexit><latexit sha1_base64="+NXHWecmei+FQJ/kuD+SU735mn4=">AAAC8XicnZLNahsxEMe126/U/XLS3noRNQUHglmtE8c5FExLofTkQu2EepdFK2ttEa12kbQBIwS9tm+QW+i1T9QX6BP0Aapdp6Vx2ksHBD9m5j8zGiktOVM6CL55/o2bt27f2brbunf/wcNH7e2d qSoqSeiEFLyQJylWlDNBJ5ppTk9KSXGecnqcnr6q48dnVCpWiPd6VdI4xwvBMkawdq6k/cNETZGZXKSxCXr9EKFhsBf0gsYcHITD8Ghgpwm2UcoWXbih+J24ATbKsV4SzM1ba2Et3YUvYKSqPDEMRkz8VyH7T9U+GvYHhw5CFBwN+ta8TljdeA9G4yVLcDdaYm2ETdhu0u78EsLrgC6hM3oCGhsn7e/RvCBVToUmHCs1Q0GpY4OlZoRT24oqRUtMTvGCzhwKnFMVm2ZOC587zxxmhXRHaNh4/1QYnCu1ylOXWV9UbcZq599is0pnw9gwUVaaCrJulFUc6gLWTw3nTFKi+coBJpK5WSFZYomJdh/iSpeMrkRe2pZbDNpcw3WYhj0U9NC7/c7o5XpD YAs8Bc9AFyBwCEbgDRiDCSDeB++j98n77Cv/3L/wv6xTfe9S8xhcMf/rT68o34U=</latexit><latexit sha1_base64="+NXHWecmei+FQJ/kuD+SU735mn4=">AAAC8XicnZLNahsxEMe126/U/XLS3noRNQUHglmtE8c5FExLofTkQu2EepdFK2ttEa12kbQBIwS9tm+QW+i1T9QX6BP0Aapdp6Vx2ksHBD9m5j8zGiktOVM6CL55/o2bt27f2brbunf/wcNH7e2d qSoqSeiEFLyQJylWlDNBJ5ppTk9KSXGecnqcnr6q48dnVCpWiPd6VdI4xwvBMkawdq6k/cNETZGZXKSxCXr9EKFhsBf0gsYcHITD8Ghgpwm2UcoWXbih+J24ATbKsV4SzM1ba2Et3YUvYKSqPDEMRkz8VyH7T9U+GvYHhw5CFBwN+ta8TljdeA9G4yVLcDdaYm2ETdhu0u78EsLrgC6hM3oCGhsn7e/RvCBVToUmHCs1Q0GpY4OlZoRT24oqRUtMTvGCzhwKnFMVm2ZOC587zxxmhXRHaNh4/1QYnCu1ylOXWV9UbcZq599is0pnw9gwUVaaCrJulFUc6gLWTw3nTFKi+coBJpK5WSFZYomJdh/iSpeMrkRe2pZbDNpcw3WYhj0U9NC7/c7o5XpD YAs8Bc9AFyBwCEbgDRiDCSDeB++j98n77Cv/3L/wv6xTfe9S8xhcMf/rT68o34U=</latexit><latexit sha1_base64="MYHo9ojyANJmJN/z1V+vmWKEZZg=">AAAC8XicnZLNahsxEMe126/U/YjbHnsRNQUHglmtU8c5FEJKofTkQu2EepdFK2ttEUm7SNqCEYJemzfILfTaJ+oL9An6ANU6bmmc9tIBwY+Z+c+MRsorzrSJom9BeOPmrdt3tu627t1/8HC7/ejx RJe1InRMSl6qkxxrypmkY8MMpyeVoljknB7np6+a+PFHqjQr5XuzrGgq8FyyghFsvCtr/7DJqshUzfPURr1+jNAw2o160co8vIiH8cHATTLskpzNu3BD8TtxA1wisFkQzO1b52Aj3YEvYaJrkVkGEyb/q5D7p2oPDfuDfQ8xig4GfWdfZ6xpvAuT0YJluJsssLHSZWwna3d+CeF1QGvogLWNsvb3ZFaSWlBpCMdaT1FUmdRiZRjh1LWSWtMKk1M8p1OPEguqU7ua08Hn3jODRan8kQauvH8qLBZaL0XuM5uL6s1Y4/xbbFqbYphaJqvaUEkuGxU1h6aEzVPDGVOUGL70gIliflZIFlhhYvyHuNKloEspKtfyi0Gba7gOk7iHoh56t9c5PFqvaAs8 Bc9AFyCwDw7BGzACY0CCD8Gn4HNwFurwPLwIv1ymhsFa8wRcsfDrTzZ83zE=</latexit>

Energy Flow Networks
Architecture designed around symmetries and interpretability

?
ML

HEP

[Komiske, Metodiev, JDT, JHEP 2019; see also Komiske, Metodiev, JDT, JHEP 2018; code at energyflow.network; 
special case of Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, Smola, NIPS 2017;

other set-based architecture in Qu, Gouskos, PRD 2020; Mikuni, Canelli, EPJP 2020; Dolan, Ore, arXiv 2020]
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Psychedelic Network Visualization

Singularity structure of QCD!

arxiv:1810.05165 

Energy  F low Networks

https://arxiv.org/abs/1810.05165


https://arxiv.org/abs/1804.06913
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Usual paradigm: train in simulation, test on data.

If data and simulation differ, this is sub-optimal!

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

BOOST 2018, Nachman et al. 

Tra in  on  s imula t ion ,  tes t  on  data

I f  da ta  and  s imula t ion  d i f fer,  th is  is  sub-opt imal !

https://indico.cern.ch/event/649482/contributions/2993322/attachments/1688082/2715256/WeakSupervision_BOOST2018.pdf


Is Nature Herwig++, MadGraph or Pythia? LO(Pythia) or NLO (Powheg)?


Dijet invariant mass (GeV)
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QCD Powheg
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https://indico.cern.ch/event/853615/attachments/2037283/3411394/CWoLa_5.13.20_v2.pdf


22

Learning Setup

CWola hunting in ATLAS 

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d
/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

/Pictures/URlogo.png

6/14

Searching for Dark Matter with Semi-Visible Jets at CMS

Semi-Visible Jets

SVJ Parameters

The phenomenology can be characterized by 5 free parameters:

Mass of the Mediator: mZ 0

Production Rate:
�Z 0 ⇥ Br(Z 0 ! ��†)

Composition of SVJs as the rinv
parameter varies.

Mass of the Dark Hadrons:
mdark

Dark Hadrons are mass
degenerate.
Dark Quarks have half the
mass of Dark Hadrons.

Fraction of Dark Hadrons
that are Stable: rinv

h Ndark
stable

Ndark
unstable+Ndark

stable
i

Key parameter to
distinguish this analysis
from others.

Coupling Strength of the
Dark QCD Force: ↵d

S

B

LABEL = SIGNAL
LABEL = BKG

https://indico.cern.ch/event/853615/attachments/2037283/3411394/CWoLa_5.13.20_v2.pdf


• Significances of data in signal regions with respect to background-only fit
• Signal regions stitched together -> can be discontinuous

40

Fits in Signal Regions

[16]
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Similar techniques used for H → ττ  by ATLAS and CMS!
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40% increase in signal efficiency
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learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement.

The emergence of deep learning
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded.

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56.

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in  
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS.

Computer vision for neutrino experiments
Loosely inspired by the structure of the visual cortex, CNNs use a strategy  
that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 
in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large 
homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses.

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71.

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image 
classification and object detection.

RNNs for beauty-quark identification
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre-  
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced  

Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson

Analysis
Years of data 
collection

Sensitivity  
without machine  
learning

Sensitivity 
with machine 
learning

Ratio 
of P 
values

Additional 
data  
required

CMS24 
H → γγ

2011–2012 2.2σ,  
P = 0.014

2.7σ, 
P = 0.0035

4.0 51%

ATLAS43 
H → τ+τ−

2011–2012 2.5σ,  
P = 0.0062

3.4σ, 
P = 0.00034

18 85%

ATLAS99 
VH → bb

2011–2012 1.9σ,  
P = 0.029

2.5σ, 
P = 0.0062

4.7 73%

ATLAS41 
VH → bb

2015–2016 2.8σ,  
P = 0.0026

3.0σ, 
P = 0.00135

1.9 15%

CMS100 
VH → bb

2011–2012 1.4σ,  
P = 0.081

2.1σ, 
P = 0.018

4.5 125%

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative "gure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%.
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The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

78 vertices 
(average 60)

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

200 vertices 

(average 140)

LHC

2022 2023 2024 2025 2026 2027 2028 2029 … 2037 2038
LHC MAJOR UPGRADE HL-LHC

Run 3 Run 4+5

6 cm



High Luminos i ty  LHC

CMS HGCAL TDR

Must maintain physics acceptance → better detectors


CMS High Granularity (endcap) calorimeter

• 85K (today) → 6M (HL-LHC) readout channels


More collisions  
More readout channels 

 
 
 
 
 
 
 

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf


CMSOfflineComputingResults 

Comput ing  resources

 
… flat computing budget 


Need innovation and new techniques to maintain physics reach  
while staying within throughout requirements!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Blabla

• Dodge

• Dodge


Blabla

• Dodge
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Todays  a lgor i thms wi l l  no t  be  susta inable  in  HL-LHC!  
 

→  U t i l i se  modern  Machine  Learn ing  to  become 
 

fas ter  
be t ter  

and  do  more  
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On-detec tor  ML

 
~10 billion collisions per second


~10 PB of data per second




Saving all collisions not useful  
(even if we could)!

 

 
 
 
 

Higgs produced in  
~1 out of 109 collisions 

13 TeV

gg→H

Total
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On-detec tor  ML

~10 billion collisions per second 
~10 PB of data per second
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On-detec tor  ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data temporarily stored  
in detector electronics for ~12.4 µs L1 trigger:


Decide which 
event to keep 
within O(1) µs

63 Tb/s to L1



Blabla

• Dodge

• Dodge


Blabla

• Dodge

• Dodge


 
 
 
 
 
 
 

On-detec tor  ML TIER 0: ∞

High Level Trigger:  
Latency 0(100) ms

DATA

99.75% of events rejected!


750 kHz

~Tb/s

DATA

99.982% of events rejected


7.5 kHz

~Gb/s

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

~0.02% of collision events remaining
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On-detec tor  ML

Level-1 trigger:  
Latency O(1) µs 

TIER 0: ∞

High Level Trigger:  
Latency 0(100) ms

DATA

~100 kHz


~Tb/s

Detector:

40 MHz

~Pb/s

DATA

~1 kHz

~Gb/s



Level-1 trigger:  
Latency O(1) µs Detector:


40 MHz

~Pb/s

Fast inference on specialised hardware

FPGA inferenceASIC inference



HL-LHC:  CMS L1

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY:

370 FPGAs MUONS:


96 FPGAs

TRACKING

174 FPGAs

12.5 µs

Trigger 
accept/reject

5 µs

PARTICLE 
FLOW:


66 FPGAs


GLOBAL 
TRIGGER:

24 FPGAs


*54 for HGCAL only!

63 Tb/s
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Idea l ly Real i t y



Eff i c ient  NN des ign  for  edge  compute

Before deploying any DNN on chip (CMS trigger, iPhone), must make it efficient!

• Big engineering field in its own right


During training

• Quantization: do you really need 32-bit FP precision?

• Pruning: removal insignificant synapses 

• Knowledge distillation


Post-training

• Parallelisation (lower latency ↔ more resources)


From 8 GPU server to tiny FPGA!



Quant iza t ion

Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

Small bit width, severe drop in accuracy

arXiv:1804.06913 

arxiv:2004.08906 

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2004.08906
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〈16,6〉〈8,1〉 〈8,1〉 〈8,1〉Forward  pass  →

←  Back  propagat ion
FP 32 FP 32 FP 32FP 32


FP 32FP 32 FP 32 FP 32

Quant iza t ion-aware  t ra in ing

FP 32


〈4,0〉



 
QKeras 

Quantization-aware 
training

 hls4ml 
Fixed-point translation


Parallelisation 
Firmware generation

QKeras 
model

  

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5
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With these variables as handles on how to control the implementation of the network, we monitor the
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arXiv:1804.06913 

Nature Machine Intelligence 3 (2021)

Post-training quantization

13 bits

QAT

6 bits

https://arxiv.org/abs/1804.06913
https://www.nature.com/articles/s42256-021-00356-5


ML for  compress ion

CMS High Granularity calorimeter

• 6.5 million readout channels, 50 layers

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN



ML for  compress ion

CMS High Granularity calorimeter

• 6.5 million readout channels, 50 layers

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

BUT:  Cannot  read  out  a l l  these  channels  
fas t  enough for  L1  to  t r igger !



ML for  compress ion

200 vertices

Encoder architecture

4

Must compress ON DETECTOR

• High radiation

• Cooled to -30 → low power

• 1.5 µs latency
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Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC
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To L1



ML for  compress ion

200 vertices

Encoder architecture

4

Encoded dataEncoded data

ENCODE DECODEBottleneck

(lower dim.  

space)

Var ia t ional  Autoencoder

Encoder architecture

4

ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf


Transmit encoded data!

Encoded data

ML for  compress ion
Encoder architecture
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V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC
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ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf


Transmit encoded data!

Encoded data

ML for  compress ion
Encoder architecture
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Encoded data
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Encoder architecture

4

48 trigger cells 16 ReLU activated nodes

ML for  compress ion

ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf


ML for  reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data

On FPGA: 3.5 µs to cluster energy deposits



ML for  reconstruc t ion
EPJC Vol 79 608 (2019)  

2 charged pions

v1

v2

v3

On FPGA: 3.5 µs to cluster energy deposits

• Graph Neural Networks (GarNet/GravNet) for fast clustering of irregular geometry detectors

v1'

v2'

v3'

vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)

https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9
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Searches for new particles at LHC

4

EXCLUDED

EXCLUDED EXCLUDED

EXCLUDEDEXCLUDED

EXCLUDED EXCLUDED

EXCLUDED

EXCLUDED EXCLUDED

EXCLUDED
EXCLUDED

EXCLUDED
EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED



Blabla

• Dodge

• Dodge


Blabla

• Dodge

• Dodge


 
 
 
 
 
 
 

Searches for new particles at LHC
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ARE WE LOOKING IN THE WRONG WAY?



Bias  in  par t i c le  phys ics

CERN Summer student 2012

CERN Summer student 2012

Replaced by:

Standard Model 
(simulated events)

Signal hypothesis  
(simulated events)

Interesting regionNot interesting region

Some variable of interest

5



Need to  exp lo i t  the  
fu l l  capabi l i t ies  
o f  the  LHC and be  
more  gener ic !

CERN Summer student 2012



Limi ta t ions  o f  current  t r igger

CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA

- - SELECTED DATA

- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >99%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA

- - SELECTED DATA

- - POSSIBLE NP SIGNAL

Look at data rather than defining signal hypothesis a priori

• Can we “classify” objects/events? 

 

 
 
 
 
 
 
 
 
 
 

anomalous data
noise 

normal data 



Autoencoders: Learns from data

• Trains unsupervised

• Learns to compress, then reconstruct data

• Often used for financial fraud detection 


• Low rate of anomalous events versus high rate “background”

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ML for  anomaly  detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first
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in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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When performing the following multiplication
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C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a
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corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

 
1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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x
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µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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in large datasets. In Fig. 4 we provide an example of such a t-SNE using 
simulated neutrino interactions at the NOvA experiment.

Conclusions and outlook
Within the next decade the LHC will increase the rate at which it 
collides protons by an order of magnitude, resulting in much higher 
data rates and even more complex events to disentangle. Neutrino-
physics detectors will continue to increase in size and complexity. The 
tasks discussed in this Review will become even more challenging. 
Fortunately, machine learning is advancing rapidly, producing tools 
that are potentially applicable to a wide array of tasks in particle physics. 
By continuing to map the challenges faced in particle physics to those 
addressed by the machine-learning community, it is possible to turn 
the latest developments in machine learning into tools for discovery in 
high-energy particle physics, such as by conducting machine-learning  
competitions with LHC benchmark datasets (https://www.kaggle.
com/c/trackml-particle-identification). We briefly discuss a few poten-
tial future applications below, which have already shown promising 
results for simplified test cases.

The machine-learning community continues to discover powerful 
methods for processing and classifying complex data with inherent 
structure, such as trees and graphs. Complex data structures are prev-
alent at the LHC. The set of particles that make up a jet can be mapped 
to a tree structure. We have already discussed how RNNs can be used 
to identify jets that originate from beauty quarks, but this is just one 
of the many potential applications of RNNs, or of graph convolutional 
networks, to the study of jets87.

Generative models, which learn the probability distribution of fea-
tures directly, are capable of producing simulated data that closely 
approximate experimental data using tools such as generative 

adversarial networks88 and variational auto-encoders89,90. A generative 
adversarial network uses one neural network, the ‘generator’, to generate 
potential data samples using random noise as input, while a second net-
work, the ‘adversary’, penalizes the generator during training if the data 
that it generates can be distinguished from the training data. Although 
they are difficult to train, these networks can potentially generate large 
data samples much faster than can existing simulation tools, offering 
the possibility of providing the orders-of-magnitude-larger simulation 
samples that will be required by future experiments. Early work in this 
direction is encouraging63,91,92, demonstrating that accurate simulations 
of a simplified calorimeter can be produced while achieving a marked 
decrease in the computational resources required.

The adversarial approach can also be applied to training classifiers 
with the ability to enforce invariance to latent parameters. This repre-
sents a new way of making classifiers robust against systematic uncer-
tainties93 and is a viable approach to avoid biasing a physical feature 
such as mass65. Several promising alternatives are also being investi-
gated94–97, some of which have been used for analysis at LHCb98. All 
of these approaches share the common theme of altering the training 
of the algorithms to reduce the potential bias learned. These are only 
a few of the machine-learning developments that are revolutionizing 
data interpretation in particle physics, greatly increasing the discovery 
potential of present and future experiments.
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Qx neutral current

QW charged current

Qe charged current

QP charged current

Fig. 4 | Exploring NOvA’s event-selection neural network using  
t-SNE. The features extracted using NOvA’s neutrino-interaction CNN 
are projected into a two-dimensional space using the t-SNE method. 
The points represent events from the CNN training sample, with the 
colours denoting the true event types: muon-neutrino (νµ) charged-
current interactions (dark blue), electron-neutrino (νe) charged-current 
interactions (light blue), tau-neutrino (ντ) charged-current interactions 
(yellow) and various neutrino (νx) neutral-current interactions (red). 

The subplots show example event topologies from points in the two-
dimensional t-SNE space, with the intensity of the colour indicating the 
amount of energy deposited and the axes denoting the spatial location of 
the charge deposits in the detector. The various types of event are clustered 
into distinct regions in the horizontal direction, while the multiplicity of 
the particles in each event is found to be correlated with the location of the 
events in the vertical direction.
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Data challenge on real-time anomaly detection

• Dataset:  Nature Scientific Data (2022) 9:118  


Tutorial: Anomaly detection on FPGA with hls4ml


Help us find new physics!

ADC 2021

mpp-hep.github.io/ADC2021/ 

https://www.nature.com/articles/s41597-022-01187-8.pdf
github:thaarres/quantumUniverse_pynqZ2
https://mpp-hep.github.io/ADC2021/
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Graph Deep Neural Networks:“fast” approximations of ParticleFlow
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One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).
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One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and 
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates 
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show 
the ECAL detector surface (cyan) and the muon stations (blue).

Particle 
interaction  
& detection

Detector 
measurements

“True” or 
generated particles PF candidates

Particle-flow 
reconstruction

Graph neural network

muon
neutral 
hadron
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photon

MLPF candidates

Baseline PF, adapted from
B. Mangano for CMS, 2013
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Compare  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MLPFAn overview of the MLPF approach. Calorimeter clusters 
and tracks are used as the input to the MLPF algorithm. 
The predictions from the model are compared to ground 
truth particles. In this iteration of MLPF, we use the 
reconstructed particles from the current baseline PF 
algorithm as the ground truth. This means that the full 
reconstruction chain can be exercised with a realistic 
ground truth, but also that the physics performance of 
this training cannot exceed baseline PF by construction. 
In a future iteration, it is possible to train the model 
against a generator-level ground truth consisting of 
stable MC particles to potentially improve the physics 
performance with respect to the baseline PF.
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Classical Particle Flow Graph Neural Network

ML for  fas t  reconstruc t ion

https://arxiv.org/abs/2101.08578






Backup



FPGAs as  A I  acce lera tors

C. Beteta, I. Bezshyiko, N. Serra

Particle flow 

17 July, 2014 CMS induction ,  T. Camporesi 32 

At LHC, DAQ FPGAs are idle ~50% of the time (no collisions)

• Could these be utilised for co-processing?

• Running AI inference for reconstruction tasks!


 
 
 
 
 
 
 

DAQ CO-PROCESSING



More and more dedicated AI processors on the market

• We should explore these to speed up our inferences!


Xilinx Versal AI processors

• Example Xilinx ACAP board: 400 AI processors, ~2M logic cells (FPGA),  

2k DSPs, Arm CPU, Arm RPU

• Data can move back and forth between AI Engines and FPGA


Currently explored for real-time tracking in trigger application

• Interaction Network for pattern recognition (similar to DeZoort et al)

• Deployed on  Xilinx Versal VC1902 ACAP


 
 
 
 
 
 
 

GNNs with Versal AI, P. Schwaebig Hardware :  A I  eng ines

https://doi.org/10.1007/s41781-021-00073-z
https://indico.cern.ch/event/1156222/contributions/5062808/attachments/2521174/4335154/slides_fastml_workshop_2022_.pdf


Semantic segmentation for autonomous vehicles

Seizure Predicting Brain Implant 
 
 
 
 
 
 
 
 
 
 
 

…and more!

N. Ghielmetti et al. 

NN accelerator for quantum control

• Putting control in cryostat  

(e.g optimal pulse parameters)


D Xu et al. 

Other examples

• For fusion science phase/mode monitoring 

• Crystal structure detection 

• Triggering in DUNE 

• Accelerator control 

• Magnet Quench Detection

• MLPerf tinyML benchmarking 

• Food contamination detection 

• etc…. 


 

W. Lemaire et al. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
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from the proton–proton collision. Because jets typically contain 
between 10 and 50 particles, the number of potential discriminating 
features varies on a per-jet basis. Traditional jet-identification algo-
rithms rely on either identifying secondary production points explicitly 
from the crossing of particle trajectories, a highly challenging task, or 
compressing the information with engineered features and neglecting 
the correlations between particles when using single-particle features. 
Although such algorithms have been combined with machine learning 
for some time75,76, machine learning could also be used to improve 
identification by using the low-level particle features within a jet.

RNNs have proven to be extremely successful at processing long 
sequences of data, most famously acting as the core of Google’s cur-
rent translation service47. RNNs process sequences in such a way that 
information across the entire sequence can be accumulated and used. 
Applying an RNN to jet classification requires the particles in the jet to 
be ordered to form a sequence, such as by ranking them by how incom-
patible they are with originating from the proton–proton collision. A 
set of features for each particle is provided to the RNN, which is trained 
to discriminate between beauty-quark jets and all other types of jet. The 
use of an RNN at the ATLAS experiment reduced the misidentifica-
tion rate by a factor of four relative to a non-machine-learning-based 
algorithm77. When the RNN is itself used as an input feature in the sub-
sequent training of a BDT or neural network, the misidentification rate 
was reduced by a factor of three relative to the machine-learning result 
without the use of the RNN as an input feature78. Similar approaches 
are also being explored at the CMS experiment79; more sophisticated 
RNN structures have been studied in a simplified setting and show 
promising results80.

Training and validation
The machine-learning algorithms used in particle physics are typically 
trained using supervised learning81 and data samples for which the true 
origins, identities and properties of the particles are known a priori. 
The algorithms learn to identify patterns in the training data, mak-
ing it possible for them to predict information about particles in data 
samples for which expert labelling of data is impossible. It is vital that 
any machine-learning tool undergoes rigorous validation and testing 
and that the uncertainty on its performance is well understood. There 
is always the possibility that some features used by a machine-learning 
algorithm are not properly modelled in the training samples, which—if 
not properly accounted for—could lead to a false discovery. Ultimately, 
we use machine-learning tools to minimize uncertainties; the validation  

procedures discussed in this section are important for gaining confi-
dence in the behaviour of these tools.

Learning from simulation
The need to understand what signals will look like in the detectors and 
what other processes can mimic the signals has led to the development 
of high-quality simulation tools. Furthermore, the standard model pro-
vides accurate predictions of the rates and kinematic distributions of 
many of the processes that can mimic interesting signatures (referred 
to as backgrounds) and that contribute to particle-physics data sam-
ples, providing important benchmarks for validating the simulation 
tools and understanding their uncertainties. Therefore, simulated 
data samples are often used to train the machine-learning algorithms 
because in such samples all information is known by construction. 
An important exception is that it is often possible to obtain highly 
pure background-only data samples, such as by using events collected 
under different experimental conditions, and such samples are often 
used as background samples during training. A hybrid approach is also 
possible. The MicroBooNE CNN discussed above was trained using 
simulated neutrino interactions overlaid on cosmic-ray background 
images taken with the real detector.

Testing for bias
The quality and robustness of all machine-learning tools are vali-
dated using well-known reactions recorded by the experiments. One 
approach, which is used by all LHC experiments82,83, involves con-
structing data samples in which the data are fully understood without 
the use of machine learning. For example, the LHCb experiment uses 
J/ψ → µ+µ− decays to validate its muon-identification neural network 
(µNN)32; J/ψ is a copiously produced charm–anticharm bound state, 
which can be identified with 99.9% purity when basing a selection cri-
terion on the µNN response to either the antimuon (µ+) or muon (µ−). 
The identity of the other particle is therefore known without using the 
µNN, providing an unbiased data sample with which the performance 
of the µNN can be studied. Domain-specific knowledge is then used 
to transfer what is learned on these validation samples, in terms of 
both the expected performance and its uncertainty, to any analysis that 
uses that specific machine-learning algorithm. In the case of the µNN, 
the algorithm is studied in ranges of the values of muon and event-
level properties and the response of the detector within these ranges 
is assumed to be independent of the process that produces the muon.

Another approach involves hybrid events, whereby the data are aug-
mented with simulations to produce a test sample that mimics a signal. 
One example used by NOvA84 takes abundant and pure muon-neutrino 
charged-current data and replaces the detected muon with a simu-
lated electron. These hybrid events allow the performance of NOvA’s 
machine-learning algorithms to be studied on rare electron-neutrino 
charged-current interactions, which are expected to look identical to 
muon-neutrino charged-current interactions in the detector apart 
from the muon-to-electron swap. Similar techniques were used for 
the H → τ+τ− decay by ATLAS43 and CMS85.

The approaches presented above are reminiscent of the procedures 
used to characterize the performance of complex detectors in past  
decades. Alternatively, tools developed by the machine-learning 
community can be used to probe the response of the algorithms. For 
example, t-distributed stochastic neighbour embedding (t-SNE)86 is 
a non-parametric embedding technique that allows the proximity of 
points in a high-dimensional space to be visualized using only two 
dimensions. It can be used to study the groupings of different events 
according to the features extracted by a deep neural network. Events 
with overlapping extracted features, which the network interprets to be 
similar, are near each other in the t-SNE mapping; conversely, events 
with little or no overlap are far from each other in the mapping. These 
t-SNE projections are used to ensure that the groupings match the 
intuition about the physical processes being studied, to check whether 
non-training events are embedded as expected, and can even be used in 
conjunction with auto-encoder neural networks to search for anomalies 
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Fig. 3 | Neutrino selection and isolation in MicroBooNE. The 
MicroBooNE event display shows a simulated neutrino interaction (inside 
the yellow box) overlaid on a cosmic-ray background image taken using 
the real detector. The yellow boxed region contains all charge depositions 
caused by secondary charged particles being produced in the simulated 
neutrino interaction. The CNN receives as input the display without the 
yellow box indicated and draws the red box, which matches the yellow box 
remarkably well and successfully captures the most interesting part of the 
neutrino interaction. Image adapted from ref. 73, copyright Sissa Medialab, 
reused with permission of IOP Publishing.
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Alternative approach: End-to-end DNN search

• How do we get around defining a signal hypothesis?

• What is alternate hypothesis to test reference?


Idea: Assume alternate model n(x|w) can be  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data and reference distributions log-ratio. It is the best approximant, within the neural network
parametrization, of the true underlying data distribution n(x|T)

f(x, bw) ' log


n(x|T)

n(x|R)

�
. (12)

Notice that training unavoidably requires some sort of regularization because our loss function
(11) is unbounded from below, namely it approaches negative infinity if f diverges at some value
of x belonging to the D (i.e., y = 1) class. Notice that the problematic situation occurs only when
the divergence in f is sharply localized, such that f(x) stays finite for all x 2 R. Otherwise the
positive exponent that we have in the loss function for the R (i.e., y = 0) class overcompensates
the negative divergence. We avoid these dangerous configurations by enforcing an upper bound (set
by the so-called “weight clipping” parameter W ) on the absolute value of each weight. This forbids
the neural network to diverge and to produce sharp features on a scale �x . 1/W . Given that
infinitely sharp features cannot show up in the true distribution because of experimental resolution
smearing, for any concrete problem it will be possible to choose W large enough not to limit the
approximation capabilities of the neural network. We use W = 100 in the following.

To obtain a p-value that tests the agreement between data and the reference model we proceed
as discussed at the beginning of section 2. First we train the network using the actual data sample
and a large reference sample distributed according to the R model, as pictorially shown in figure 1.
This gives us the observed value of the test statistic tobs. Then we repeat the training on many
toy experiments generated according to the reference distribution, i.e. we use the same reference
sample, network architecture and training parameters as before, but we substitute the data sample
with toy reference samples. For each of these samples we compute t and thus obtain P (t|R). The
p-value is then computed in the usual way (see eq. (5)).

Before moving forward it is worth to clarify some assumptions that our method relies on. First,
we assumed knowledge of the expected number of events, N(R), which appears in the definition of
the loss function in eq. (11). This can be problematic because the total event rate is often not well
predicted by high energy physics simulations. The simplest way out is to take N(R) equal to the
number of data that has been observed in the actual experiment. This is conservative as it assumes
perfect agreement of the observed number of events with the reference model prediction. In what
follows we keep working under the assumption that N(R) is known a priori, but this assumption
can be easily eliminated as previously explained. Furthermore in real-life applications (and in most
of the examples we discuss) the signal component is small and the total number of events is not a
significant discriminant.

Much more problematic is assuming the Monte Carlo to provide a perfect description of the
reference distribution shape. This is not realistic because Monte Carlo generators are subject to
systematic uncertainties, which for large enough statistics unavoidably result in a significant tension
with the data. These uncertainties are routinely modeled as nuisance parameters and treated with
the profile likelihood ratio formalism [69, 70]. The basic idea is that we should first of all identify
the value of the nuisance parameters that best describe the data, taking of course also into account
auxiliary measurements and not only the data set of interest. Next we use these values in the
reference distribution prediction of eq. (3). A proper tune of the reference model Monte Carlo to
the data is a prerequisite for any new physics search, hence this problem is in some sense orthogonal
to the one that we are addressing. However the interplay and the possible synergies between the
two aspects should be carefully studied. Especially the possibility of incorporating in the network
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perfect agreement of the observed number of events with the reference model prediction. In what
follows we keep working under the assumption that N(R) is known a priori, but this assumption
can be easily eliminated as previously explained. Furthermore in real-life applications (and in most
of the examples we discuss) the signal component is small and the total number of events is not a
significant discriminant.

Much more problematic is assuming the Monte Carlo to provide a perfect description of the
reference distribution shape. This is not realistic because Monte Carlo generators are subject to
systematic uncertainties, which for large enough statistics unavoidably result in a significant tension
with the data. These uncertainties are routinely modeled as nuisance parameters and treated with
the profile likelihood ratio formalism [69, 70]. The basic idea is that we should first of all identify
the value of the nuisance parameters that best describe the data, taking of course also into account
auxiliary measurements and not only the data set of interest. Next we use these values in the
reference distribution prediction of eq. (3). A proper tune of the reference model Monte Carlo to
the data is a prerequisite for any new physics search, hence this problem is in some sense orthogonal
to the one that we are addressing. However the interplay and the possible synergies between the
two aspects should be carefully studied. Especially the possibility of incorporating in the network
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MC distribution
True underlying data distribution

OUTPUTS

-tobs and f(x; ŵ)

INPUTS 
- any high level features

2) test-statistic on data 
sample tobs

1) Best fit log ratio of data 
and MC PDFs

f(x, ŵ) ≃ log [ n(x |T )
n(x |R) ]

Train D vs. R  

EXO Non-hadronic meeting, 16 Dec. 2020 New physics learning from a machine

Schematic of the strategy
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e.g. (1, 4, 1) network
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Schematic of the strategy

14

e.g. (1, 4, 1) network

QCD MC R 

CMS DATA D 



In HL-LHC, will need to do track finding at L1

• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency


Graph Neural Networks for fast charged particle tracking

 
 
 
 
 
 
 

ML on FPGA for  t rack ing

DOI:10.3389/fdata.2022.828666 

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full


 
 
 
 
 
 
 

→Knowledge Dis t i l la t ion

Can we have the best of both worlds?


Tra in In ference



Dog

Cat



Cat

is cat

is dog



is cat = 0.89

is dog = 0.11

Predicted labels

Teacher 
(already trained)

Cat



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Cat



is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher 
(already trained)

Train student to learn both 
true and predicted (teacher) labels!


Student learns subtle learned features from teacher! 

Distilled  
knowledge

Ltotal = β × LDistillation + α × Lstudent

Cat


