Deformed 2d Coulomb gas

Conformal field theory at the edge of Quantum Hall droplets and Coulomb gas

Jean-Marie Stéphan

Camille Jordan Institute, University of Lyon 1, France

Conformal field theory and Integrable systems, Bologna 2023.

Based on [Oblak, Lapierre, Moosavi, JMS, Estienne arXiv:2301.01726] and [Work in progress]

Deformed 2d Coulomb gas

Hamiltonian in a magnetic field + trapping potential

$$H = \frac{1}{2} \left(\mathbf{p} - \mathbf{A} \right)^2 + \frac{k}{2} (x^2 + y^2)$$

with

$$\mathbf{p} = -\mathrm{i}\hbar \left(\begin{array}{c} \partial_x \\ \partial_y \end{array}\right) \qquad \mathbf{A} = \frac{B}{2} \left(\begin{array}{c} -y \\ x \end{array}\right)$$

naturally leads to single particle wave functions ($\ell^2=1/B$)

$$\phi_m(z) = \frac{z^m}{\ell \sqrt{2\pi m!}} e^{-|z^2|/4\ell^2}$$

and ground state many-body wavefunction

$$\Psi(z_1,\ldots,z_N) = \det_{1 \le j,m \le N} \left(\phi_{m-1}(z_j)\right)$$

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Density profile for large N

Well-known free fermions model, everything determined from the two-point function:

$$K_N(z,w) = \langle c^{\dagger}(z)c(w) \rangle$$

=
$$\sum_{m=0}^{N-1} \phi_m^*(z)\phi_m(w)$$

Density profile $K_N(z, z) = \rho_N(z)$. Constant density in the bulk.

Edge behavior:

$$\rho_N(r,\varphi) \sim \frac{\operatorname{erfc}(d/\ell)}{4\pi\ell^2}$$

Droplet is a disc with radius $\ell\sqrt{2N}$, d is distance to the boundary.

Simple 2d Integer Quantum Hall wavefunctions $0 \bullet 0000$

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Density profile for large N

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Simple 2d Integer Quantum Hall wavefunctions $\odot{}0{}0{}0{}0{}0{}0{}$

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Simple 2d Integer Quantum Hall wavefunctions $\odot{}0{}0{}0{}0{}0{}0{}$

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Deformed 2d Coulomb gas

Power law decay for large N and $\theta \in (0, 2\pi)$ [Jancovici 1982]:

$$|K_N(\ell\sqrt{2N},\ell\sqrt{2N}e^{\mathrm{i}\theta})| \sim rac{\mathrm{constant}}{\ell^2\sqrt{N}\sinrac{\theta}{2}}$$

Ideas of droplet deformations: symmetries [Cappelli, Trugenberger & Zemba, 1993], exact ellipse calculation [Di Francesco, Gaudin, Itzykson, Lesage 1994], electrostatics and conformal maps [Choquard, Piller & Rentsch 1986], generalizations [Zabrodin & Wiegmann 2006], free field, proofs [Leblé & Serfaty 2018], [Ameur & Cronvall 2022], euclidean conformal field theory [Moore & Read 1991].

Deformed 2d Coulomb gas

Coincidence

$$|\Psi(z_1,\ldots,z_N)|^2 = \prod_{j < k} |z_j - z_k|^{\Gamma} e^{-\sum_{j=1}^N |z_j|^2}$$

where $\Gamma = 2$. Other values of Γ : Laughlin state. Gas of N classical particles with logarithmic interactions at some inverse temperature

$$E(z_1, \dots, z_N) = -\sum_{j < k} \log |z_j - z_k| + \sum_{j=1}^N W(z_j)$$

Quadratic W corresponds to quadratic V [Di Francesco, Gaudin, Itzykson, Lesage 1994] [Forrester & Jancovici 1995], but no general correspondence.

Deformed 2d Coulomb gas

This talk

Similarities and differences between the Coulomb log gas problem, and the quantum Hall problem?

Deformed 2d Coulomb gas

Deformed quantum Hall

Deformed 2d Coulomb gas

Edge deformed Hall droplets

Radially symmetric potentials $V_0(r^2)$ yield circular droplets.

Area preserving deformations
$$(r^2, \varphi) \mapsto (\frac{r^2}{f'(\varphi)}, f(\varphi))$$

Motivates the study of potentials of the form $V(r,arphi)=V_0\left(rac{r^2}{f'(arphi)}
ight)$

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Example of a diffeo

$$e^{ikf(\varphi)} = \frac{\cosh\lambda \, e^{ik\varphi} + \sinh\lambda}{\sinh\lambda \, e^{ik\varphi} + \cosh\lambda}$$

k=2 maps the circle to an ellipse, k=3 maps the circle to a "flower" with 3 petals, etc.

Strategy

The single particle wave functions are not explicit anymore, but nevertheless perform similar computations as before:

• For large *m*, solve asymptotically the Schrödinger equation using a WKB method projected to LLL.

$$\phi_m(r,\varphi) \sim \frac{e^{\mathrm{i}\Theta_m(r,\varphi)}}{\ell\sqrt{2\pi\sigma(\varphi)}} \frac{e^{-d^2/(2\ell^2)}}{(2\pi m)^{1/4}}$$

where d is distance to the equipotential.

• Plug this in
$$K_N(z,w) = \sum_{k=0}^{N-1} \phi_m^*(z)\phi(w)$$

Deformed 2d Coulomb gas

Edge correlator

Near the edge

$$K_N(z_1, z_2) \sim \frac{e^{i\dots}}{\ell^2 \sqrt{N}} \frac{e^{-(d_1^2 + d_2^2)/2\ell^2}}{\sin\left(\frac{f(\varphi_1) - f(\varphi_2)}{2}\right)}$$

From left to right (flower 3): density, current, edge correlator.

Deformed Coulomb gas with Boltzmann weights $e^{-\beta E}$ with

$$E(z_1, \dots, z_N) = -\sum_{j < k} \log |z_j - z_k| + \sum_{j=1}^N W(z_j)$$

Droplet A for the classical particles, set by the potential W.

The coarsed-grained potential felt by a test particle at position z is

$$U(z) = -\int_A \rho(w) \log |z - w|^2 d^2 w$$

for large N. In the bulk, it satisfies

$$W(z) + U(z) = \lambda$$
 , $z \in A$

Outside of the droplet, U(z) is harmonic. Byproduct: density profile satisfies $\rho(z) = \frac{\Delta W}{4\pi}$ in the bulk.

Edge correlations

Dirichlet (or electrostatics or boundary CFT) problem naturally pop up in the Coulomb gas setup.

On can pushing this logic further, introducing a density of particles per unit line $\sigma(z)$ near the boundary.

[Alastuey & Jancovici 1984; Choquard, Piller & Rentsch 1986; Jancovici 1995]

$$\langle \sigma(z)\sigma(w)\rangle = \frac{1}{2\pi^2\beta} \frac{|G'(z)G'(w)|}{|G(z)\overline{G(w)} - 1|^2}$$

where G is the conformal map from the exterior of the droplet $(+\text{point at }\infty)$ to the exterior of the unit disk $(+\text{ point at }\infty)$.

Deformed 2d Coulomb gas

Conformal maps

Same form as the edge correlator for integer quantum hall, with the identification $G^{-1}(e^{i\theta}) = \frac{e^{if(\theta)}}{\sqrt{f'(\theta)}}$.

Seemingly "just" need to extend $e^{{\rm i}\theta}$ to z with $|z|\geq 1$ and the two edge results have the same form.

However this is typically not possible.

Deformed Quantum Hall droplets 00000

Deformed 2d Coulomb gas

This is not an (inverse) conformal map!

Deformed Quantum Hall droplets

Deformed 2d Coulomb gas

Correct (numerical) conformal map G: analytic in the whole exterior of the droplet, bijective, analytic inverse.

Conclusion

- Many similarities between the two systems at the free fermions point: density, gaussian decay.
- But edge correlator seem generically different.
- Quantum droplet shape measurable through microwave absorption in the quantum setup.
- Other signatures by studying entanglement, full counting statistics, e.g. [Estienne & JMS 2019; Estienne, JMS & Witczak-Krempa 2022], density profile at the edge [Can, Forrester, Tellez & Wiegmann 2013; Cardoso, JMS & Abanov 2021], etc.

Deformed 2d Coulomb gas

Thank you!