# All Regular $4 \times 4$ solutions of the Yang-Baxter Equation 

 Based on 2306.10423 with Marius de LeeuwLuke Corcoran<br>Trinity College Dublin

4th September 2023

## Yang-Baxter Equation

We study solutions to the Yang-Baxter equation

$$
R_{12}(u, v) R_{23}(v, w) R_{13}(u, w)=R_{13}(u, w) R_{23}(v, w) R_{12}(u, v)
$$

where $R(u, v): \mathbb{C}^{n} \otimes \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes \mathbb{C}^{n}$.
YBE ensures the existence of an integrable spin chain Hamiltonian

$$
\mathbb{Q}_{2}(u)=\sum_{i=1}^{L} \mathcal{H}_{i, i+1}(u), \quad \mathcal{H}_{i, i+1}(u)=\left.P \partial_{u} R_{i, i+1}(u, v)\right|_{v \rightarrow u}
$$

and higher commuting charges $\mathbb{Q}_{3}(u), \mathbb{Q}_{4}(u), \ldots$.
Regularity $R(u, u)=P$ is a natural assumption which ensures that $\mathbb{Q}_{1}=U$.

## Sutherland Equations and Boost Operator

Goal: For $n=2$, classify all the regular solutions of YBE.

The approach is based on two main ingredients.

- Sutherland equations

$$
\begin{aligned}
& {\left[R_{13} R_{23}, \mathcal{H}_{12}(u)\right]=\dot{R}_{13} R_{23}-R_{13} \dot{R}_{23},} \\
& {\left[R_{13} R_{12}, \mathcal{H}_{23}(v)\right]=R_{13} R_{12}^{\prime}-R_{13}^{\prime} R_{12} .}
\end{aligned}
$$

- Boost operator $\mathcal{B}: \mathbb{Q}_{r} \rightarrow \mathbb{Q}_{r+1}$

$$
\mathbb{Q}_{3}(u)=\partial_{u} \mathbb{Q}_{2}(u)-\sum_{j=1}^{L}\left[\mathcal{H}_{j, j+1}(u), \mathcal{H}_{j+1, j+2}(u)\right] .
$$

## The Method

- Parametrise a general Hamiltonian density $\mathcal{H}(u)$.
- Compute $\mathbb{Q}_{3}(u)$ using the boost operator.
- Impose $\left[\mathbb{Q}_{2}(u), \mathbb{Q}_{3}(u)\right]=0$, and solve this for $\mathcal{H}(u)$.
- For each integrable Hamiltonian $\mathcal{H}(u)$, solve the Sutherland equations to find the $R$-matrix, subject to the boundary conditions

$$
R(u, u)=P,\left.\quad \partial_{u} R(u, v)\right|_{v \rightarrow u}=P \mathcal{H}(u)
$$

- Verify that computed $R(u, v)$ indeed satisfies YBE.


## Results and Outlook

Main results:

- We classified all regular $4 \times 4$ solutions of the YBE.
- Beyond usual six-/eight-vertex models we find several novel solutions.
- Many of the new models give rise to Hamiltonians which are non-diagonalisable.
- Found an interesting non-diagonalisable integrable deformation of the XXX model.
Outlook:
- Perform the classification for $n>2$.
- Consider models on non-compact spaces, e.g. $\mathbb{C}[z]$.
- Classify integrable higher-range models.

