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Introduction and main motivations



Introduction

Strongly coupled QFT’s can be probed in the presence of a large amount of symmetry
such as in (4d) N = 4 super-Yang-Mills (SYM), where exact formulae have been
obtained by means of localization, integrability and holography

N = 2 SYM theories are less protected but the amount of supersymmetry is sufficient
to apply supersymmetric localization on S4 which, in superconformal set-ups, was

• successfully tested against standard perturbative approaches for protected
observables, such as 1/2 BPS Wilson loops [Andree (2010)] and special correlators
of chiral operators [Baggio (2014), Komargodsky (2017), Billo’ (2018)];

• employed in the study of the AdS/CFT correspondence in non-maximally
supersymmetric theories [Pomoni (2016), Billo’ (2021)];

• employed in the study of Brehmsstrahlung functions in N = 2 SYM theories
[Komargodsky (2015), Penati (2019), Bianchi (2019)];



Breaking conformal symmetry

When relaxing the condition on conformal symmetry the theory becomes highly
non-trivial due to technical and conceptual issues (perturbative renormalization,
computations on curved spacetimes...)

The localization mechanism on S4 does not require conformal symmetry but it is not
obvious how this technique deals with ultraviolet divergent quantities which require a
renormalization

Set-up: N = 2 super-Yang-Mills theories with massless matter content and

β(g) 6= 0

Goals:

1. Understanding whether and how localization incorporates the renormalization
procedure by computing the v.e.v. of the 1/2 BPS Wilson loop

2. Investigating how the conformal symmetry breaking occurs



Localization in d = 4 Super-Yang-Mills (SYM) theories



A quick look at supersymmetric localization

In (some) SYM theories, the partition function is exactly captured by the semi-classical
expansion of an auxiliary quantity [Witten 1988]

Z(t) =
∫

e−S−tQV t→∞−→ Z =

∫
F

dX0 e−S[X0]
det(Fer)
det(Bos)

∣∣∣∣∣
X0︸ ︷︷ ︸

Z1−loop

with QS = Q2V = 0 and F the space of critical configurations of QV . This
mechanism also holds in the presence of an operator OBPS such that QOBPS = 0

Note: Integrating out quadratic fluctuations about F gives rise to Z1−loop



SU(N) N = 2 SYM theories on S4

A vector multiplet (V ) and (massive and/or massless) matter multiplets (H) in a
representation R of SU(N)

VN=2 =


1 vector Aµ

2 real scalars (φ1, φ2)

2 chiral fermions (ψα, λα)

HN=2 =

4 real scalars h1,2, h̃1,2

2 chiral fermions (ηα, η̃α)

Applying supersymmetric localization on a four-sphere of radius r [Pestun (2007)]

Z =

∫
da e−(8π2r2/g2

0 ) tr a2︸ ︷︷ ︸
Classical term

× Z(H,R)
Perturbative × Z(H,R)

Instantons︸ ︷︷ ︸
≡ Z1−loop

with a ∈ su(N) parametrizing the Coulomb Branch



General features of Z1−loop

Z1−loop is the key feature of N = 2 and becomes trivial only in N = 4 set-ups

Z1−loop = 1 ⇔ R = Adj

Z1−loop does not spoil the convergence iff the representation R satisfies

iR = N ⇔ β(g) = 0

For β 6= 0 the one-loop determinants have to be regularized with a consistent
prescription



BPS Wilson loops in non-conformal N = 2 QCD



Localization results



Localization of massless N = 2 QCD

A vector multiplet coupled to Nf hypermultiplets in the fundamental of SU(N) makes
the S4-partition function inconsistent:

iR =
Nf
2

6= N → ZPert ∼ e(2N−Nf ) tr a2 log a for a → ∞

But there is no problem if we add N′
f = 2N − Nf massive hypermultiplets, since iR = N

and β(g) is vanishing

Note: we consider asymptotically free theories 2N > Nf



A regulating flow

Consider theory A∗ with a vector multiplet coupled to Nf massless and N′
f equally

massive fundamental hypers, such that

2N = Nf + N′
f ↔ β(g) = 0

This theory defines a flow from superconformal QCD (A) to N = 2 QCD with Nf

flavours and has a well-defined matrix model (Z1−loop ∼ eM2 tr log a )



Integrating out the massive fields

In the limit M → ∞ the Gaussian term receives a contribution from ZM→∞
Pert :

ŜCl =

Gaussian term︷ ︸︸ ︷
8π2r2

[
1

g2
M

−

Infinitely−massive multiplets︷ ︸︸ ︷
(2N − Nf )

8π2 logMr
]
tr a2

≡
8π2r2

ĝ2 tr a2

Consistent result: the gauge coupling constant runs under the RG accordingly to the
β-function of N = 2 QCD with Nf massless flavours and endowed with a UV cut-off
given by M

Note: this procedure is valid in any non-conformal set-ups



Localization of a 1/2 BPS Wilson loops on S4

Localization expresses the BPS circular Wilson loop on the equator of S4 as

W (C) =
1
N

TrP exp
{∫

C

[
i dA + dτ r φ1

]}
→ W (a) =

1
N

tr e2πra

The weak-coupling prediction (ZInst = 1, gM << 1) of localization is

〈
W (C)

〉
=

CF g2
M

4
+

(2N2 − 3)CF g4
M

192N︸ ︷︷ ︸
Ladder contributions, CF = (N2−1)/(2N)

+
CF g4

M
32π2 (2N − Nf ) (1 + γE + log rM)︸ ︷︷ ︸

Typical of ren. quantities



Field theory approach



Embedding formalism

Consider a set of inertial coordinates xM ∈ Rd+1 and identify a d-dimensional
hyperplane (x0 = 0) with Rd , i.e. the flat space where we define the dimensionally
regularized theory. Then xM → XM(x) via the stereographic projection (conformal map
in Rd+1 !)

Rd ' {x0 = 0}

O

WRd

−→

Sd = {XMXM = r2}

W Sd

Propagators and perturbative one-loop diagrams are expressed on Sd in terms of the

embedding coordinates XM and acquire simple expressions

〈
φi (x1)φj(x2)

〉
=

δijΓ(d/2 − 1)
4πd/2[X2

12(x1, x2)]d/2−1



1/2 BPS supersymmetric Wilson loops

Ladder diagrams on Sd and Rd are regular for d → 4 and identical

=
g2

0 CF

4
=

g4
0 (2N2 − 3)

192N

Ultraviolet divergent contributions

+ =



−
CF (2N − Nf )g4

0α(d)
(2 − d/2)

+ (d/2 − 2)g4
0 CF A(d) on Sd

−
CF (2N − Nf )g4

0α(d)
(2 − d/2)︸ ︷︷ ︸

Identical to Sd !

+(d/2 − 2)g4
0 CF B(d) on Rd

with B(d) 6= A(d). The evanescent terms in Rd and on Sd are different



Perturbative renormalization vs localization



Renormalized Wilson loops on S4

The UV divergences are removed by means of g0 = ZSQCD
g µ2−d/2g(µ) to all orders in

perturbation theory [Korchemsky (1987)] for smooth contours

W̃ S4
C ≡ lim

d→4

Dim. regularized︷ ︸︸ ︷〈
W Sd

(C)
〉 ∣∣∣

g0=g(µ)(...)
→

(
β(g)

∂

∂g
− E

∂

∂E

)
W̃ S4

C︸ ︷︷ ︸
Callan−Symanzik equation

= 0

The solution of the C.S. equation is given by in terms of an arbitrary function F

W̃ S4
C = F(ĝ(E , g(µ))) with

d ĝ
d log µ/E

= β(ĝ)

Note: E = 1/r and ĝ is the running coupling encountered in localization



Comparing with localization and flat space

The renormalized observable matches the localization prediction if µ = M
√

eγE /π

W̃ S4
C =

CF g2
µ

4
+

CF g4
µ(2N2 − 3)
192N

+
(2N − Nf )g4

µ

64π2 (log r2µ2︸ ︷︷ ︸
The same in loc.approach

+1 + 2γE + log π)

Repeating the procedure in flat space leads to the renormalized observable W̃R4
C

W̃R4
C = H(ĝ(E , g(µ)))︸ ︷︷ ︸
Due to C.S.equation

with W̃R4
C = W̃ S4

C +O(g6)

Surprisingly even if conformal symmetry is broken at the quantum level, the theory does
not distinguish between the flat space and the sphere at order g4

µ



Evanescent terms are not evanescent

The poles in Zg activate the evanescent terms at subsequent perturbative orders and
are the responsible for the expected mismatch between the flat-space and the sphere

Sd : (d/2 − 2)(2N − Nf )g4
0 CF A(d) −→ S4 : g(µ)6CF (2N − Nf )

2A

Rd : (d/2 − 2)(2N − Nf )g4
0 CF B(d) −→ R4 : g(µ)6CF (2N − Nf )

2B

We find that the two numerically coefficients are different

B 6= A

This non-trivial mechanism poses two interesting questions
1. Can we predict this effect by means of first principles ?
2. Does supersymmetric localization capture A at order g6 ?



Open questions



Open questions

Our analysis highlights that localization naturally ties nicely in with the RG machinery
and therefore, this technique seems to be extremely powerful also in non-conformal
set-ups. However this analysis poses different questions and suggest future directions

• are the evanescent terms at high orders in perturbation theory on S4 captured by
localization ?

• can we predict the anomaly in the change of coordinates connecting the flat space
and the four-sphere ?

• in the decompatification limit r → ∞ we have a breakdown of perturbation theory
and non-perturbative effects, such as the the instanton corrections, should be
predictable from localization

• exploring the agreement between localization and field theory approaches in
non-conformal theories different dimensions
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