Remarks on BPS Wilson loops in non-conformal $\mathcal{N}=2$ gauge theories and localization

Alessandro Testa
University of Parma

in collaboration with Luca Griguolo and Marco Billo'

What's to come

1. Introduction and main motivations
2. Localization in $d=4 \mathrm{SYM}$ theories
3. BPS Wilson loops in non-conformal $\mathcal{N}=2$ QCD
4. Perturbative renormalization vs localization
5. Open questions

Introduction and main motivations

Introduction

Strongly coupled QFT's can be probed in the presence of a large amount of symmetry such as in (4d) $\mathcal{N}=4$ super-Yang-Mills (SYM), where exact formulae have been obtained by means of localization, integrability and holography
$\mathcal{N}=2 \mathrm{SYM}$ theories are less protected but the amount of supersymmetry is sufficient to apply supersymmetric localization on \mathbb{S}^{4} which, in superconformal set-ups, was

- successfully tested against standard perturbative approaches for protected observables, such as $1 / 2$ BPS Wilson loops [Andree (2010)] and special correlators of chiral operators [Baggio (2014), Komargodsky (2017), Billo' (2018)];
- employed in the study of the $A d S / C F T$ correspondence in non-maximally supersymmetric theories [Pomoni (2016), Billo' (2021)];
- employed in the study of Brehmsstrahlung functions in $\mathcal{N}=2$ SYM theories [Komargodsky (2015), Penati (2019), Bianchi (2019)];

Breaking conformal symmetry

When relaxing the condition on conformal symmetry the theory becomes highly non-trivial due to technical and conceptual issues (perturbative renormalization, computations on curved spacetimes...)

The localization mechanism on \mathbb{S}^{4} does not require conformal symmetry but it is not obvious how this technique deals with ultraviolet divergent quantities which require a renormalization

Set-up: $\mathcal{N}=2$ super-Yang-Mills theories with massless matter content and

$$
\beta(g) \neq 0
$$

Goals:

1. Understanding whether and how localization incorporates the renormalization procedure by computing the v.e.v. of the $1 / 2$ BPS Wilson loop
2. Investigating how the conformal symmetry breaking occurs

Localization in $d=4$ Super-Yang-Mills (SYM) theories

A quick look at supersymmetric localization

In (some) SYM theories, the partition function is exactly captured by the semi-classical expansion of an auxiliary quantity [Witten 1988]

$$
\mathcal{Z}(t)=\int \mathrm{e}^{-S-t \mathcal{Q} V} \quad \stackrel{t \rightarrow \infty}{\longrightarrow} \quad \mathcal{Z}=\int_{\mathcal{F}} \mathrm{d} X_{0} \mathrm{e}^{-S\left[X_{0}\right]} \underbrace{\left.\frac{\operatorname{det}(\mathrm{Fer})}{\operatorname{det}(\operatorname{Bos})}\right|_{X_{0}}}_{\mathcal{Z}_{1-\text { loop }}}
$$

with $\mathcal{Q S}=\mathcal{Q}^{2} V=0$ and \mathcal{F} the space of critical configurations of $\mathcal{Q} V$. This mechanism also holds in the presence of an operator $\mathcal{O}_{\text {BPS }}$ such that $\mathcal{Q} \mathcal{O}_{\text {BPS }}=0$

Note: Integrating out quadratic fluctuations about \mathcal{F} gives rise to $\mathcal{Z}_{1-\text { loop }}$

$\operatorname{SU}(N) \mathcal{N}=2 \mathbf{S Y M}$ theories on \mathbb{S}^{4}

A vector multiplet (V) and (massive and/or massless) matter multiplets (H) in a representation \mathcal{R} of $\operatorname{SU}(N)$

$$
\mathrm{V}_{\mathcal{N}=2}=\left\{\begin{array}{l}
1 \text { vector } A_{\mu} \\
2 \text { real scalars }\left(\phi_{1}, \phi_{2}\right) \\
2 \text { chiral fermions }\left(\psi_{\alpha}, \lambda_{\alpha}\right)
\end{array} \quad \mathrm{H}_{\mathcal{N}=2}=\left\{\begin{array}{l}
4 \text { real scalars } h_{1,2}, \tilde{h}_{1,2} \\
2 \text { chiral fermions }\left(\eta_{\alpha}, \tilde{\eta}_{\alpha}\right)
\end{array}\right.\right.
$$

Applying supersymmetric localization on a four-sphere of radius r [Pestun (2007)]

$$
\mathcal{Z}=\int \text { da } \underbrace{e^{-\left(8 \pi^{2} r^{2} / g_{0}^{2}\right) \operatorname{tr} \mathrm{a}^{2}}}_{\text {Classical term }} \times \underbrace{\mathcal{Z}_{\text {Perturbative }}^{(H, \mathcal{R})} \times \mathcal{Z}_{\text {Instantons }}^{(H, \mathcal{R})}}_{\equiv \mathcal{Z}_{1-\text { loop }}}
$$

with $\mathrm{a} \in \mathfrak{s u}(N)$ parametrizing the Coulomb Branch

General features of $\mathcal{Z}_{1 \text {-loop }}$

$\mathcal{Z}_{1 \text {-loop }}$ is the key feature of $\mathcal{N}=2$ and becomes trivial only in $\mathcal{N}=4$ set-ups

$$
\mathcal{Z}_{1-\text { loop }}=1 \quad \Leftrightarrow \quad \mathcal{R}=\operatorname{Adj}
$$

$\mathcal{Z}_{1 \text {-loop }}$ does not spoil the convergence iff the representation \mathcal{R} satisfies

$$
i_{\mathcal{R}}=N \quad \Leftrightarrow \quad \beta(g)=0
$$

For $\beta \neq 0$ the one-loop determinants have to be regularized with a consistent prescription

BPS Wilson loops in non-conformal $\mathcal{N}=2$ QCD

Localization results

Localization of massless $\mathcal{N}=2$ QCD

A vector multiplet coupled to N_{f} hypermultiplets in the fundamental of $\operatorname{SU}(N)$ makes the \mathbb{S}^{4}-partition function inconsistent:

$$
i_{\mathcal{R}}=\frac{N_{f}}{2} \neq N \quad \rightarrow \quad \mathcal{Z}_{\text {Pert }} \sim e^{\left(2 N-N_{f}\right) \text { tr a }{ }^{2} \log a} \quad \text { for } \quad a \rightarrow \infty
$$

But there is no problem if we add $N_{f}^{\prime}=2 N-N_{f}$ massive hypermultiplets, since $i_{\mathcal{R}}=N$ and $\beta(g)$ is vanishing

Note: we consider asymptotically free theories $2 N>N_{f}$

A regulating flow

Consider theory \mathbb{A}^{*} with a vector multiplet coupled to N_{f} massless and N_{f}^{\prime} equally massive fundamental hypers, such that

$$
2 N=N_{f}+N_{f}^{\prime} \quad \leftrightarrow \quad \beta(g)=0
$$

This theory defines a flow from superconformal QCD (A) to $\mathcal{N}=2$ QCD with N_{f} flavours and has a well-defined matrix model ($\mathcal{Z}_{1-\text { loop }} \sim \mathrm{e}^{M^{2}}$ trlog a $)$

Integrating out the massive fields

In the limit $M \rightarrow \infty$ the Gaussian term receives a contribution from $\mathcal{Z}_{\text {Pert }}^{M \rightarrow \infty}$:

$$
\begin{aligned}
\hat{S}_{\mathrm{C} 1} & =8 \overbrace{8 \pi^{2} r^{2}\left[\frac{1}{g_{M}^{2}}\right.}^{\text {Gaussian term }}-\overbrace{\frac{\left(2 N-N_{f}\right)}{8 \pi^{2}} \log M r}^{\text {Infinitely-massive multiplets }}] \mathrm{tr} \mathrm{a}^{2} \\
& \equiv \frac{8 \pi^{2} r^{2}}{\widehat{\mathbf{g}}^{2}} \operatorname{tr} \mathrm{a}^{2}
\end{aligned}
$$

Consistent result: the gauge coupling constant runs under the $R G$ accordingly to the β-function of $\mathcal{N}=2$ QCD with N_{f} massless flavours and endowed with a UV cut-off given by M

Note: this procedure is valid in any non-conformal set-ups

Localization of a $1 / 2$ BPS Wilson loops on \mathbb{S}^{4}

Localization expresses the BPS circular Wilson loop on the equator of \mathbb{S}^{4} as

$$
W(C)=\frac{1}{N} \operatorname{Tr} \mathcal{P} \exp \left\{\int_{C}\left[\mathrm{i} \mathrm{~d} A+\mathrm{d} \tau r \phi_{1}\right]\right\} \quad \rightarrow \quad W(\mathrm{a})=\frac{1}{N} \operatorname{tr} \mathrm{e}^{2 \pi r \mathrm{a}}
$$

The weak-coupling prediction $\left(\mathcal{Z}_{\text {Inst }}=1, g_{M} \ll 1\right)$ of localization is

$$
\langle W(C)\rangle=\underbrace{\frac{C_{F} g_{M}^{2}}{4}+\frac{\left(2 N^{2}-3\right) C_{F} g_{M}^{4}}{192 N}}_{\text {Ladder contributions, } C_{F}=\left(N^{2}-1\right) /(2 N)}+\frac{C_{F} g_{M}^{4}}{32 \pi^{2}}\left(2 N-N_{f}\right) \underbrace{\left(1+\gamma_{E}+\log r M\right)}_{\text {Typical of ren. quantities }}
$$

Field theory approach

Embedding formalism

Consider a set of inertial coordinates $x^{M} \in \mathbb{R}^{d+1}$ and identify a d-dimensional hyperplane ($x^{0}=0$) with \mathbb{R}^{d}, i.e. the flat space where we define the dimensionally regularized theory. Then $x^{M} \rightarrow X^{M}(x)$ via the stereographic projection (conformal map in \mathbb{R}^{d+1} !)

$$
\mathbb{R}^{d} \simeq\left\{x^{0}=0\right\}
$$

$$
\mathbb{S}^{d}=\left\{X^{M} X_{M}=r^{2}\right\}
$$

Propagators and perturbative one-loop diagrams are expressed on \mathbb{S}^{d} in terms of the embedding coordinates X^{M} and acquire simple expressions

$$
\left\langle\phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right)\right\rangle=\frac{\delta_{i j} \Gamma(d / 2-1)}{4 \pi^{d / 2}\left[X_{12}^{2}\left(x_{1}, x_{2}\right)\right]^{d / 2-1}}
$$

1/2 BPS supersymmetric Wilson loops

Ladder diagrams on \mathbb{S}^{d} and \mathbb{R}^{d} are regular for $d \rightarrow 4$ and identical

Ultraviolet divergent contributions

with $B(d) \neq A(d)$. The evanescent terms in \mathbb{R}^{d} and on \mathbb{S}^{d} are different

Perturbative renormalization vs localization

Renormalized Wilson loops on \mathbb{S}^{4}

The UV divergences are removed by means of $g_{0}=Z_{g}^{S Q C D} \mu^{2-d / 2} g(\mu)$ to all orders in perturbation theory [Korchemsky (1987)] for smooth contours

Dim. regularized

$$
\left.\tilde{W}_{C}^{\mathbb{S}^{4}} \equiv \lim _{d \rightarrow 4} \overbrace{\left\langle W^{\mathbb{S}^{d}}(C)\right\rangle}\right|_{g_{0}=g(\mu)(\ldots)} \rightarrow \underbrace{\left(\beta(g) \frac{\partial}{\partial g}-E \frac{\partial}{\partial E}\right) \tilde{W}_{C}^{\mathbb{S}^{4}}}_{\text {Callan-Symanzik equation }}=0
$$

The solution of the C.S. equation is given by in terms of an arbitrary function F

$$
\tilde{W}_{C}^{\mathbb{S}^{4}}=F(\widehat{\mathbf{g}}(E, g(\mu))) \quad \text { with } \quad \frac{\mathrm{d} \hat{g}}{\mathrm{~d} \log \mu / E}=\beta(\hat{g})
$$

Note: $E=1 / r$ and $\widehat{\mathbf{g}}$ is the running coupling encountered in localization

Comparing with localization and flat space

The renormalized observable matches the localization prediction if $\mu=M \sqrt{e^{\gamma E} / \pi}$

$$
\tilde{W}_{C}^{\mathbb{S}^{4}}=\frac{C_{F} g_{\mu}^{2}}{4}+\frac{C_{F} g_{\mu}^{4}\left(2 N^{2}-3\right)}{192 N}+\underbrace{\frac{\left(2 N-N_{f}\right) g_{\mu}^{4}}{64 \pi^{2}}\left(\log r^{2} \mu^{2}\right.}_{\text {The same in loc.approach }}+1+2 \gamma_{E}+\log \pi)
$$

Repeating the procedure in flat space leads to the renormalized observable $\tilde{W}_{C}^{\mathbb{R}^{4}}$

$$
\underbrace{\tilde{W}_{C}^{\mathbb{R}^{4}}=H(\widehat{\mathbf{g}}(E, g(\mu)))}_{\text {Due to C.S.equation }} \quad \text { with } \quad \tilde{W}_{C}^{\mathbb{R}^{4}}=\tilde{W}_{C}^{\mathbb{S}^{4}}+\mathcal{O}\left(g^{6}\right)
$$

Surprisingly even if conformal symmetry is broken at the quantum level, the theory does not distinguish between the flat space and the sphere at order g_{μ}^{4}

Evanescent terms are not evanescent

The poles in Z_{g} activate the evanescent terms at subsequent perturbative orders and are the responsible for the expected mismatch between the flat-space and the sphere

$$
\begin{array}{rlll}
\mathbb{S}^{d} & :(d / 2-2)\left(2 N-N_{f}\right) g_{0}^{4} C_{F} A(d) & \longrightarrow & \mathbb{S}^{4}: g(\mu)^{6} C_{F}\left(2 N-N_{f}\right)^{2} \mathcal{A} \\
\mathbb{R}^{d}:(d / 2-2)\left(2 N-N_{f}\right) g_{0}^{4} C_{F} B(d) & \longrightarrow & \mathbb{R}^{4}: g(\mu)^{6} C_{F}\left(2 N-N_{f}\right)^{2} \mathcal{B}
\end{array}
$$

We find that the two numerically coefficients are different

$$
\mathcal{B} \neq \mathcal{A}
$$

This non-trivial mechanism poses two interesting questions

1. Can we predict this effect by means of first principles ?
2. Does supersymmetric localization capture \mathcal{A} at order g^{6} ?

Open questions

Open questions

Our analysis highlights that localization naturally ties nicely in with the RG machinery and therefore, this technique seems to be extremely powerful also in non-conformal set-ups. However this analysis poses different questions and suggest future directions

- are the evanescent terms at high orders in perturbation theory on \mathbb{S}^{4} captured by localization ?
- can we predict the anomaly in the change of coordinates connecting the flat space and the four-sphere ?
- in the decompatification limit $r \rightarrow \infty$ we have a breakdown of perturbation theory and non-perturbative effects, such as the the instanton corrections, should be predictable from localization
- exploring the agreement between localization and field theory approaches in non-conformal theories different dimensions

Thank you for your attention

