The arctic curves of the four-vertex model arXiv: 2307.03076 (2023)

Andrea Maroncelli *PhD University of Florence and INFN*

Supervisor: Filippo Colomo (*INFN Florence*) Collaborators: Andrei Pronko (*PDMI St. Petersburg*), Ivan Burenev (*ENS Paris*)

10th Bologna Workshop CFT-IM, University of Bologna and INFN 07/09/2023

• General motivations

- Tiling models
- Adding the interactions
- The four-vertex model

 Based on "The arctic curves of the four-vertex model" I. Burenev, F. Colomo, <u>AM</u>, A. Pronko (arXiv: 2307.03076)

Tiling of a square

Tiling of a square

Geometric constraints can induce long range effects

- Suitable boundary conditions may modify thermodynamics
- Order parameters (free energy, etc...) may acquire spatial dependence

Possibility of **spatial phase separation**

Tiling of a bipartite square

Color coding of the tiles

Square *N* × *N*

Random tiling

The arctic circle Theorem

Aztec diamond of order N

$$|x| + |y| \le N$$

Arctic Circle Theorem

[Jockush - Shor - Propp, 1995]

"In the scaling limit the arctic curve is a circle"

Other tiling models

Kenyon, Okounkov and Sheffield formulated a general theory for all dimer models on bipartite graphs with generic boundary conditions and domains. However, it appears that all these models may be viewed as discrete free fermionic models.

[Kenyon - Okounkov - Sheffield, 2006]

Adding the interactions

Assign a Boltzmann weight e⁸ only to

and you get an exactly solvable model: the six-vertex model, with $\Delta = 1 - e^{\delta}(<1)$

[Kuperberg, 1996]

The six-vertex model [Lieb, 1967] [Sutherland, 1967]

$$\Delta = \frac{a^2 + b^2 - c^2}{2ab}$$

△ ≠ 0: Interface fluctuations

Recent numerics:

T-W scaling is observed with excellent accuracy [Prauhofer - Spohn, 2023] [Korepin - Lyberg - Viti, 2023]

Analytic prediction:

T-W scaling is destroyed

[Collura - De Luca - Viti, 2018]

The number of vertices of each type does not depend on the configuration:

#a = (L - N)(M - N)#b = N(M - L + N)#c = 2N(L - N)

So we can set a = b = c = 1 without loss of generality.

M

The scaling limit is achieved with: $L = [\mathcal{L}\ell], \quad M = [\mathcal{M}\ell], \quad N = [\mathcal{N}\ell], \quad \ell \to \infty.$ The arctic curve is made of six consecutive arcs, joined end by end at six contact points P_i .

$$\Gamma_1: y_1 = \frac{\mathcal{MN}(\mathcal{L}-2x) + (\mathcal{M}+\mathcal{N})\mathcal{L}x}{\mathcal{L}^2} + 2\frac{\sqrt{\mathcal{MN}(\mathcal{L}-\mathcal{N})(\mathcal{M}-\mathcal{L})(\mathcal{L}-x)x}}{\mathcal{L}^2}$$

$$\Gamma_2: y_2 = (\mathcal{L}-\mathcal{M}-\mathcal{N}-x) + 2y_1$$

Particle-hole and reflection symmetries

P-H

Swapping the state (thick \leftrightarrow thin) of each vertical edge, and reflecting with respect a vertical axis, we obtain a four-vertex model with L-N lines.

$$y_3(\mathcal{L}, \mathcal{M}, \mathcal{N}; x) = y_1(\mathcal{L}, \mathcal{M}, \mathcal{L} - \mathcal{N}; \mathcal{L} - x)$$

R

Another symmetry is the simultaneous reflection under the vertical and horizontal axes.

 y_4, y_5, y_6 from y_1, y_2, y_3 through: $x \rightarrow \mathcal{L} - x, y \rightarrow \mathcal{M} - y$

If we shift the *i*-th horizontal edges (*i*=1,...,L-N) of each path by *i*-1 lattice spacing southward, then we have a non-intersecting lattice paths model

The emptiness formation probability (EFP)

$$H(d,\alpha,\beta,s,n) := \frac{1}{H_0(\alpha,\beta,s,n)} \sum_{0 \le x_1,\dots,x_s \le d} \prod_{1 \le i < j \le s} (x_j - x_i)^2 \prod_{i=1}^s \binom{\alpha + x_i}{x_i} \binom{\beta + n - x_i}{n - x_i}$$

K

$$d = M - N + \min(p, N) - p - q, \qquad \alpha = |N - p|,$$

$$s = \min(p, N), \qquad n = M - L + \min(p, N),$$

The EFP is the probability to have at least q vertices of type *a* starting from the point (p,M)

After the bijection, it is the probability that no paths pass through the point $(p, K - \tilde{q} + 1)$, with $\tilde{q} = p + q - L + N$

Hahn measure

eta = L - N - p,n(p, N).

Let
$$\mathbf{x} = \{x_1, \dots, x_s\}$$
 with $0 \le x_1 < \dots < x_s$
the interval $[0, n]$ and consider

$$P_{n,s}^{(\alpha,\beta)}[\mathbf{x}] = \frac{1}{Z(\alpha,\beta,s,n)} \prod_{1 \le i < j \le s} (x_i - x_j)^2 \prod_{i=1}^s w_n^{(\alpha,\beta)}(x_j)$$

$$w_n^{(\alpha,\beta)}(x) = \binom{lpha+x}{x} \binom{eta+n-x}{n-x}$$

 $x_s \leq n$ denote the position of s particles on er the probability measure on $[0, n]^s$:

The EFP is the probability that, in a discrete logof s particles, associated to the Hahn measure, no particle has coordinate larger than d.

The scaling limit is achieved with: $d = [d_0 \ell], \ \alpha = [\alpha_0 \ell], \ \beta = [\beta_0 \ell], \ s = [s_0 \ell], \ n = [n_0 \ell], \ \ell \to \infty$

In the scaling limit, the EFP is known to tend to one in a frozen region, and zero otherwise. To find the arctic arc, it is sufficient the support [L,R] of the density.

We have the **arctic curve** when:

$$R(\alpha_0,\beta_0,s_0,n_0)=d_0$$

(setting $x = p_0, y = \mathcal{M} - q_0$)

Following standard methods from random matrix models, we rescale $x_j = [\mu_j \ell]$.

$$y_1 = \frac{\mathcal{MN}(\mathcal{L}-2x) + (\mathcal{M}+\mathcal{N})\mathcal{L}x}{\mathcal{L}^2} + 2\frac{\sqrt{\mathcal{MN}(\mathcal{L}-\mathcal{N})(\mathcal{M}-\mathcal{L})(\mathcal{L}-x)x}}{\mathcal{L}^2}$$

Fluctuations of the arctic curve

Taking the position ξ of the last thick edge at some column pand comparing it with the rightmost point R of the interval:

 $\lim_{\ell \to \infty} \mathbb{P}\left(\frac{\xi}{2}\right)$

$$\frac{\xi - \ell R(\alpha_0, \beta_0, s_0, n_0)}{(t\ell)^{1/3}} \le x = \det \left[1 - A|_{(x,\infty)} \right]$$

where $A|_{(x,\infty)}$ acts on $L^2[x,\infty)$ with the Airy kernel. This quantity is exactly $F_2(x)$ (T-W in the GUE).

- Main Results
- Further investigations
 - Generalization to the five-vertex model

 Calculation of the arctic curve for the four-vertex model Observation that the fluctuations are governed by T-W

Thank you for your time!

Mapping the AD(N) to the N × N six-vertex model with DWBC

