Non-equilibrium Full Counting Statistics and Charged moments in Integrable models

Colin Rylands

Bologna Workshop on CFT \& Integrable models 06/09/23

Quench Dynamics

- Universal physics in equilibrium systems is well studied. Non-equilibrium?

$$
\left|\Psi_{0}(t)\right\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle
$$

- Complicated problem, explore full spectrum not just low energy
- Breakdown of low energy/equilibrium methods (RG, Fermi Liquid, bosonization)
- Nevertheless, a lot known at long time $t \gg|A|$

Thermalisation:

$$
\lim _{|A| \rightarrow \infty} \lim _{t \rightarrow \infty} \operatorname{tr}\left[\rho_{A}(t) \hat{\mathcal{O}}_{A}\right] \rightarrow \operatorname{tr}\left[\rho_{\mathrm{st}} \hat{\mathcal{O}}_{A}\right]
$$

$\rho_{\text {st }}$ is stationary state e.g. GE or GGE

What about at finite time?

- At times $t \ll|A|$ can we say anything?
- Space-time duality approach to quantum dynamics can help (Bertini et. a 2019,2022$)$
- Maps finite time problem to an dual system which is at equilibrium

- This talk: Calculate non equilibrium Charged Moments for integrable models

Outline

- Charged moments
- Space time duality
- Generic Results
- Explicit predictions for integrable models
- Summary/Conclusion

> Based on:
> arXiv:2212.06188 (PRL) \& arXiv:2306.12404
with B. Bertini, P. Calabrese, M. Collura \& K. Klobas

Charged Moments

- Consider system with $U(1)$ charge $Q=\sum_{x} q_{x},[H, Q]=0$

$$
Z_{\beta}(A, t)=\operatorname{tr}\left[\prod_{j=1}^{n} \rho_{A}(t) e^{\beta_{j} Q_{A}}\right]
$$

- For $\beta_{j}=0, n>1$: Rényi entanglement entropy

- For $n=1$: Full counting statistics/charge probability distribution

$$
P\left(Q_{A}=q, t\right)=\int_{-\pi}^{\pi} \frac{\mathrm{d} \beta}{2 \pi} Z_{i \beta}(A, t) e^{-i \beta q}
$$

- For $\beta_{j} \neq 0, n>1$: Symmetry resolved entanglement (Goldstein \& Sela 2018) or Entanglement Asymmetry (c.f. Talks of Luca Capizzi \& Michele Fossatti) (Ares, Murciano \& Calabrese 2022)

Brickwork Quantum Circuits

- Simplified model of dynamics, discrete space and time evolution (Nahum et. al 2017)

$$
\left|\Psi_{0}(t)\right\rangle=\mathbb{U}^{t}\left|\Psi_{0}\right\rangle
$$

- Time evolution $\mathbb{U}=U^{\otimes|A| / 2} \Pi_{\text {shift }} U^{\otimes|A| / 2} \Pi_{\text {shift }}$ made of local operators U
- Symmetric product initial state $\left|\Psi_{0}\right\rangle=\left|\psi_{0}\right\rangle^{\otimes|A| / 2}$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\phi$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\phi$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\phi$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\phi$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Since $[Q, H]=0$ have

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Use inverse

$$
9
$$

$$
\sigma_{0}^{0}=a_{0}^{0}
$$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Use inverse

$$
9
$$

$$
\sigma_{0}^{0}=a_{0}^{0}
$$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Use inverse

$$
9
$$

$$
\sigma_{0}^{0}=a_{0}^{0}
$$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\phi e^{-\beta q}=\phi$

- Use inverse

$$
9
$$

IIr = =

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Use inverse

$$
9
$$

$$
\sigma_{0}^{0}=a_{0}^{0}
$$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- Use inverse

$$
9
$$

$$
\sigma_{0}^{0}=a_{0}^{0}
$$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- For a symmetric initial state

$$
\square^{0}=\square \times e^{2 \beta q_{0}}
$$

Charged moments in QC

- Charge is sum of local operators $Q_{A}=\sum q$, s.t $e^{\beta q}=\oint e^{-\beta q}=\oint$

- For a symmetric initial state

$$
\square \square^{0}=\square \times e^{2 \beta q_{0}}
$$

Charged moments in QC

- The FCS for $2 t<|A|,|\bar{A}|$ are then

- Interpret this as evolution in space like direction

Charged moments in QC

- The FCS for $2 t<|A|,|\bar{A}|$ are then

Spacetime swap

- Two viewpoints for $Z_{\beta}(A, t)$

- The dual perspective offers simplifications for $2 t<|A|,|\bar{A}|$

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\text {st }}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}[\mathbb{W}|\bar{A}| \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\mathrm{st}}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}[\mathbb{W}|\bar{A}| \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\mathrm{st}}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}\left[W W^{\mid \bar{A}} \mid\right. \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\mathrm{st}}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}\left[W W^{\mid \bar{A}} \mid\right. \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\mathrm{st}}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}\left[W W^{\mid \bar{A}} \mid\right. \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\text {st }}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}\left[W W^{\mid \bar{A}} \mid\right. \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\text {st }}$

$$
\begin{aligned}
& Z_{\beta}(A, t)=Z_{\beta}(A, 0) \operatorname{tr}\left[W W^{\mid \bar{A}} \mid\right. \\
&\left.e^{\beta \tilde{Q}_{t}} \mathrm{WV}^{|A|} e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\text {st }}$

$$
\begin{aligned}
Z_{\beta}(A, t) & =Z_{\beta}(A, 0) \operatorname{tr}[\mathbb{W}|\bar{A}| \\
e^{\beta \tilde{Q}_{t}} \mathbb{W}|A| & \left.e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Splits into two causally disconnected pieces

Generic properties

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \rightarrow \tilde{\rho}_{\text {st }}$

$$
\begin{aligned}
Z_{\beta}(A, t) & =Z_{\beta}(A, 0) \operatorname{tr}[\mathbb{W}|\bar{A}| \\
e^{\beta \tilde{Q}_{t}} \mathbb{W}|A| & \left.e^{-\beta \tilde{Q}_{t}}\right] \\
& \rightarrow Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\left.\beta \tilde{Q}_{t}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{-\beta \tilde{Q}_{t}}\right]}\right.
\end{aligned}
$$

- Time integrated current at causally disconnected boundaries
- Extensive charge in dual system

$$
\lim _{t \rightarrow \infty} \lim _{|A| \rightarrow \infty} \frac{1}{t} \log \operatorname{tr}\left[\tilde{\rho}_{s t} e^{\left.\beta \tilde{Q}_{t}\right]} \rightarrow s_{\beta}\right.
$$

- Time delay for symmetric states (Parez et. a 2 2021)

$$
P\left(Q_{A}=|A| q, t\right) \simeq \Theta\left(t-t_{D}\right) \frac{e^{-\frac{\left(q-q_{0}\right)^{2}}{2 \sigma(t)}}}{\sqrt{2 \pi \sigma(t)}}
$$

- If current is bounded need time to transport charge

$$
t_{D} \sim|A|\left|q-q_{0}\right| / \operatorname{tr}\left[\tilde{Q}_{t}\right]
$$

TBA integrable models

- For integrable models can calculate long time limit using TBA

$$
\frac{1}{|A|} \log \operatorname{tr}\left[\rho_{\mathrm{st}} e^{\beta Q_{A}}\right]=\sum_{m=1}^{M} \int \mathrm{~d} \lambda \frac{\left|p_{m}^{\prime}(\lambda)\right|}{2 \pi} \log \left[1-\theta_{m}(\lambda)+\theta_{m}(\lambda) e^{-\operatorname{sgn}\left[p_{m}^{\prime}\right] \log x_{m}(\lambda)}\right]
$$

- $M=$ \# quasiparticle species, momenta $p_{m}(\lambda)$, energy $\epsilon_{m}(\lambda)$, scattering kernel $T_{m n}(\lambda-\mu)$
- Occupation function $\theta_{m}(\lambda)$ from quench action (Caux Essser '13) or string-charge duality (Illievski etal. '15)
- $\log x_{m}(\lambda)$ related to effective quasiparticle charge $\left.\partial_{\beta} \log x_{m}(\lambda)\right|_{\beta=0}=q_{m, e f f}$

$$
\log x_{m}(\lambda)=-\beta q_{m}+\sum_{n=1}^{M} \int T_{m n}(\lambda-\mu) \log \left[1-\theta_{n}(\mu)+\theta_{n}(\lambda) e^{\left.-\operatorname{sgn}\left[p_{n}^{\prime}\right] \log x_{n}\right]}\right.
$$

- Use these to get explicit expression for dual state FCS: $\operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\beta \tilde{Q}_{t}}\right]$

TBA Spacetime Swap

- Space time $\operatorname{swap} p_{m}(\lambda) \leftrightarrow \epsilon_{m}(\lambda)$ to get dual stationary state (Bertini et. al 2022)

$$
\frac{1}{t} \log \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\beta \tilde{Q}_{t}}\right]=\sum_{m=1}^{M} \int \mathrm{~d} \lambda \frac{\left|\epsilon_{m}^{\prime}(\lambda)\right|}{2 \pi} \log \left[1-\theta_{m}(\lambda)+\theta_{m}(\lambda) e^{-\operatorname{sgn}\left[\epsilon_{m}^{\prime}\right] \log y_{m}(\lambda)}\right]
$$

- $\log y_{m}(\lambda)$ related to effective dual quasiparticle charge $\left.\partial_{\beta} \log y_{m}(\lambda)\right|_{\beta=0}=\tilde{q}_{m, e f f}$

$$
\log y_{m}(\lambda)=-\beta q_{m}+\sum_{n=1}^{M} \int T_{m n}(\lambda-\mu) \operatorname{sgn}\left[\epsilon_{\mathrm{n}}^{\prime}\right] \log \left[1-\theta_{n}(\mu)+\theta_{n}(\lambda) e^{-\operatorname{sgn}\left[\epsilon_{n}^{\prime}\right] \log y_{n}(\mu)}\right]
$$

TBA Spacetime Swap

- Space time $\operatorname{swap} p_{m}(\lambda) \leftrightarrow \epsilon_{m}(\lambda)$ to get dual stationary state (Bertini et. al 2022)

$$
\frac{1}{t} \log \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}} e^{\beta \tilde{Q}_{t}}\right]=\sum_{m=1}^{M} \int \mathrm{~d} \lambda \frac{\left|\epsilon_{m}^{\prime}(\lambda)\right|}{2 \pi} \log \left[1-\theta_{m}(\lambda)+\theta_{m}(\lambda) e^{-\operatorname{sgn}\left[\epsilon_{m}^{\prime}\right] \log y_{m}(\lambda)}\right]
$$

- $\log y_{m}(\lambda)$ related to effective dual quasiparticle charge $\left.\partial_{\beta} \log y_{m}(\lambda)\right|_{\beta=0}=\tilde{q}_{m, e f f}$

$$
\log y_{m}(\lambda)=-\beta q_{m}+\sum_{n=1}^{M} \int T_{m n}(\lambda-\mu) \operatorname{sgn}\left[\epsilon_{\mathrm{n}}^{\prime}\right] \log \left[1-\theta_{n}(\mu)+\theta_{n}(\lambda) e^{-\operatorname{sgn}\left[\epsilon_{n}^{\prime}\right] \log y_{n}(\mu)}\right]
$$

- Checked
- Analytically in free models, Rule 54
- Numerically in XXZ
- Agrees with BMFT (Myers et. al 2020)

Finite time dynamics

- Use a "quasiparticle" picture to connect the two regimes (Calabrese \& Cardy 2005, Alba \& Calabrese 2017)
- Each mode contributes t linear growth and then saturates

- Charge probability distribution for $t \gg t_{D}, q \approx q_{0}$, FT via saddle point

$$
P\left(Q_{A}=|A| q, t\right) \simeq \frac{e^{-\frac{\left(q-q_{0}\right)^{2}}{2(t)}}}{\sqrt{2 \pi \sigma(t)}} \quad \sigma(t)=\sum_{m=1}^{M} \int \mathrm{~d} \lambda \min \left[|A|, 2 t \mid v_{m}(\lambda)\right] q_{m, \mathrm{eff}}^{2} \rho_{m}\left[1-\theta_{m}\right]
$$

- Quasiparticle velocity $v_{m}(\lambda)$, quasiparticle charge $q_{m, \text { eff }}(\lambda)$

Non symmetric initial states

- Can also treat charge moments for non symmetric initial states

- Use GHD solution for NESS instead of $\theta_{m}(\lambda)$ (Bertini et. al 2016, Castro-Alvaredo et. al. 2016)

Conclusions \& Outlook

- Space-time duality maps non-equilibrium systems to equilibrium ones
- Generic properties for charged moments based on equilibrium methods
- Specific predictions for integrable models
- Also works for higher Rènyi index

$$
Z_{\beta}(A, t) \simeq Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}}^{n} e^{\left.\beta \tilde{Q}_{A}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}}^{n} e^{-\beta \tilde{Q}_{A}}\right]}\right.
$$

- Entanglement Asymmetry
- Quantum Mpemba Effect

Based on:
arXiv:2212.06188 (PRL) \& arXiv:2306.12404

Conclusions \& Outlook

- Space-time duality maps non-equilibrium systems to equilibrium ones
- Generic properties for charged moments based on equilibrium methods
- Specific predictions for integrable models
- Also works for higher Rènyi index

$$
Z_{\beta}(A, t) \simeq Z_{\beta}(A, 0) \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}}^{n} e^{\left.\beta \tilde{Q}_{A}\right] \operatorname{tr}\left[\tilde{\rho}_{\mathrm{st}}^{n} e^{-\beta \tilde{Q}_{A}}\right]}\right.
$$

- Entanglement Asymmetry
- Quantum Mpemba Effect
Based on:
arXiv:2212.06188 (PRL) \& arXiv:2306.12404

Thank you

Entanglement asymmetry

- Can calculate entanglement asymmetry, $\left[\rho_{A}(0), Q\right] \neq 0$ (Ares et. al. 2022)

$$
\begin{gathered}
\Delta S\left[\rho_{A}(t)\right]=\operatorname{tr}\left[\rho_{A}(t)\left\{\log \rho_{A}(t)-\log \rho_{A, Q}(t)\right\}\right] \\
\rho_{A, Q}(t)=\sum_{q} \Pi_{q} \rho_{A}(t) \Pi_{q}
\end{gathered}
$$

- $\rho_{A, Q}(t)$: RDM projected onto charge symmetric space, Π_{q} - projector onto $Q_{A}=q$
- Measures the restoration of symmetry after quench from a symmetry broken state
- Calculate with charged moments via replica trick and spacetime swap
- Use to study relaxation dynamics/symmetry restoration: Quantum Mpemba Effect

Quantum Mpemba effect

- Consider two different broken symmetry states, ρ_{1}, ρ_{2} with

$$
\Delta S\left[\rho_{A, 1}(0)\right]>\Delta S\left[\rho_{A, 2}(0)\right]
$$

- Quench to an integrable Hamiltonian, generically $\lim _{t \rightarrow 0} \Delta S_{A}(\rho, t) \rightarrow 0$

$$
\text { QME if: } \Delta S_{A}\left[\rho_{1}(t)\right]<\Delta S_{A}\left[\rho_{2}(t)\right], \forall t>t_{\mathrm{M}}
$$

- Example: Quench of XXZ from tilted Ferro

$$
\left|\Psi_{0}\right\rangle=e^{i \frac{\theta}{2} S^{y}}|\Uparrow\rangle
$$

- Faster symmetry restoration for larger tilt
- Can be explained through transport properties

