Non-equilibrium Full Counting Statistics and Charged moments in Integrable models

erc

Bologna Workshop on CFT & Integrable models 06/09/23

Colin Rylands

Quench Dynamics

Universal physics in equilibrium systems is well studied. Non-equilibrium? \bullet

- Complicated problem, explore full spectrum not just low energy
 - Breakdown of low energy/equilibrium methods (RG, Fermi Liquid, bosonization) lacksquare
- Nevertheless, a lot known at long time $t \gg |A|$

 $|\Psi_0(t)\rangle = e^{-iHt} |\Psi_0\rangle$

Thermalisation:

 $\lim_{A \to 0} \lim_{A \to 0} \operatorname{tr}[\rho_{A}(t)\hat{\mathcal{O}}_{A}] \to \operatorname{tr}[\rho_{st}\hat{\mathcal{O}}_{A}]$ $|A| \rightarrow \infty t \rightarrow \infty$

 $\rho_{\rm st}$ is stationary state e.g. GE or GGE

What about at finite time?

- At times $t \ll |A|$ can we say anything?
- Space-time duality approach to quantum dynamics can help (Bertini et. al 2019,2022)
- Maps finite time problem to an dual system which is at equilibrium

This talk: Calculate non equilibrium Charged Moments for integrable models

Non-equilibrium finite time average

 $\operatorname{tr}[\rho_A(t)\hat{\mathcal{O}}_A]$

 $\mathrm{tr}[\tilde{
ho}_{\mathrm{st}}\hat{\tilde{\mathcal{O}}}_{^{\scriptscriptstyle A}}]$

Equilibrium average in stationary state of space evolution

 $t \ll |A|$

- Charged moments
- Space time duality
- Generic Results
- Explicit predictions for integrable models
- Summary/Conclusion

Based on: arXiv:2212.06188 (PRL) & arXiv:2306.12404

with B. Bertini, P. Calabrese, M. Collura & K. Klobas

Outline

Charged Moments Consider system with U(1) charge $Q = \sum q_x$, [H, Q] = 0

$$Z_{\beta}(A,t) = \operatorname{tr}[\prod_{j=1}^{n} f_{j}]$$

- For $\beta_i = 0$, n > 1: Rényi entanglement entropy
- For n = 1: Full counting statistics/charge probability distribution

$$P(Q_A = q, t) = \int_{-\pi}^{\pi} \frac{\mathrm{d}\beta}{2\pi} Z_{i\beta}(A, t) e^{-i\beta q}$$

• For $\beta_i \neq 0, n > 1$: Symmetry resolved entanglement (Goldstein & Sela 2018) or Entanglement Asymmetry (c.f. Talks of Luca Capizzi & Michele Fossatti) (Ares, Murciano & Calabrese 2022)

 $\rho_A(t)e^{\beta_j Q_A}$

Brickwork Quantum Circuits

- Simplified model of dynamics, discrete space and time evolution (Nahum et. al 2017)
 - $|\Psi_0(t)\rangle = \mathbb{U}^t |\Psi_0\rangle$
- Symmetric product initial state $|\Psi_0\rangle = |\psi_0\rangle^{\otimes |A|/2}$
- Time evolution $\mathbb{U} = U^{\otimes |A|/2} \prod_{\text{shift}} U^{\otimes |A|/2} \prod_{\text{shift}}$ made of local operators U

• Since [Q, H] = 0 have

|A|

Use inverse

|A|

Use inverse

|A|

Use inverse

|A|

Use inverse

|A|

Use inverse

|A|

Use inverse

|A|

For a symmetric initial state

|A|

For a symmetric initial state

|A|

Spacetime swap

• Two viewpoints for $Z_{\beta}(A, t)$

 $\operatorname{tr}[\mathbb{U}^{t}\rho_{A}(0)\mathbb{U}^{\dagger^{t}}e^{\beta Q_{A}}]$

• The dual perspective offers simplifications for $2t < |A|, |\overline{A}|$

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\mathrm{st}}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

- The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$
 - $Z_{\beta}(A,t) = Z_{\beta}(A,0) \operatorname{tr}[\mathbb{W}^{|\bar{A}|} e^{\beta \tilde{Q}_{t}} \mathbb{W}^{|A|} e^{-\beta \tilde{Q}_{t}}]$
 - $\rightarrow Z_{\beta}(A,0) \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}e^{\beta \tilde{Q}_{t}}] \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}e^{-\beta \tilde{Q}_{t}}]$
- Splits into two causally disconnected pieces

The space transfer matrix has unique largest eigenvector $\mathbb{W}^{|A|} \to \tilde{\rho}_{\rm st}$

$$Z_{\beta}(A, t) = Z_{\beta}(A, 0) tr$$

$$\rightarrow Z_{\beta}(A,0) \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}e^{\beta \tilde{Q}_{t}}] \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}e^{-\beta \tilde{Q}_{t}}]$$

- Time integrated current at causally disconnected boundaries
- Extensive charge in dual system $\lim_{t \to \infty} \lim_{|A| \to \infty} \frac{1}{t} \log \frac{1}{t}$
- Time delay for symmetric states (Parez et. al 2021) $P(Q_A = |A||q, t) \simeq \Theta(t t_D) \frac{e^{-\frac{(q-q_0)^2}{2\sigma(t)}}}{\sqrt{2\pi\sigma(t)}} \qquad \sigma(t)$
 - If current is bounded need time to transport charge

Generic properties

 $\mathbb{W}^{|\bar{A}|}e^{\beta \tilde{Q}_t} \mathbb{W}^{|A|}e^{-\beta \tilde{Q}_t}$

g tr[
$$\tilde{\rho}_{st}e^{\beta\tilde{Q}_t}$$
] $\rightarrow s_{\beta}$

 $t_D \sim |A| |q - q_0| / \text{tr}[\tilde{Q}_t]$

TBA integrable models

For integrable models can calculate long time limit using TBA

$$\frac{1}{|A|}\log \operatorname{tr}[\rho_{\mathrm{st}}e^{\beta Q_A}] = \sum_{m=1}^{M} \int d\lambda \frac{|p'_m(\lambda)|}{2\pi} \log[1 - \theta_m(\lambda) + \theta_m(\lambda)e^{-\operatorname{sgn}[p'_m]\log x_m(\lambda)}]$$

- M = # quasiparticle species, momenta $p_m(\lambda)$, energy $\epsilon_m(\lambda)$, scattering kernel $T_{mn}(\lambda \mu)$
- Occupation function $\theta_m(\lambda)$ from quench action (Caux Essler '13) or string-charge duality (Illievski et al. '15)
- $\log x_m(\lambda)$ related to effective quasiparticle charge $\partial_\beta \log x_m(\lambda)|_{\beta=0} = q_{m,eff}$

$$\log x_m(\lambda) = -\beta q_m + \sum_{n=1}^M \int T_{mn}(\lambda)$$

- Use these to get explicit expression for dual state FCS: tr[$\tilde{\rho}_{st}e^{\beta Q_t}$]
- $[\lambda \mu)\log[1 \theta_n(\mu) + \theta_n(\lambda)e^{-\operatorname{sgn}[p'_n]\log x_n}]$

TBA Spacetime Swap

Space time swap $p_m(\lambda) \leftrightarrow \epsilon_m(\lambda)$ to get dual stationary state (Bertini et. al 2022)

$$\frac{1}{t}\log \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}e^{\beta\tilde{Q}_{t}}] = \sum_{m=1}^{M} \int \mathrm{d}\lambda \frac{|\epsilon'_{m}(\lambda)|}{2\pi} \log[1-\theta_{m}(\lambda)+\theta_{m}(\lambda)e^{-\operatorname{sgn}[\epsilon'_{m}]\log y_{m}(\lambda)}]$$

• $\log y_m(\lambda)$ related to effective dual quasiparticle charge $\partial_\beta \log y_m(\lambda)|_{\beta=0} = \tilde{q}_{m,eff}$

$$\log y_m(\lambda) = -\beta q_m + \sum_{n=1}^M \int T_{mn}(\lambda - \mu)$$

 $\log[\epsilon'_{n}]\log[1 - \theta_{n}(\mu) + \theta_{n}(\lambda)e^{-\operatorname{sgn}[\epsilon'_{n}]\log y_{n}(\mu)}]$

TBA Spacetime Swap

Space time swap $p_m(\lambda) \leftrightarrow \epsilon_m(\lambda)$ to get dual stationary state (Bertini et. al 2022)

$$\frac{1}{t}\log \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}e^{\beta\tilde{Q}_{t}}] = \sum_{m=1}^{M} \int \mathrm{d}\lambda \frac{|\epsilon'_{m}(\lambda)|}{2\pi} \log[1-\theta_{m}(\lambda)+\theta_{m}(\lambda)e^{-\operatorname{sgn}[\epsilon'_{m}]\log y_{m}(\lambda)}]$$

• $\log y_m(\lambda)$ related to effective dual quasiparticle charge $\partial_\beta \log y_m(\lambda)|_{\beta=0} = \tilde{q}_{m,eff}$

$$\log y_m(\lambda) = -\beta q_m + \sum_{n=1}^M \int T_{mn}(\lambda - \mu)$$

- Checked
 - Analytically in free models, Rule 54
 - Numerically in XXZ
 - Agrees with BMFT (Myers et. al 2020)

 $\log[\epsilon'_{n}]\log[1 - \theta_{n}(\mu) + \theta_{n}(\lambda)e^{-\operatorname{sgn}[\epsilon'_{n}]\log y_{n}(\mu)}]$

Finite time dynamics

- \bullet
 - Each mode contributes t linear growth and then saturates

Charge probability distribution for $t \gg t_D$, $q \approx q_0$, FT via saddle point

$$P(Q_A = |A||q, t) \simeq \frac{e^{-\frac{(q-q_0)^2}{2\sigma(t)}}}{\sqrt{2\pi\sigma(t)}} \quad \sigma(t) = \sum_{m=1}^M \int d\lambda \min[|A|, 2t|v_m(\lambda)] q_{m,\text{eff}}^2 \rho_m[1-\theta_m]$$

• Quasiparticle velocity $v_m(\lambda)$, quasiparticle charge $q_{m,eff}(\lambda)$

Use a "quasiparticle" picture to connect the two regimes (Calabrese & Cardy 2005, Alba & Calabrese 2017)

Non symmetric initial states

Can also treat charge moments for non symmetric initial states

- NESS of bipartite quench from I I I I I II II
- Use GHD solution for NESS instead of $\theta_m(\lambda)$ (Bertini et. al 2016, Castro-Alvaredo et. al. 2016)

Or

Conclusions & Outlook

- Space-time duality maps non-equilibrium systems to equilibrium ones
 - Generic properties for charged moments based on equilibrium methods
 - Specific predictions for integrable models
 - Also works for higher Rènyi index

$$Z_{\beta}(A,t) \simeq Z_{\beta}(A,0) \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}^{n} e^{\beta \tilde{Q}_{A}}] \operatorname{tr}[\tilde{\rho}_{\mathrm{st}}^{n} e^{-\beta \tilde{Q}_{A}}]$$

- Entanglement Asymmetry
- Quantum Mpemba Effect

Conclusions & Outlook

- Space-time duality maps non-equilibrium systems to equilibrium ones
 - Generic properties for charged moments based on equilibrium methods
 - Specific predictions for integrable models
 - Also works for higher Rènyi index

$$Z_{\beta}(A,t) \simeq Z_{\beta}(A,t)$$

- Entanglement Asymmetry
- Quantum Mpemba Effect

- ,0)tr[$\tilde{\rho}_{st}^{n}e^{\beta Q_{A}}$]tr[$\tilde{\rho}_{st}^{n}e^{-\beta Q_{A}}$]

Entanglement asymmetry

- Can calculate entanglement asymmetry, $[\rho_A(0), Q] \neq 0$ (Ares et. al. 2022)

 - $\rho_{A,Q}(t) = \sum \Pi_q \rho_A(t) \Pi_q$
- Calculate with charged moments via replica trick and spacetime swap

$$\Delta S[\rho_A(t)] = b(t) = \sum_{k=1}^{M} \int d\lambda [1 - \min[1]]$$

j=1 **J** Use to study relaxation dynamics/symmetry restoration: Quantum Mpemba Effect

 $\Delta S[\rho_{A}(t)] = tr[\rho_{A}(t)\{\log \rho_{A}(t) - \log \rho_{A,O}(t)\}]$

- $\rho_{A,O}(t)$: RDM projected onto charge symmetric space, Π_q - projector onto $Q_A = q$

Measures the restoration of symmetry after quench from a symmetry broken state

 $\frac{1}{2} + \frac{1}{2} \log \pi |A| b(t)$ $1,2 |v_m| t/|A|] q_{m,\text{eff}}^2 \rho_m(\lambda) [1 - \theta_m(\lambda)]$

Quantum Mpemba effect

Consider two different broken symmetry states, ρ_1 , ρ_2 with

Quench to an integrable Hamiltonian, generically $\lim \Delta S_A(\rho, t) \to 0$ $t \rightarrow 0$

Example: Quench of XXZ from tilted Ferro

$$|\Psi_0\rangle = e^{i\frac{\theta}{2}S^{y}}|\Uparrow\rangle$$

- Faster symmetry restoration for larger tilt
 - Can be explained through transport properties

 $\Delta S[\rho_{A,1}(0)] > \Delta S[\rho_{A,2}(0)]$

QME if: $\Delta S_A[\rho_1(t)] < \Delta S_A[\rho_2(t)], \quad \forall t > t_M$

