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The theory which unites it all
What do we know about N=4 SYM?

• Many symmetries: 4d conformal symmetry and supersymmetry . 


• In the large-  limit ( ) of  colour group, the leading contribution to 
observables comes from planar diagrams. The spectrum is dominated by single-trace 
operators. Integrability: the spectrum of single-trace operators is known exactly.


• : at strong coupling  ( ) the theory is dual to string theory on 
the curved background. 

PSU(2 |2,4)

N N → ∞, gYM → 0 SU(N)

AdS5/CFT4 λ ≡ g2
YMN g ≡ λ /4π



The theory which unites it all
What do we wish to know about N=4 SYM?

• Correlation functions of any sets of operators  at any coupling. Conformal 
symmetry already simplifies this task: it is sufficient to determine the spectrum and all OPE 
coefficients . Is it possible to find OPE 

coefficients using integrability? 


• By the holographic duality, at strong coupling this question corresponds to determining the 
scattering amplitudes of strings on the curved  background. 

⟨𝒪(x1)…𝒪(xn)⟩

⟨𝒪(x1)𝒪(x2)𝒪(x3)𝒪(x4)⟩ ∼ ∑
Δ
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Bootstrability
Hybrid approach: integrability and conformal bootstrap

• Conformal bootstrap is a set of consistency equations imposed on conformal field theory. For instance, 
the crossing equations:

• Numerical conformal bootstrap provides narrow bounds on the OPE coefficients and on the spectrum by 
excluding theories with are not compatible with crossing: . 


• Let us notice that the spectrum is usually unknown, and it is an additional parameter in the search (it is 
important not to have many parameters: the curse of dimensionality).

∑
𝒪

C2
ϕϕ𝒪FΔϕ

Δ,l(u, v) = 0
[Ratazzi, Rychkov, Tonni, Vichi ’08] 



Bootstrability

• In the content of 1d Maldacena-Wilson line in the defect CFT the bootstrability approach has shown 
incredible bounds on OPE coefficients [Cavaglia, Gromov, Julius, Preti ’21]. The spectrum of first 
operators is known from integrability as only single trace operators are exchanged:

Hybrid approach: integrability and conformal bootstrap

Spectrum from integrability (QSC-based numerics) 
[Grabner, Gromov, Julius ’20] [Julius ’21] [Cavaglia, 

Gromov, Julius, Preti ’21]

Bounds on structure constants with numerical 
conformal bootstrap (SDPB) [Cavaglia, Gromov, 

Julius, Preti ’21 ’22] 

Idea: use the knowledge of the spectrum and other consequences of integrability to combine with numerical/
analytical conformal bootstrap. 



QSC solver: our objective
• We want obtain the spectrum of local operators in the “bootstrability” spirit: all states up to some 

, in a wide range of coupling


• Shortly after the formulation of the quantum spectral curve, the numerical algorithms were developed to 
compute spectrum of ground states [Gromov, Levkovich-Maslyuk, Sizov ’15].


• However, many of excited states were not accessible with the procedure.


• We have updated the algorithm such that it is possible to initialise all states, and that the computing time 
is fast enough to continue them to the strong coupling regime [  ~ ]. 


• The perturbative spectrum at weak coupling have been classified and computed up to higher loops 
[Marboe, Volin ’16, ’17]. This provides initial “seeds” for the solver.

Δ𝚌𝚞𝚝𝚘𝚏𝚏

g 1



Quantum Spectral Curve 
Any state in  SYM with quantum numbers   is described by a set of 256 “curves” with 

distinguished 16: . 

Asymptotic of the curves at large-  is given by the quantum numbers of the state which provides “initial” conditions: 

.

𝒩 = 4 [Δ, ℓ1, ℓ2, p1, q, p2]
Pa(u), Pa(u), Qi(u), Qi(u), a = {1,…,4}, b = {1,…,4}

u
Pa ∼ upowPa, Pa ∼ u−powPa−1, Qi ∼ upowQi, Qi ∼ u-powQi−1

Due to the single-cut structure of  and  curves, they can be parameterised by the Zhukovsky variable

.   

Pa(u) Pa(u)

x(u) ≡
u + u − 2g u + 2g

2g

The curves are not independent: they are related by the set of functional relations called the QQ-relations, 

as well as by the “gluing” conditions: . Q̃i = GijQ̄ j, Q̃i = GijQ̄j

[Gromov, Kazakov, Leurent, Volin ’14]



QSC solver: updated algorithm

1.  can be parametrised  
by the Zhukovsky variable  which 
gives a set of “starting” parameters 

 
Use functional relations to obtain .

{Pa, Pa}
x(u)

{Δ𝚠𝚎𝚊𝚔 𝚌𝚘𝚞𝚙𝚕𝚒𝚗𝚐, ca,n, ca,n} .
{Qi, Qi}

2.  have a branch cut between 
. Sample them at a set of problem 

points , close to the branch cut. Impose 
a set of “gluing” conditions 
on and their analytic continuations 

, which ensure correct analytic 
properties. Use functional relations to 
compute  on the probe 
points . Perform a Fourier transform to 
get the updated parameters 

.

{Qi, Qi}
[−2g, 2g]

{u0}

{Qi, Qi}
{Q̃i, Q̃i}

{Pa, Pa, P̃a, P̃a}
{u0}

{Δ, c𝚄𝚙𝚍𝚊𝚝𝚎𝚍
a,n , ca,n,𝚄𝚙𝚍𝚊𝚝𝚎𝚍}

3. Numerical search: Newton’s method to 
solve 

⃗F ({c}, Δ) = {c𝚄𝚙𝚍𝚊𝚝𝚎𝚍
a,n − ca,n, ca,n 𝚄𝚙𝚍𝚊𝚝𝚎𝚍 − ca,n} = 0 .

4. Precision control is achieved by seeing how 
close to zero, certain parameters, which are 
“gauge fixed” to be zero, are. 
Once the desired precision is reached, read off 
the value of  obtained.
Δ

Initial parameters Gluing conditions on the cut

Search in the space of parameters
Read the spectrum



Outcome: following the states

The states are computed up to  the following couplings. “Left-right” and parity 
symmetric: ; “Left-right” symmetric and general parity: ; 
General and parity symmetric: ; General: ;  Konishi: 

. 

g ∈ [0,5] g ∈ [0,2]
g ∈ [0,2] g ∈ [0,1]

g ∈ [0,13]

We have computed all states of  SYM up to  < 7. The running time of states depends 
on symmetries of the state, which results in symmetries of  and .  

𝒩 = 4 Δbare
Pa Pa



Outcome: strong coupling analysis 
• At strong coupling spectrum forms “bands” with slopes 

corresponding to “string mass levels” [Gubser, Klebanov, 
Polyakov ’98]:  .


• Degeneracies of states with the same  and  are lifted. The 
subleading coefficient   for the most of the states is 

determined:  which turns 

out to be a simple rational number.


• We provide a heuristic argument that  for all 
states in planar  SYM and give credence to it by 
fitting our data.

Δ ≃ 2 δλ
1
4

δ ℓ
d1

Δ ≃ 2 δλ1/4 + Δ𝚌𝚘𝚗𝚜𝚝 +
d1

δλ1/4

Δ𝚌𝚘𝚗𝚜𝚝 = − 2
𝒩 = 4



Outcome: Kaluza-Klein towers
It is possible to count states with given  in the flat space limit by counting the representations of , 


the massive little group of  [Alday, Hansen, Silva ’23]. To capture the   structure, one should 

count the representations of .

δ SO(9)
ℝ1,9 AdS5 × S5

SO(4) × SO(5)

How to identify this spectrum with  SYM at strong coupling? One can consider the compactification

of five directions into  such that representations of  are identified with the tower of  representations. For 

example,


.

𝒩 = 4
S5 SO(5) SO(6)

[0; 0] =
∞

∑
p=0

[0,p,0]

      We were able to assign states of  SYM with quantum numbers   to the corresponding 
KK-towers by noticing that the subleading coefficient of the Casimir operator  is the same! If so, we 

can compute the subleading coefficient of the spectrum  by computing just one state at the top:





𝒩 = 4 [Δ, ℓ1, ℓ2, q1, p, q2]
J2 ≃ 2δ λ + j1

d1

d1 =
p2

2
+ p + 1 +

j1
2



Structure constants at strong coupling
Consider the four-point function of 20’ operators: operators with different twists  are exchanged in the 
operator product expansion: .


τ ≡ Δ − ℓ
⟨𝒪2𝒪2𝒪2𝒪2⟩ = ∑

τ,ℓ

C2
τ,ℓGτ+4,ℓ(u, v)

At strong coupling, under a simple change of variables, , [Alday, Hansen, Silva  ’22] derived conformal 
bootstrap constraints on CFT-data combinations of type  and . The superscript refers to 

order in the strong coupling expansion. These sums are over all operators with same  and , and need to be 
“unmixed” in order to extract individual predictions.


For  and , there are two such operators, which we can unmix using our spectral data. Therefore, we 
obtain


  


which are the first Bootstrability predictions at strong coupling for  SYM!

C2
τ,ℓ → fδ,ℓ

∑
k

f (n)
δ,ℓ; k ∑

k

f (n)
δ,ℓ; k τ(m)

δ,ℓ; k

δ ℓ

δ = 2 ℓ = 0

f (0)
2,0; 1 = 0 , f (0)

2,0; 2 =
1
4

,

𝒩 = 4



Bootstrability for  SYM?𝒩 = 4

• We have computed the spectrum of local operators in the “bootstrability” spirit: all states up 
to some , in a wide range of coupling. How can we implement the numerical 
conformal bootstrap effectively? [Niarchos, Papageorgakis, Richmond, Stapleton, Woolley 
’23].


• How to tame contribution from double-trace operators? [Caron-Huot, Coronado, Trinh, 
Zahraee ’22] [Alday, Hansen, Silva ’22].


• We can extract more OPE coefficients at strong coupling with the dispersive sum rules [Alday, 
Hansen, Silva ’22 ’23].


• We can provide building blocks for resumming wrapping corrections [Basso, Georgoudis, 
Klemenchuk Sueiro ’22] in Hexagon approach [Basso, Komatsu, Vieira ’15].

Δ𝚌𝚞𝚝𝚘𝚏𝚏



QSC Solver: open source
                                

        The Solver is available on GitHub (https://github.com/julius-julius/qsc) and includes:


• C++ core code.

• Auxiliary packages which allow to initialise from perturbative QSC solver of [Marboe, Volin ’17 ’18].

• Python script which manages the parameters of the run and does not require control from the user.

• Mathematica notebook with the code prototype. 

• Numerical data for all already computed states, so that it is possible for a user to run own states and 

continue those already computed.



Thank you!


