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e Classical Gaudin models can be obtained by a certain classical
limit [Lacroix '18, ...]

e Why? Integrable field theories [Vicedo '18], connection with 4D
Chern-Simons theory [Costello-Witten-Yamazaki '19, Vicedo
'19,...],...
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Complete description for arbitrary g in [Feigin Frenkel Reshetikhin '94]

e Characterisation of local higher Hamiltonians: there is a large
commutative subalgebra 2(g) C U(g)®" which is in 1-1
correspondence with singular vectors of Vg’_h’v, which are
isomorphic to the polynomial algebra C[P;];—1.... rank g, and
deg P; = d; + 1 where d; are the exponents of g.

e Description of their spectrum: The Gaudin subalgebra is isomorphic
to the algebra of polynomial functions over the space of “g-opers

Z2(g) = Fun(OperLg((ClPl)) (2)

e Is it possible to generalise this construction to the affine case?



Affine-type Gaudin models

There is no general construction

e There is no analogue of the vacuum Verma module at critical level
(new directions from Higher Kac-Moody algebras [Faonte Kapranov
Hennion '17, Alfonsi Young '22])

e No isomorphism between the Bethe algebra and a space of opers



Affine-type Gaudin models

There is no general construction

e There is no analogue of the vacuum Verma module at critical level
(new directions from Higher Kac-Moody algebras [Faonte Kapranov
Hennion '17, Alfonsi Young '22])

e No isomorphism between the Bethe algebra and a space of opers

There are several conjectures [Feigin Frenkel '11, Lacroix Vicedo Young
'18] based of the definition of affine opers.

Some higher local Hamiltonians have been constructed [Lacroix Vicedo
Young '20, Kotousov Lacroix Teschner '21, TF Young '21], for example
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Vertex algebras

A vertex algebra [Borcherds '86, Frenkel Huang Lepowsky '93, Frenkel
Ben-Zvi '01] is a vector space V, with a vacuum vector |0) € V and a
map T € End(V) endowed with an infinite number of products

that can be packed up into fields

Y(Az) = Amz "',  Aw) €End(V) (4)
nezZ

satisfying a series of axioms (translation covariance, vacuum, locality,
Borcherds identities).

They are the mathematical framework to describe CFTs (state field
correspondence, OPEs, . ..).
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The Feigin-Frenkel homomorphism

In particular, the relation between Hamiltonians and opers is based on the
homomorphism of vertex algebra [\Wakimoto '86, Feigin Frenkel '90]

VET - M(ny) (6)
Procedure:

e Realise the Lie algebra in terms of differential operators on the
algebra O(n;) = C[X%]pea,
g—>Der(’)(n+), A Z PX(X)D@ (6)
acAy

Forsly: E— D, Hw— —2XD, F— —XXD.
e Promote this to vertex algebras:

VE* = M(ny), = Y Py ~1]10)  (7)

acAy

e In order to be a homomorphism of vertex algebras, & must be the
critical level —
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Affine analogue of Feigin-Frenkel homomorphism

Generalising to the affine case, one obtains a homomorphism

§—DerO(ny), Aw > Py"(X)Dan (8)
(a,n)EA

For example, in sls:

Jpa = Dpa— Y XDy +2) X IDp,
k>3 k>3
+ (—2X52xE2 4 \Dgs+ (XF2XF? 4 \Dps

+ (—2XP3XP3 _9XH3XH3 4 )Dpq+...

Can this still be promoted to vertex algebra homomorphism?

No, since the (properly completed) Fock module M has not the
structure of a vertex algebra.
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One possible solution [Young '20]: realise the Lie algebra as two glued
copies of the algebra of derivations g — DerO(n) @ DerO(n_). Regard
the new infinite sums as abstract generators of gl(g)[t,t~!] x CD, and

define a homomorphism Vg’o SM=Mg Vg‘(g)[t’til]xw’o.
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then,
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One can now try to regularise the sum using (-function regularisation
[Lepowski '00, Doyon Lepowsky Milas '06]

e regard infinite sum as small-z expansion of rational function in z;

perform the transformation z — €Y;

e power expand the resulting term for small values of y;

regard result as the ratio of Laurent series, which is again a Laurent
series;

e extract the constant term of the series obtained.



For example,
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For example,
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We can define a new space |\7|z C |\7IZ, spanned by M. and the infinite
sums of the form 3=, -, y**~"[0]Bx[—1]|0) (L € Z50,a,b € Z,n € Z).

Theorem
M, has the structure of a vertex algebra, after regularisation.
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For example,
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v 4 4 v
—>—4—|—§(1+2y—|—...)(1—y+...)=§—|—(’)(y)—>O
(11)

We can define a new space |\7|z C |\~/Iz, spanned by M. and the infinite
sums of the form 3=, -, y**~"[0]Bx[—1]|0) (L € Z50,a,b € Z,n € Z).

Theorem
M, has the structure of a vertex algebra, after regularisation.

In particular one can define a map 9 : V3° — M. such that for all
A,BeVv3°
9(A))9(B) = 9([A, B]) (12)
reg[d(A))?(B)] =0 13



e Lift the construction to a homomorphism of double loop algebras
e Proceed with the construction of Wakimoto modules

e Make contact with new constructions of higher Kac-Moody
algebra and understand the meaning of the regularisation procedure
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Thank you!
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