## University of Hertfordshire

# New insights into quantum affine Gaudin models 

Tommaso Franzini

10th Bologna Workshop on Conformal Field Theory and Integrable Models September 2023

## Plan of the talk

Introduction

Finite-type Gaudin models

Affine-type Gaudin models

The Feigin-Frenkel homomorphism and generalisations

Conclusion and Outlooks

## Gaudin Models

- Quantum Gaudin models [Gaudin '76] are defined by
- a Lie algebra $\mathfrak{g}$ of finite or affine type
- a set of points $\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{C P}^{1}$

The Hamiltonians are

$$
\begin{equation*}
\Xi_{i}=\sum_{j \neq i=1}^{N} \kappa_{a b} \frac{I^{a(i)} I^{b(j)}}{z_{i}-z_{j}} \tag{1}
\end{equation*}
$$

## Gaudin Models

- Quantum Gaudin models [Gaudin '76] are defined by
- a Lie algebra $\mathfrak{g}$ of finite or affine type
- a set of points $\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{C P}^{1}$

The Hamiltonians are

$$
\begin{equation*}
\Xi_{i}=\sum_{j \neq i=1}^{N} \kappa_{a b} \frac{I^{a(i)} I^{b(j)}}{z_{i}-z_{j}} \tag{1}
\end{equation*}
$$

- Classical Gaudin models can be obtained by a certain classical limit [Lacroix '18, ...]


## Gaudin Models

- Quantum Gaudin models [Gaudin '76] are defined by
- a Lie algebra $\mathfrak{g}$ of finite or affine type
- a set of points $\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{C P}^{1}$

The Hamiltonians are

$$
\begin{equation*}
\Xi_{i}=\sum_{j \neq i=1}^{N} \kappa_{a b} \frac{I^{a(i)} I^{b(j)}}{z_{i}-z_{j}} \tag{1}
\end{equation*}
$$

- Classical Gaudin models can be obtained by a certain classical limit [Lacroix '18, ...]
- Why? Integrable field theories [Vicedo '18], connection with 4D Chern-Simons theory [Costello-Witten-Yamazaki '19, Vicedo ' $19, \ldots$......


## Finite-type Gaudin models

Complete description for arbitrary $\mathfrak{g}$ in [Feigin Frenkel Reshetikhin '94]

## Finite-type Gaudin models

Complete description for arbitrary $\mathfrak{g}$ in [Feigin Frenkel Reshetikhin '94]

- Characterisation of local higher Hamiltonians: there is a large commutative subalgebra $Z(\mathfrak{g}) \subset U(\mathfrak{g})^{\otimes N}$ which is in 1-1 correspondence with singular vectors of $\mathbb{V}_{0}^{\widehat{\mathrm{g}},-h^{\vee}}$, which are isomorphic to the polynomial algebra $\mathbb{C}\left[P_{i}\right]_{i=1, \ldots, \text { rank } \mathfrak{g}}$, and $\operatorname{deg} P_{i}=d_{i}+1$ where $d_{i}$ are the exponents of $\mathfrak{g}$.


## Finite-type Gaudin models

Complete description for arbitrary $\mathfrak{g}$ in [Feigin Frenkel Reshetikhin '94]

- Characterisation of local higher Hamiltonians: there is a large commutative subalgebra $Z(\mathfrak{g}) \subset U(\mathfrak{g})^{\otimes N}$ which is in 1-1 correspondence with singular vectors of $\mathbb{V}_{0}^{\widehat{\mathrm{g}},-h^{\vee}}$, which are isomorphic to the polynomial algebra $\mathbb{C}\left[P_{i}\right]_{i=1, \ldots, \text { rank } \mathfrak{g}}$, and $\operatorname{deg} P_{i}=d_{i}+1$ where $d_{i}$ are the exponents of $\mathfrak{g}$.
- Description of their spectrum: The Gaudin subalgebra is isomorphic to the algebra of polynomial functions over the space of ${ }^{L} \mathfrak{g}$-opers

$$
\begin{equation*}
z(\mathfrak{g}) \cong \operatorname{Fun}\left(\operatorname{Oper}_{L_{\mathfrak{g}}}\left(\mathbb{C P}^{1}\right)\right) \tag{2}
\end{equation*}
$$

## Finite-type Gaudin models

Complete description for arbitrary $\mathfrak{g}$ in [Feigin Frenkel Reshetikhin '94]

- Characterisation of local higher Hamiltonians: there is a large commutative subalgebra $Z(\mathfrak{g}) \subset U(\mathfrak{g})^{\otimes N}$ which is in 1-1 correspondence with singular vectors of $\mathbb{V}_{0}^{\widehat{\mathrm{g}},-h^{\vee}}$, which are isomorphic to the polynomial algebra $\mathbb{C}\left[P_{i}\right]_{i=1, \ldots, \text { rank } \mathfrak{g}}$, and $\operatorname{deg} P_{i}=d_{i}+1$ where $d_{i}$ are the exponents of $\mathfrak{g}$.
- Description of their spectrum: The Gaudin subalgebra is isomorphic to the algebra of polynomial functions over the space of ${ }^{L} \mathfrak{g}$-opers

$$
\begin{equation*}
z(\mathfrak{g}) \cong \operatorname{Fun}\left(\text { Oper }_{L_{\mathfrak{g}}}\left(\mathbb{C P}^{1}\right)\right) \tag{2}
\end{equation*}
$$

- Is it possible to generalise this construction to the affine case?


## Affine-type Gaudin models

There is no general construction

- There is no analogue of the vacuum Verma module at critical level (new directions from Higher Kac-Moody algebras [Faonte Kapranov Hennion '17, Alfonsi Young '22])
- No isomorphism between the Bethe algebra and a space of opers


## Affine-type Gaudin models

There is no general construction

- There is no analogue of the vacuum Verma module at critical level (new directions from Higher Kac-Moody algebras [Faonte Kapranov Hennion '17, Alfonsi Young '22])
- No isomorphism between the Bethe algebra and a space of opers

There are several conjectures [Feigin Frenkel '11, Lacroix Vicedo Young '18] based of the definition of affine opers.

Some higher local Hamiltonians have been constructed [Lacroix Vicedo Young '20, Kotousov Lacroix Teschner '21, TF Young '21], for example in $\widehat{\mathfrak{s}}_{2}$

$$
\begin{gathered}
\varsigma_{3}(z)=\left[\delta_{(a b} \delta_{c d)} I_{-1}^{a}(z) I_{-1}^{b}(z) I_{-1}^{c}(z) I_{-1}^{d}(z)+\frac{20}{3} f_{a b c} I_{-2}^{a}(z) I_{-1}^{b \prime}(z) I_{-1}^{c}(z)\right. \\
+\frac{40}{9} I_{-3}^{a}(z) I_{-1}^{a \prime \prime}(z)-\frac{20}{3} I_{-2}^{a \prime \prime}(z) I_{-2}^{a}(z)+\frac{40}{9} I_{-3}^{a \prime}(z) I_{-1}^{a \prime}(z) \\
\left.\quad-\frac{10}{3} I_{-2}^{a \prime}(z) I_{-2}^{a \prime}(z)-\frac{20}{3} I_{-3}^{a}(z) I_{-1}^{a}(z) \mathrm{k}^{\prime}(z)\right]|0\rangle
\end{gathered}
$$

## Vertex algebras

A vertex algebra [Borcherds '86, Frenkel Huang Lepowsky '93, Frenkel Ben-Zvi '01] is a vector space $V$, with a vacuum vector $|0\rangle \in V$ and a map $T \in \operatorname{End}(V)$ endowed with an infinite number of products

$$
\begin{equation*}
\cdot(n)^{\cdot}: V \times V \rightarrow V \quad n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

that can be packed up into fields

$$
\begin{equation*}
Y(A, x):=\sum_{n \in \mathbb{Z}} A_{(n)} x^{-n-1}, \quad A_{(n)} \in \operatorname{End}(V) \tag{4}
\end{equation*}
$$

satisfying a series of axioms (translation covariance, vacuum, locality, Borcherds identities).

They are the mathematical framework to describe CFTs (state field correspondence, OPEs, ...).

## The Feigin-Frenkel homomorphism

In particular, the relation between Hamiltonians and opers is based on the homomorphism of vertex algebra [Wakimoto '86, Feigin Frenkel '90]

$$
\begin{equation*}
\mathbb{V}_{0}^{\widehat{\mathrm{g}},-h^{\vee}} \rightarrow \mathrm{M}\left(\mathfrak{n}_{+}\right) \tag{5}
\end{equation*}
$$

## The Feigin-Frenkel homomorphism

In particular, the relation between Hamiltonians and opers is based on the homomorphism of vertex algebra [Wakimoto '86, Feigin Frenkel '90]

$$
\begin{equation*}
\mathbb{V}_{0}^{\widehat{\mathfrak{g}},-h^{\vee}} \rightarrow \mathrm{M}\left(\mathfrak{n}_{+}\right) \tag{5}
\end{equation*}
$$

Procedure:

- Realise the Lie algebra in terms of differential operators on the algebra $\mathcal{O}\left(\mathfrak{n}_{+}\right)=\mathbb{C}\left[X^{\alpha}\right]_{\alpha \in \Delta_{+}}$

$$
\begin{equation*}
\mathfrak{g} \rightarrow \operatorname{Der} \mathcal{O}\left(\mathfrak{n}_{+}\right), \quad A \mapsto \sum_{\alpha \in \Delta_{+}} P_{A}^{\alpha}(X) D_{\alpha} \tag{6}
\end{equation*}
$$

For $\mathfrak{s l}_{2}: E \mapsto D, H \mapsto-2 X D, F \mapsto-X X D$.

## The Feigin-Frenkel homomorphism

In particular, the relation between Hamiltonians and opers is based on the homomorphism of vertex algebra [Wakimoto '86, Feigin Frenkel '90]

$$
\begin{equation*}
\mathbb{V}_{0}^{\widehat{\mathfrak{g}},-h^{\vee}} \rightarrow \mathrm{M}\left(\mathfrak{n}_{+}\right) \tag{5}
\end{equation*}
$$

Procedure:

- Realise the Lie algebra in terms of differential operators on the algebra $\mathcal{O}\left(\mathfrak{n}_{+}\right)=\mathbb{C}\left[X^{\alpha}\right]_{\alpha \in \Delta_{+}}$

$$
\begin{equation*}
\mathfrak{g} \rightarrow \operatorname{Der} \mathcal{O}\left(\mathfrak{n}_{+}\right), \quad A \mapsto \sum_{\alpha \in \Delta_{+}} P_{A}^{\alpha}(X) D_{\alpha} \tag{6}
\end{equation*}
$$

For $\mathfrak{s l}_{2}: E \mapsto D, H \mapsto-2 X D, F \mapsto-X X D$.

- Promote this to vertex algebras:

$$
\begin{equation*}
\mathbb{V}_{0}^{\widehat{\mathrm{g}}, k} \rightarrow \mathrm{M}\left(\mathfrak{n}_{+}\right), \quad A[-1]|0\rangle \mapsto \sum_{\alpha \in \Delta_{+}} P_{A}^{\alpha}(\gamma[0]) \beta_{\alpha}[-1]|0\rangle \tag{7}
\end{equation*}
$$

## The Feigin-Frenkel homomorphism

In particular, the relation between Hamiltonians and opers is based on the homomorphism of vertex algebra [Wakimoto '86, Feigin Frenkel '90]

$$
\begin{equation*}
\mathbb{V}_{0}^{\widehat{\mathfrak{g}},-h^{\vee}} \rightarrow \mathrm{M}\left(\mathfrak{n}_{+}\right) \tag{5}
\end{equation*}
$$

Procedure:

- Realise the Lie algebra in terms of differential operators on the algebra $\mathcal{O}\left(\mathfrak{n}_{+}\right)=\mathbb{C}\left[X^{\alpha}\right]_{\alpha \in \Delta_{+}}$

$$
\begin{equation*}
\mathfrak{g} \rightarrow \operatorname{Der} \mathcal{O}\left(\mathfrak{n}_{+}\right), \quad A \mapsto \sum_{\alpha \in \Delta_{+}} P_{A}^{\alpha}(X) D_{\alpha} \tag{6}
\end{equation*}
$$

For $\mathfrak{s l}_{2}: E \mapsto D, H \mapsto-2 X D, F \mapsto-X X D$.

- Promote this to vertex algebras:

$$
\begin{equation*}
\mathbb{V}_{0}^{\widehat{\mathrm{g}}, k} \rightarrow \mathrm{M}\left(\mathfrak{n}_{+}\right), \quad A[-1]|0\rangle \mapsto \sum_{\alpha \in \Delta_{+}} P_{A}^{\alpha}(\gamma[0]) \beta_{\alpha}[-1]|0\rangle \tag{7}
\end{equation*}
$$

- In order to be a homomorphism of vertex algebras, $k$ must be the critical level $-h^{\vee}$


## Affine analogue of Feigin-Frenkel homomorphism

Generalising to the affine case, one obtains a homomorphism

$$
\begin{equation*}
\widehat{\mathfrak{g}} \rightarrow \widetilde{\operatorname{Der}} \mathcal{O}\left(\mathfrak{n}_{+}\right), \quad A \mapsto \sum_{(\alpha, n) \in \mathrm{A}} P_{A}^{\alpha, n}(X) D_{\alpha, n} \tag{8}
\end{equation*}
$$

For example, in $\widehat{\mathfrak{s l}}_{2}$ :

$$
\begin{aligned}
J_{E, 1} \mapsto & D_{E, 1}-\sum_{k \geq 3} X^{F, k-1} D_{H, k}+2 \sum_{k \geq 3} X^{H, k-1} D_{E, k} \\
& +\left(-2 X^{F, 2} X^{E, 2}+\ldots\right) D_{E, 5}+\left(X^{F, 2} X^{F, 2}+\ldots\right) D_{F, 5} \\
& +\left(-2 X^{F, 3} X^{E, 3}-2 X^{H, 3} X^{H, 3}+\ldots\right) D_{E, 7}+\ldots
\end{aligned}
$$

## Affine analogue of Feigin-Frenkel homomorphism

Generalising to the affine case, one obtains a homomorphism

$$
\begin{equation*}
\widehat{\mathfrak{g}} \rightarrow \widetilde{\operatorname{Der}} \mathcal{O}\left(\mathfrak{n}_{+}\right), \quad A \mapsto \sum_{(\alpha, n) \in \mathrm{A}} P_{A}^{\alpha, n}(X) D_{\alpha, n} \tag{8}
\end{equation*}
$$

For example, in $\widehat{\mathfrak{s l}}_{2}$ :

$$
\begin{aligned}
J_{E, 1} \mapsto & D_{E, 1}-\sum_{k \geq 3} X^{F, k-1} D_{H, k}+2 \sum_{k \geq 3} X^{H, k-1} D_{E, k} \\
& +\left(-2 X^{F, 2} X^{E, 2}+\ldots\right) D_{E, 5}+\left(X^{F, 2} X^{F, 2}+\ldots\right) D_{F, 5} \\
& +\left(-2 X^{F, 3} X^{E, 3}-2 X^{H, 3} X^{H, 3}+\ldots\right) D_{E, 7}+\ldots
\end{aligned}
$$

Can this still be promoted to vertex algebra homomorphism?
No, since the (properly completed) Fock module $\widetilde{M}$ has not the structure of a vertex algebra.

Why? Consider $J_{H, 0} \in \widehat{\mathfrak{s l}}_{2} \mapsto a \in \widetilde{\mathrm{M}}$

$$
\begin{aligned}
a_{(1)} a= & 4 \sum_{k \geq 0} \sum_{j \geq 0}\left(\gamma^{E, k}[0] \beta_{E, k}[-1]|0\rangle\right)_{(1)} \gamma^{E, j}[0] \beta_{E, j}[-1]|0\rangle \\
& +4 \sum_{k \geq 1} \sum_{j \geq 1}\left(\gamma^{F, k}[0] \beta_{F, k}[-1]|0\rangle\right)_{(1)} \gamma^{F, j}[0] \beta_{F, j}[-1]|0\rangle \\
=4 & \sum_{k \geq 0} \sum_{j \geq 0} \gamma^{E, k}[1] \beta_{E, k}[0]\left|\gamma^{E, j}[0]\right| \beta_{E, j}[-1]|0\rangle \\
& \left.+4 \sum_{k \geq 1} \sum_{j \geq 1} \gamma^{F, k}[1] \beta_{F, k}[0]\left|\gamma^{F, j}[0] \beta_{F, j}[-1]\right| 0\right\rangle \\
= & \left(-4 \sum_{k \geq 0} 1-4 \sum_{k \geq 1} 1\right)|0\rangle=\left(-4-8 \sum_{k \geq 1} 1\right)|0\rangle .
\end{aligned}
$$

Why? Consider $J_{H, 0} \in \widehat{\mathfrak{s l}}_{2} \mapsto a \in \widetilde{\mathrm{M}}$

$$
\begin{aligned}
a_{(1)} a= & 4 \sum_{k \geq 0} \sum_{j \geq 0}\left(\gamma^{E, k}[0] \beta_{E, k}[-1]|0\rangle\right)_{(1)} \gamma^{E, j}[0] \beta_{E, j}[-1]|0\rangle \\
& +4 \sum_{k \geq 1} \sum_{j \geq 1}\left(\gamma^{F, k}[0] \beta_{F, k}[-1]|0\rangle\right)_{(1)} \gamma^{F, j}[0] \beta_{F, j}[-1]|0\rangle \\
=4 & \sum_{k \geq 0} \sum_{j \geq 0} \gamma^{E, k}[1] \beta_{E, k}[0]\left|\gamma^{E, j}[0]\right| \beta_{E, j}[-1]|0\rangle \\
& \left.+4 \sum_{k \geq 1} \sum_{j \geq 1} \gamma^{F, k}[1] \beta_{F, k}[0]\left|\gamma^{F, j}[0] \beta_{F, j}[-1]\right| 0\right\rangle \\
= & \left(-4 \sum_{k \geq 0} 1-4 \sum_{k \geq 1} 1\right)|0\rangle=\left(-4-8 \sum_{k \geq 1} 1\right)|0\rangle .
\end{aligned}
$$

One possible solution [Young '20]: realise the Lie algebra as two glued copies of the algebra of derivations $\mathfrak{g} \rightarrow \widetilde{\operatorname{Der} \mathcal{O}\left(\mathfrak{n}_{+}\right) \oplus \widetilde{\operatorname{Der} \mathcal{O}}\left(\mathfrak{n}_{-}\right) \text {. Regard }}$ the new infinite sums as abstract generators of $\mathfrak{g l}(\mathfrak{g})\left[t, t^{-1}\right] \rtimes \mathbb{C D}$, and define a homomorphism $\mathbb{V}_{0}^{\widehat{\mathrm{g}}, 0} \rightarrow \overline{\mathbf{M}}:=\overline{\mathrm{M}} \otimes \mathbb{V}_{0}^{\mathfrak{g}(\mathfrak{g})\left[t, t^{-1}\right] \rtimes \mathrm{CD}, 0}$.

## A regularisation procedure

Modify the commutation relations by introducing a regulator $z \in \mathbb{C}$

$$
\begin{equation*}
\left[\beta_{a, m}[M], \gamma^{b, n}[N]\right]=z^{n} \delta_{N+M, 0} \delta_{a}^{b} \delta_{m}^{n} 1 \tag{9}
\end{equation*}
$$

then,

$$
\begin{equation*}
a_{(1)} a=\left(-4-8 \sum_{n \geq 1} z^{2 n}\right)|0\rangle \tag{10}
\end{equation*}
$$

## A regularisation procedure

Modify the commutation relations by introducing a regulator $z \in \mathbb{C}$

$$
\begin{equation*}
\left[\beta_{a, m}[M], \gamma^{b, n}[N]\right]=z^{n} \delta_{N+M, 0} \delta_{a}^{b} \delta_{m}^{n} 1 \tag{9}
\end{equation*}
$$

then,

$$
\begin{equation*}
a_{(1)} a=\left(-4-8 \sum_{n \geq 1} z^{2 n}\right)|0\rangle \tag{10}
\end{equation*}
$$

One can now try to regularise the sum using $\zeta$-function regularisation [Lepowski '00, Doyon Lepowsky Milas '06]

- regard infinite sum as small- $z$ expansion of rational function in $z$;
- perform the transformation $z \rightarrow e^{y}$;
- power expand the resulting term for small values of $y$;
- regard result as the ratio of Laurent series, which is again a Laurent series;
- extract the constant term of the series obtained.

For example,

$$
\begin{align*}
&-4-8 \sum_{n \geq 1} z^{2 n} \xrightarrow{i}-4-\frac{8 z^{2}}{1-z^{2}} \stackrel{i i}{\longrightarrow}-4-\frac{8 e^{2 y}}{1-e^{2 y}} \\
& \xrightarrow{i i i}-4-\frac{8\left(1+2 y+2 y^{2}+\ldots\right)}{1-1-2 y-2 y^{2}-\ldots}=-4+\frac{8}{2 y} \frac{(1+2 y+\ldots)}{(1+y+\ldots)} \\
& \xrightarrow{i v}-4+\frac{4}{y}(1+2 y+\ldots)(1-y+\ldots)=\frac{4}{y}+\mathcal{O}(y) \xrightarrow{v} 0 \tag{11}
\end{align*}
$$

For example,

$$
\begin{align*}
&-4-8 \sum_{n \geq 1} z^{2 n} \xrightarrow{i}-4-\frac{8 z^{2}}{1-z^{2}} \stackrel{i i}{\longrightarrow}-4-\frac{8 e^{2 y}}{1-e^{2 y}} \\
& \xrightarrow{i i i}-4-\frac{8\left(1+2 y+2 y^{2}+\ldots\right)}{1-1-2 y-2 y^{2}-\ldots}=-4+\frac{8}{2 y} \frac{(1+2 y+\ldots)}{(1+y+\ldots)} \\
& \xrightarrow{i v}-4+\frac{4}{y}(1+2 y+\ldots)(1-y+\ldots)=\frac{4}{y}+\mathcal{O}(y) \xrightarrow{v} 0 \tag{11}
\end{align*}
$$

We can define a new space $\widehat{\mathrm{M}}_{z} \subset \widetilde{\mathrm{M}}_{z}$, spanned by $\overline{\mathrm{M}}_{z}$ and the infinite sums of the form $\sum_{k \geq L} \gamma^{a, k-n}[0] \beta_{b, k}[-1]|0\rangle\left(L \in \mathbb{Z}_{\geq 0}, a, b \in \mathcal{I}, n \in \mathbb{Z}\right)$.

## Theorem

$\widehat{M}_{z}$ has the structure of a vertex algebra, after regularisation.

For example,

$$
\begin{align*}
&-4-8 \sum_{n \geq 1} z^{2 n} \xrightarrow{i}-4-\frac{8 z^{2}}{1-z^{2}} \xrightarrow{i i}-4-\frac{8 e^{2 y}}{1-e^{2 y}} \\
& \xrightarrow{i i i}-4-\frac{8\left(1+2 y+2 y^{2}+\ldots\right)}{1-1-2 y-2 y^{2}-\ldots}=-4+\frac{8}{2 y} \frac{(1+2 y+\ldots)}{(1+y+\ldots)} \\
& \quad \xrightarrow{i v}-4+\frac{4}{y}(1+2 y+\ldots)(1-y+\ldots)=\frac{4}{y}+\mathcal{O}(y) \xrightarrow{v} 0 \tag{11}
\end{align*}
$$

We can define a new space $\widehat{\mathrm{M}}_{z} \subset \widetilde{\mathrm{M}}_{z}$, spanned by $\overline{\mathrm{M}}_{z}$ and the infinite sums of the form $\sum_{k \geq L} \gamma^{a, k-n}[0] \beta_{b, k}[-1]|0\rangle\left(L \in \mathbb{Z}_{\geq 0}, a, b \in \mathcal{I}, n \in \mathbb{Z}\right)$.

## Theorem

$\widehat{M}_{z}$ has the structure of a vertex algebra, after regularisation.
In particular one can define a map $\vartheta: \mathbb{V}_{0}^{\mathfrak{g}, 0} \rightarrow \widehat{\mathrm{M}}_{z}$ such that for all $A, B \in \mathbb{V}_{0}^{\mathfrak{g}, 0}$

$$
\begin{align*}
& \vartheta(A)_{(0)} \vartheta(B)=\vartheta([A, B])  \tag{12}\\
& \quad \operatorname{reg}\left[\vartheta(A)_{(1)} \vartheta(B)\right]=0 \tag{13}
\end{align*}
$$

## Outlooks

- Lift the construction to a homomorphism of double loop algebras
- Proceed with the construction of Wakimoto modules
- Make contact with new constructions of higher Kac-Moody algebra and understand the meaning of the regularisation procedure


## Thank you!

