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Gaudin Models

• Quantum Gaudin models [Gaudin ’76] are defined by
• a Lie algebra g of finite or affine type
• a set of points {z1, . . . , zN} ⊂ CP1

The Hamiltonians are

Ξi =

N∑
j ̸=i=1

κab
Ia(i)Ib(j)

zi − zj
(1)

• Classical Gaudin models can be obtained by a certain classical
limit [Lacroix ’18, ...]

• Why? Integrable field theories [Vicedo ’18], connection with 4D
Chern-Simons theory [Costello-Witten-Yamazaki ’19, Vicedo
’19,...],...
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Finite-type Gaudin models

Complete description for arbitrary g in [Feigin Frenkel Reshetikhin ’94]

• Characterisation of local higher Hamiltonians: there is a large
commutative subalgebra Z(g) ⊂ U(g)⊗N which is in 1-1
correspondence with singular vectors of Vĝ,−h∨

0 , which are
isomorphic to the polynomial algebra C[Pi]i=1,...,rank g, and
degPi = di + 1 where di are the exponents of g.

• Description of their spectrum: The Gaudin subalgebra is isomorphic
to the algebra of polynomial functions over the space of Lg-opers

Z(g) ∼= Fun(OperLg(CP1)) (2)

• Is it possible to generalise this construction to the affine case?
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Affine-type Gaudin models

There is no general construction

• There is no analogue of the vacuum Verma module at critical level
(new directions from Higher Kac-Moody algebras [Faonte Kapranov
Hennion ’17, Alfonsi Young ’22])

• No isomorphism between the Bethe algebra and a space of opers

There are several conjectures [Feigin Frenkel ’11, Lacroix Vicedo Young
’18] based of the definition of affine opers.

Some higher local Hamiltonians have been constructed [Lacroix Vicedo
Young ’20, Kotousov Lacroix Teschner ’21, TF Young ’21], for example
in ŝl2

ς3(z) =
[
δ(abδcd)I

a
−1(z)I

b
−1(z)I

c
−1(z)I

d
−1(z) +

20

3
fabcI

a
−2(z)I

b′
−1(z)I

c
−1(z)

+
40

9
Ia−3(z)I

a′′
−1(z)−

20

3
Ia′′−2(z)I

a
−2(z) +

40

9
Ia′−3(z)I

a′
−1(z)

− 10

3
Ia′−2(z)I

a′
−2(z)−

20

3
Ia−3(z)I

a
−1(z)k

′(z)
]
|0⟩
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Vertex algebras

A vertex algebra [Borcherds ’86, Frenkel Huang Lepowsky ’93, Frenkel
Ben-Zvi ’01] is a vector space V , with a vacuum vector |0⟩ ∈ V and a
map T ∈ End(V ) endowed with an infinite number of products

·(n)· : V × V → V n ∈ Z (3)

that can be packed up into fields

Y (A, x) :=
∑
n∈Z

A(n)x
−n−1, A(n) ∈ End(V ) (4)

satisfying a series of axioms (translation covariance, vacuum, locality,
Borcherds identities).

They are the mathematical framework to describe CFTs (state field
correspondence, OPEs, . . . ).
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The Feigin-Frenkel homomorphism

In particular, the relation between Hamiltonians and opers is based on the
homomorphism of vertex algebra [Wakimoto ’86, Feigin Frenkel ’90]

Vĝ,−h∨

0 → M(n+) (5)

Procedure:

• Realise the Lie algebra in terms of differential operators on the
algebra O(n+) = C[Xα]α∈∆+

g → DerO(n+), A 7→
∑

α∈∆+

Pα
A(X)Dα (6)

For sl2: E 7→ D, H 7→ −2XD, F 7→ −XXD.
• Promote this to vertex algebras:

Vĝ,k
0 → M(n+), A[−1] |0⟩ 7→

∑
α∈∆+

Pα
A(γ[0])βα[−1] |0⟩ (7)

• In order to be a homomorphism of vertex algebras, k must be the
critical level −h∨
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Affine analogue of Feigin-Frenkel homomorphism

Generalising to the affine case, one obtains a homomorphism

ĝ → D̃erO(n+), A 7→
∑

(α,n)∈A

Pα,n
A (X)Dα,n (8)

For example, in ŝl2:

JE,1 7→DE,1 −
∑
k≥3

XF,k−1DH,k + 2
∑
k≥3

XH,k−1DE,k

+ (−2XF,2XE,2 + . . . )DE,5 + (XF,2XF,2 + . . . )DF,5

+ (−2XF,3XE,3 − 2XH,3XH,3 + . . . )DE,7 + . . .

Can this still be promoted to vertex algebra homomorphism?

No, since the (properly completed) Fock module M̃ has not the
structure of a vertex algebra.
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Why? Consider JH,0 ∈ ŝl2 7→ a ∈ M̃

a(1)a = 4
∑
k≥0

∑
j≥0

(γE,k[0]βE,k[−1] |0⟩)(1)γE,j [0]βE,j [−1] |0⟩

+ 4
∑
k≥1

∑
j≥1

(γF,k[0]βF,k[−1] |0⟩)(1)γF,j [0]βF,j [−1] |0⟩

= 4
∑
k≥0

∑
j≥0

γE,k[1]βE,k[0]|γE,j [0]|βE,j [−1] |0⟩

+ 4
∑
k≥1

∑
j≥1

γF,k[1]βF,k[0]|γF,j [0]βF,j [−1] |0⟩

= (−4
∑
k≥0

1− 4
∑
k≥1

1) |0⟩ = (−4− 8
∑
k≥1

1) |0⟩ .

One possible solution [Young ’20]: realise the Lie algebra as two glued
copies of the algebra of derivations g → D̃erO(n+)⊕ D̃erO(n−). Regard
the new infinite sums as abstract generators of gl(g)[t, t−1]⋊CD, and
define a homomorphism Vĝ,0

0 → M := M⊗ Vgl(g)[t,t−1]⋊CD,0
0 .
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A regularisation procedure

Modify the commutation relations by introducing a regulator z ∈ C

[βa,m[M ],γb,n[N ]] = znδN+M,0δ
b
aδ

n
m1 (9)

then,
a(1)a = (−4− 8

∑
n≥1

z2n) |0⟩ (10)

One can now try to regularise the sum using ζ-function regularisation
[Lepowski ’00, Doyon Lepowsky Milas ’06]

• regard infinite sum as small-z expansion of rational function in z;
• perform the transformation z → ey;
• power expand the resulting term for small values of y;
• regard result as the ratio of Laurent series, which is again a Laurent

series;
• extract the constant term of the series obtained.
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For example,

− 4− 8
∑
n≥1

z2n
i−−→ −4− 8z2

1− z2
ii−−→ −4− 8e2y

1− e2y

iii−−→ −4− 8(1 + 2y + 2y2 + . . . )

1− 1− 2y − 2y2 − . . .
= −4 +

8

2y

(1 + 2y + . . . )

(1 + y + . . . )

iv−−→ −4 +
4

y
(1 + 2y + . . . )(1− y + . . . ) =

4

y
+O(y)

v−−→ 0

(11)

We can define a new space M̂z ⊂ M̃z, spanned by Mz and the infinite
sums of the form

∑
k≥L γa,k−n[0]βb,k[−1] |0⟩ (L ∈ Z≥0, a, b ∈ I, n ∈ Z).

Theorem
M̂z has the structure of a vertex algebra, after regularisation.

In particular one can define a map ϑ : Vg,0
0 → M̂z such that for all

A,B ∈ Vg,0
0

ϑ(A)(0)ϑ(B) = ϑ([A,B]) (12)

reg[ϑ(A)(1)ϑ(B)] = 0 (13)
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Outlooks

• Lift the construction to a homomorphism of double loop algebras

• Proceed with the construction of Wakimoto modules

• Make contact with new constructions of higher Kac-Moody
algebra and understand the meaning of the regularisation procedure
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Thank you!
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