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Introduction

The entanglement entropies

S = − Tr [ρA log ρA] , Sn = 1
1 − n

log
[
Tr ρnA

]
, (1)

are known to be computable from the partition function of the replicated QFT, given by the

correlator of twist fields, e.g. for an interval of lenght ` [1, 2]

Tr ρnA =
〈
Tn(0)T̃n(`)

〉
. (2)

At criticality, for systems described by a CFT with central charge c, the entanglement entropies of an
interval is

Sn = c

6
n + 1
n

log `
ε
. (3)

Using the form factor approach for twist fields [2], we compute the entanglement entropies out of

criticality, in a massless renormalisation group flow.

In presence of a, e.g, Z2 symmetry, the symmetry resolved entanglement entropy can instead be
computed from the two point function of composite twist fields T µ

n given by the fusion of the

standard twist field and the disorder field µ which implements the Z2 transformation.

Massless flow from tricritical to critical Ising

The tricritical Ising model is described by the unitary minimal model M4 with central charge c = 7
10.

Deforming with the vacancy density field φ1,3 [3, 4]

A = M4 + g

∫
d2z φ1,3 , (4)

with g > 0, the theory interpolates between tricritical to critical Ising CFT cUV = 7
10 → cIR = 1

2.

This renormalisation group flow possesses massless fermionic excitations, either left- or right-moving.

Near the IR CFT, the model is described by T T̄ -deformed massless Majorana fermion [3, 4]

A ≈
∫

d2z
[
ψ∂̄ψ + ψ̄∂ψ̄ − 4

M2 (ψ∂ψ)
(
ψ̄∂̄ψ̄

)
+ . . .

]
, (5)

whereM is a crossover mass scale.

The renormalisation group flow has a Z2 spin-flip symmetry.

Twist fields form factors

In a n-replicated QFT, the twist fields implement appropriate boundary conditions

φi(y)Tn(x) = Tn(x)φi+1(y) for y1 > x1, (6)

= Tn(x)φi(y) otherwise, (7)

φi(y)T µ
n (x) = eiπκφ T µ

n (x)φi+1(y) for y1 > x1 and i = n, (8)

= T µ
n (x)φi(y) otherwise. (9)

Using the bootstrap relations for form factors [2], we find the form factors of twist fields in the

massless flow up to the four particle level.

Due to Z2 symmetry only form factors with an even number of left and of right movers are non
vanishing.

Form factors with only left- or right-movers are identical to the one in the massive Ising model found

in [2].

At the four particle level the only form factor which is different from the Ising ones is F
T |j1j2j′

1j
′
2

2,2

(F
T µ|j1j2j′

1j
′
2

2,2 for the composite twist field), coupling two left- and two right-movers.

Running conformal dimension

A running dimension of both the standard and symmetry resolved twist field can be computed using

the ∆-sum rule [5].
In [6] it was argued that the running dimension of the standard twist field provides an entropic

c-function, being monotonically decreasing along a renormalisation group flow.

At the 4-particle order, the running conformal dimension of the twist field is given by

h(`) − hIR ≈ − n

2 〈Tn〉

∫ +∞

−∞

dθ1dθ2dθ′
1dθ

′
2

2 × 2 (2π)4
(1 + `E) e−`E

2E2 ×

× FΘ
2,2

(
θ1, θ2, θ

′
1, θ

′
2
) (
F

T |1111
2,2

(
θ1, θ2, θ

′
1, θ

′
2;n

))∗
,

(10)

where the form factor of the trace of the stress-energy tensor Θ was found in [7].
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Figure 1. Running conformal dimension of both the standard and the composite twist fields from the ∆-sum rule.

In Fig. 1a we see that already at the 4-particle order the running dimension of the standard twist

field Tn is monotonically decreasing.

Cumulant expansion of the entanglement entropy

The form factor expansion of the entanglement entropies is expressed in terms of the cumulants

(1 − n)Sn(M`) = log
〈
Tn(0) T̃n(`)

〉
≈

∑
r,l even

cTr,l(M`;n) + const, (11)

cTr,l(M`;n) =
∑
j,j′

∫ +∞

−∞

∏r
i=1 dθi

∏l
k=1 dθ′

k

r! l! (2π)r+l
f

T |j1...j′
1...

r,l

(
θ1, . . . , θ

′
1, . . . ;n

)
e
−M`

2

(∑
i e
θi+

∑
k e

θ′k
)
. (12)

where f
T |j1...
r,l is the connected part of

∣∣∣FT |j1...
r,l

∣∣∣2, obtained subtracting all possible clusterisations.
We distinguish non-interacting cumulants cTr,0 with only either left- or right-movers, and interacting
ones which couple them.

The non-interacting cumulants are identical to the ones of massive Ising model up to the energy and,

after introducing an IR cut-off Λ, are logarithmic in the length of the interval

cTr,0(M`,Λ;n) ≈ −zr(n)
2

logM`

Λ
+ const, (13)

zr(n) = 2n
r! (2π)r

∑
j

∫ +∞

−∞

r−1∏
j=1

dθj,j+1 f
T
r,0(θ12, . . . ;n) . (14)

We conjecture that the non-interacting cumulants reproduce the logarithmic entanglement entropy

of the IR Ising CFT, while the interacting ones provide the low distance UV corrections.

First correction to IR entanglement entropy

The first correction to the Ising IR entanglement entropy is given by the cumulant cT2,2 that we
integrate numerically in unitsM = 1.
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(a) Semilogarithmic plot of cT
2,2 for n = 2, 3 replicas. The

dashed lines are the result of the fit to the logarithmic

function −αn log ` + Cn reported in Eqs. (15), (16).
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Figure 2. Plot of the cumulant cT
2,2, providing the first correction to the IR entanglement entropy.

For small `, as shown in Fig. 2b, the cumulant cT2,2 decays logarithmically, as expected since it needs
to contribute to the UV entanglement entropy of the tricritical Ising CFT.

We fit for small ` the cumulant to the function −αn log ` + Cn, finding

α2 = 0.126 ± 0.002, C2 = −0.19 ± 0.02, for ` ≤ 2 × 10−4, (15)

α3 = 0.440 ± 0.005, C3 = −1.03 ± 0.05, for ` ≤ 6 × 10−4. (16)

For large ` the model is approximated by T T̄ -deformed Ising model [3, 4].

In perturbation theory the first correction to the entanglement entropy was found in [8] to have the

peculiar functional form An `
−2 +Bn `

−2 log `

(1 − n)δS(1)
n (`,M) = π

9
(n− 1)2(n + 1)2

n3

[
1

16M2ε2
− 5

4
1

M2`2
+

log `
2ε

M2`2

]
+ O

(
M−4`−4

)
. (17)

In Fig. 2a we fit the cumulant cT2,2 for large ` to the expected functional form, finding good qualitative
agreement and obtaining parameters

A2 = 0.013 ± 0.002, B2 = 0.0157 ± 0.0004, for ` ≥ 50, (18)

A3 = 0.056 ± 0.005, B3 = 0.053 ± 0.001, for ` ≥ 20. (19)

The result of the fit is not in quantitative agreement with the prediction for perturbation theory in

Eq. (17). This can be due to the fact that the perturbative and the form factor expansion do not

agree order-by-order.
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