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Overview: Main idea of this talk

▶ Manin triples of Lie algebras appear ubiquitously in integrable systems,
quantum groups, . . .

▶ In particular, they underlie the mathematical definition of rational
conformal blocks. . .

▶ . . . and thence of vertex algebras
(which capture physicists’ notion of operator product expansions in chiral CFTs)

▶ The relevant Lie algebras here are essentially current algebras

g⊗ C((t))

and their near relations.

▶ All of this appears to be closely tied to complex dimension one. . .
(accords with general wisdom about Kac-Moody algebras being special/

CFT in complex dimension one being special)

. . . but this intuition begins to break down in potentially fruitful ways, if
one is prepared to work with “up to homotopy” with “higher” algebras.
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Manin triples

A Manin triple (a, a+, a−) of Lie algebras over C consists of

▶ a Lie algebra a
equipped with a symmetric nondegenerate invariant bilinear form ⟨− | −⟩

▶ two isotropic Lie subalgebras a+, a− such that

a =C a+ ⊕ a−

as vector spaces.

Example: Current Algebras

with g a simple finite-dimensional Lie algebra over C, let

a = g⊗ C((x)), a+ = g⊗ C[[x ]], a− = g⊗ x−1C[x−1]

and

⟨f (t) | g(t)⟩ :=
∮
x=0

κ
(
f (t)|g(t)

)
dt
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Example: Rational Conformal Blocks

Take a1, . . . , aN ∈ C distinct and let

a = g⊗
N⊕
i=1

C((x−ai )), a+ = g⊗
N⊕
i=1

C[[x−ai ]], a− = g⊗C[x , (x−ai )−1]′1≤i≤N

Space of rational coinvariants:

C

a1
a2

a3

M2

M3

M1

∼=C



C

a1
a2

a3

M2

M3

M1



/
g⊗C[x , (x−ai )−1]′1≤i≤N

▶ Dual is space of rational conformal blocks.

▶ Which is the fibre of a trivial vector bundle over configuration space
ConfN(A1

C) = AN
C \ {ai = aj}, which comes with the flat KZ connection

. . .
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Special case: Vacuum module induced from trivial module C|0⟩:

V := Ind
g⊗C((x))
g⊗C[[x]] C|0⟩ V

C

a1
a2

a3u

C

M2

M3

M1

∼=C



C

a1
a2

a3u

V

M2

M3

M1



/
g⊗C[x , (x−ai )−1]′1≤i≤N

leads to at least two important constructions:

1. Structure of V as a vertex algebra, and Mi as modules over it

2. Gaudin models, opers, Bethe ansatz and geometric Langlands
correspondence
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Gaudin models and geometric Langlands correspondence

1. States X ∈ V go to linear operators X (u) ∈ End(M1 ⊗ · · · ⊗MN).

2. Can introduce central extension

0→ Ck → ĝ→ g⊗ C((u))→ 0

3. Then. . .

[E. Frenkel, . . . ]
[Feigin Frenkel Reshetikhin] [Mukhin Tarasov Varchenko] [Masoero Raimondo Valeri]

Local Global

g (simple Lie algebra)
singular vectors in V
at critical level k = −h∨ ⇝

Coinvariants

commuting Hamiltonians
of quantum Gaudin model

↕ ↕ Bethe Ansatz

Lg (its Langlands dual)
opers on the formal disc
Disc×1 = SpecC((u)) ⇝ opers on P1
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▶ the constructions above were all associated to the Riemann sphere P1
C or

the complex affine line A1
C

▶ can we generalize to complex dimensions 2 or more?

Motivations include:

1. (broad motivation)
vertex algebras/chiral CFTs/holomorphic field theory in higher dimensions

[work of B. Williams, M. Szczesny, . . . , building on Costello-Gwilliam
Factorization Algebras]

2. (specialized motivation, this talk)
Gaudin models for affine Lie algebras
Should describe integrals of motion of integrable quantum field theories.

[Feigin, Frenkel] [Vicedo] [Masoero Raimondo Valeri] [ . . . ]
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C

a1

a2
a3

C

CC
Worldsheet

×

Spectral Plane

Toroidal algebras?
g⊗ C((x))⊗ C((u))

Highest weight representations?

++

+−

−+

−−

C[[x ]]

x−1C[x−1]

C[[u]]u−1C[u−1]
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[Faonte, Hennion, Kapranov]

▶ Observe
C[[z]] ∼= Γ(Disc1,O) C((z)) ∼= Γ(Disc×1 ,O),

where Disc1 := SpecC[[z]] is the formal 1-disc, and
where Disc×1 := Disc1 \ {pt.} is the punctured formal 1-disc.

▶ Natural to try same in higher dimensions, but. . .

C[[w , z]] ∼= Γ(Disc2,O) ∼=
!
Γ(Disc×2 ,O),

where Disc2 := SpecC[[w , z]] is the formal 2-disc, and
where Disc×2 := Disc2 \ {pt.} is the punctured formal 2-disc

(cf. Hartog’s theorem)

▶ But there is higher sheaf cohomology!

H•(Disc×2 ,O) ∼=


C[[w , z]] • = 0

w−1z−1C[w−1, z−1] • = 1

0 otherwise.
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▶ Consider derived sections RΓ•(Disc×2 ,O).
By definition RΓ•(X ,O) is a cochain complex such that

H•(RΓ(X ,O)) ∼= H•(X ,O)

▶ Moreover, since O is a sheaf in commutative algebras,

RΓ•(X ,O) = holimU⊂X Γ(X ,O)

is canonically a dg commutative algebra, defined up to zigzags of
quasi-isomorphisms.

▶ Get a dg Lie algebra
g⊗ RΓ•(Disc×2 ,O)

– a higher current algebra
[Faonte, Hennion, Kapranov]

▶ Need a good model of sheaf U 7→ RΓ•(U,O):
Options: Dolbeault complex, in complex analytic setting
Adelic complexes
Cech complexes
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Reminder: sheaf cohomology on a manifold/variety/scheme M

▶ Find a “good” cover {Ui} of M. Then “replace” M by Cech nerve

Č({Ui}) :=
(

. . .
⊔

i<j Ui ∩ Uj

⊔
i Ui

)
,

a semisimplicial object in manifolds/varieties/schemes, whose colimit is M.

▶ Apply global sections functor Γ(−,O). Get

Γ(Č({Ui}),O) =
(

. . .
∏

i<j Γ(Ui ∩ Uj ,O)
∏

i Γ(Ui ,O)
)
,

a semicosimplicial object in commutative algebras.

Example: A2
C \ {(0, 0)}

Let Ux = {(x ̸= 0)}, Uy = {(y ̸= 0)}.(
. . .C[x , y , x−1, y−1] C[x , y , x−1]× C[x , y , y−1]

)
▶ Usual corresponding cochain complex computes the sheaf cohomology.

But we lost the associative commutative algebra structure!

▶ Instead, work in dg commutative algebras, and take homotopy limit.
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Thom-Sullivan functor Th•

(rough idea) “Paint” polynomial differential forms onto the simplicial set,
valued in the correct algebras.

Defines a functor
Th• : [∆,CAlgC]→ dgCAlgC

from semicosimplicial algebras to dg algebras.

Example: A2
C \ {(0, 0)} continued. . .

C[x , y , x−1, y−1]

C[x , y , y−1]C[x , y , x−1]

Th•(Γ(Č({Ux ,Uy},O))) =
{
ω ∈ C[x , y , x−1, y−1]⊗ C[v , dv ]

: ω|v=0 ∈ C[x , y , x−1], ω|v=1 ∈ C[x , y , y−1]
}

Gives model of RΓ•(A2
C \ {(0, 0)},O) with dg commutative algebra structure.
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Reminder: notions of homotopy

Prototypical example:

homotopies between maps of topological spaces,
e.g. between parameterized paths in a manifold M

[0, 1] M

f

g

h

f

g M

Relevant example in this talk:

homotopies between maps in dgVectC, i.e. maps of cochain complexes in
C-vector spaces

V • W •

f

g

h

. . . V n V n+1 . . .

. . . W n W n+1 . . .

fg

dV

h
fg

dW

f − g = dV ◦ h + h ◦ dW
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Reminder: “sameness”: notions of (weak) homotopy equivalence

When are two objects “the same”? Isomorphism might be too strong.

isomorphism A B
F

G

G ◦ F = idA
F ◦ G = idB

⇓

deformation retract A B
F

G
h

G ◦ F = idA
F ◦ G − idB = [dB , h]

⇓

homotopy equivalence A Bk
F

G
h

G ◦ F − idA = [dA, k]
F ◦ G − idB = [dB , h]

⇓
weak equivalence A BF H•(A)

H(F )−−−→ H•(G)
aka quasi-isomorphism is an isomorphism
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Homotopy Manin triples

A strong homotopy Manin triple (a, a±, ι±) in LieAlg(dgVectC) is the data of:

▶ three objects a, a+, a− in LieAlg(dgVectC) ,

▶ maps

a−
ι+−→ a

ι+←− a+ in LieAlg(dgVectC)

such that the resulting map a− ⊕ a+ → a in dgVectC, participates in a strong
deformation retract

a− ⊕ a+ a
(ι−,ι+)

π−⊕π+

h

(together with a pairing such that. . . )

Example: A2
C \ {(0, 0)} continued. . .

g⊗Th•


x−1y−1C[x−1, y−1]

00

 ι−−−→ g⊗Th•


C[x , y , x−1, y−1]

C[x , y , y−1]C[x , y , x−1]

 ι+←− g⊗C[x , y ]
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Homotopy Manin triples

“Global” example: A2
C \ {(xi , yi )}1≤i≤N

RΓ(A2
C\{(wi , zi )}1≤i≤N ,O)′

ι−−−→
N⊕
i=1

RΓ(Disc×2 (wi , xi ),O)
ι+←−

N⊕
i=1

Γ(Disc2(wi , xi ),O)

Theorem [L. Alfonsi, CY]

There are models of these which form a strong homotopy Manin triple.
Flavour of the construction: polynomial differential forms on hypercubes:

Th•


 ι−−−→

N⊕
i=1

Th•


 ι+←−

N⊕
i=1

C[[w − xi ]]⊗ C[[z − yi ]]

C[w , z , (w − xj)
−1, (z − yj)

−1]′1≤i,j≤N C((w − xi ))⊗ C((z − yi ))

Moreover, can do a (dg analog of) extension of scalars,
C→ RΓ(A2N \ (xi = xj , yi = yj),O) and work over dg algebra of functions on a
higher analog of configuration space.
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Conclusions and outlook

Main message:

Important Manin triples of Lie algebras associated to the punctured
disc/complex plane have “higher” analogs, if one goes to dg Lie algebras.
In particular, get a notion of higher rational conformal blocks.

Main open question:

Of the many constructions that start with such triples, which generalize to the
higher setting?

▶ “Quantization” a la Drinfeld Yangians??

▶ (Shifted) central extensions?

▶ Higher vertex algebras?
(and KZ equations? hypergeometric functions? quantum groups??)

▶ Higher Gaudin / Affine Gaudin models + integrable QFT?

▶ Higher analog of Feigin-Frenkel centre??
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