$G G E s$, modular transforms and defects
Gerard Watts \& Max Downing,
King's College London
2111.13950 \& to appear

Bologna 2023

Motivation: desire to understand characters of W-algebras.

Simplest case: W_{3} algebra.
Generators L_{m}, W_{m}
Commuting modes $\left[L_{0}, W_{0}\right]=0$
"Standard" character $X_{i}=\operatorname{Tr}_{i}\left(q^{L_{0}-C / 24}\right)$
$q=e^{2 \pi i \tau}: U n d e r \tau \rightarrow-\frac{1}{\tau} \quad X_{i}\left(-\frac{1}{\tau}\right)=\sum S_{i j} X_{j}(\tau)$
Consider instead: $T_{r}\left(q^{L_{0}-c / 24} z W_{0}\right) \quad q=e^{2 \pi i \tau}, \quad z=e^{\alpha}$
Q: does this have nice properties?
$\operatorname{Tr}\left(q^{L_{0}-c / 24} W_{0}^{m}\right)$ all have" nice" properties
[Gabediel, lees 4 Ww]
But: unable to see any pattern.
Lo, W_{0} are first in infinite set of conserved chorges of quantum Bonssinesq hierarchy

- Is there a simpler model to look at?

Consider instead $K d V$ hierarchy (conserved charges of $\varphi_{1,3}$ perturbation)
Infinite set of charges I_{1}, I_{3}, \ldots
Simplest case: a single free fermion.
Lowest charge:

$$
\begin{aligned}
& \operatorname{Tr}\left(q^{I_{1}}\right)=q^{h-c / 24} \prod_{k}(1+q^{k} \underbrace{k}
\end{aligned}
$$

I egg mode ψ_{-k} absent; q^{k} if present.

Well known nice modular properties

4 sets of functions:

$$
\begin{aligned}
& X_{N S}=T_{N S}\left(q^{L_{0}-c / 24}\right)=q^{-1 / 48} \prod_{k=1 / 2,36, \ldots}\left(1+q^{k}\right) \\
& X_{\tilde{N S}}=T_{N S}\left((-1)^{F} q^{L_{0}-c / 24}\right)=q^{-1 / 48} \prod_{k=1 / 2,36, \ldots}\left(1-q^{k}\right) \\
& X_{R}=T_{R}\left(q^{L_{0}-c / 24}\right)=q^{1 / 24} \prod_{k=1,2, \ldots}\left(1+q^{k}\right) \\
& X_{\widetilde{R}}=T_{R}\left((-1)^{F} q^{L_{0}-c / 24}\right)=0
\end{aligned}
$$

Modular group
$\tau \rightarrow\left(\frac{a \tau+b}{c \tau+d}\right)$
generated by

$$
\begin{array}{ll}
\tau \rightarrow \tau+1 & \tau \rightarrow-1 / \tau \\
N S \leftrightarrow \widetilde{N S} & N S \leftrightarrow N S \\
R \leftrightarrow R & \widetilde{N S} \leftrightarrow R
\end{array}
$$

Subgroup $\Gamma(2)$
b, c even
generated by
$\tau \rightarrow \tau+2 \quad \tau \rightarrow \frac{1}{2 \tau+1}$
Sectors are invariant

Next charge: $\int_{0}^{1}(T T) d w$
Simpler with:

$$
\begin{aligned}
& I_{3}=\frac{6}{7} \int_{0}^{1}(T \tau) d w \quad \text { (tarns) } \\
&=\frac{6}{7}\left(\wedge_{0}-\frac{49}{120} L_{0}+\frac{49}{11520}\right) \quad \text { (plane) } \\
&=\sum_{k>0} k^{3} \psi_{-k} \psi_{k}+C_{3}^{(N s(R)} \quad C_{3}= \begin{cases}\frac{7}{1920} & N S \\
-\frac{1}{240} q_{-\frac{1}{2} 5(-3)}\end{cases} \\
& \operatorname{Tr}\left(q^{I_{1}} z^{I_{3}}\right)=q_{1}^{c_{1}} z^{c_{3}} \prod_{k>0}\left(1+q^{k} z^{k^{3}}\right)
\end{aligned}
$$

$Q_{n}:$ does this hare nice modular properties?

$$
H=\frac{2 \pi}{L}\left(L_{0}-C / 24\right)-\frac{\alpha}{L} I_{3}
$$

$$
\hat{\tau}=\frac{i L}{R}=-\frac{1}{\tau}
$$

$$
Z=\operatorname{Tr}\left(e^{-R H}\right)
$$

Higher charges are $I_{2 n-1}=\sum_{k \geq 0} k^{2 n-1} \Psi_{k} \psi_{k}+c_{2 n-1}^{(\text {ns /e })}$

$$
\hat{\tau}\left\{\begin{array}{l}
\frac{1}{2}\left(1-2^{1-2 n}\right) J(1-2 n) \\
-\frac{1}{2} J(1-2 n)
\end{array}\right.
$$

$Q:$

$$
\begin{aligned}
& \operatorname{Tr}\left(\hat{q}^{L_{0}-c / 24} e^{\alpha I_{3}}\right) \stackrel{?}{=} \operatorname{Tr}\left(q^{L_{0}-c / 24} e^{Q}\right) \\
& Q=\sum \alpha_{2 p+1} I_{2 p+1} \\
& =e^{\sum \alpha_{2 p+1} c_{2 p+1}}, q^{h-c / 24} \cdot \prod_{k \rightarrow 0}\left(1+q^{k} e^{\sum \alpha_{2 p+1} k^{2 p+1}}\right)
\end{aligned}
$$

Higher charges are $I_{2 n-1}=\sum_{k>0} k^{2 n-1} \Psi_{k} \psi_{k}+c_{2 n-1}^{(n s / R)}$

$$
\hat{\tau} \begin{cases}\frac{1}{2}\left(1-2^{1-2 n}\right) J(1-2 n) & N S \\ -\frac{1}{2} J(1-2 n) & R\end{cases}
$$

$Q: \operatorname{Tr}\left(\hat{q}^{L_{0}-c / 24} e^{\alpha I_{3}}\right) \stackrel{?}{=} \operatorname{Tr}\left(q^{L_{0}-c / 24} e^{Q}\right)$

$$
\begin{gathered}
Q=\sum \alpha_{2 p+1} I_{2 p+1} \\
=e^{-\sum \alpha_{2 p+1} c_{2 p+1}} \cdot q^{h-c / 24} \cdot \prod_{k \rightarrow 0}\left(1+q^{k} e^{\sum \alpha_{2 p+1} k^{2 p+1}}\right)
\end{gathered}
$$

A: No, can show $\quad \alpha_{2 p+1}=\frac{\alpha^{p}}{p!(2 \pi i)^{p-1}}\left[\frac{(3 p)!}{(2 p+1)!} c^{p-1}(c \tau+d)^{3 p+1}\right]$
Sum $\sum \alpha_{\text {2p+1 }} k^{2_{p+1}}$ only converges for a finite number of k.
In general, it is an asymptotic expansion in α

We can find a function with the same asymptotic expansion,

$$
\sum \alpha_{2 p+1} k^{2 p+1} \sim F\left(\alpha c(c \tau+d)^{2} k^{2}\right)
$$

But this function has a branch point, so the value is not determined for large $\left(\alpha k^{2}\right)$

The situation for the ground state energy is better.

$$
E_{0}=-\sum \alpha_{2 p+1} C_{2 p+1}^{N s / R}
$$

The ground state every has the same asymptotic expansion as

$$
\begin{aligned}
-\sum \alpha_{2 p+1} C_{2 p+1}^{R}= & \frac{c \tau+d}{i c} \int_{0}^{\infty} \frac{d t}{2 \pi} \frac{t}{e^{t}-1} g(t) \quad(R \text { sector }) \\
& g(t)=F_{2}\left(\frac{1}{3}, \frac{2}{3} ; \frac{3}{2} ; \frac{27}{8 \pi i} \frac{\alpha c(c \tau+d)^{3} t^{2}}{(2 \pi i)^{2}}\right)-1
\end{aligned}
$$

The ground state every has the same asymptotic expansion as

$$
\begin{aligned}
&-\sum \alpha_{2 p+i} C_{2 p+1}^{R}=\frac{c \tau+d}{i c} \int_{0}^{\infty} \frac{d t}{2 \pi} \frac{t}{e^{t}-1} g(t) \quad \text { (R sector) } \\
& g(t)=F_{2} F_{1}\left(\frac{1}{3} ; \frac{2}{3} ; \frac{3}{2} ; \frac{27}{8 \pi i} \frac{\alpha c(c \tau+d)^{3} t^{2}}{(2 \pi i)^{2}}\right)-1
\end{aligned}
$$

This has tBa form:

$$
\int_{0}^{\infty} \frac{d t}{2 \pi} \frac{t}{e^{t}-1} g(t)=\int_{0}^{\infty} \frac{d k}{2 \pi} \log \left(1-e^{-k+\frac{\alpha t^{3}}{8 \pi^{3}}}\right)
$$

Ground state energy for fermion with $p(k)=k, E(k)=k-\frac{\alpha k^{3}}{8 \pi^{3}}$. and trivial scattering.

If ground state energy is

$$
\int_{0}^{\infty} \frac{d t}{2 \pi} \frac{t}{e^{t}-1} g(t)
$$

Expect excited state energies to be given by extra tomes comesponding to the poles in the integrand (deformation of contour argument). [Dorey, Tater]

Final expression:
extra terms.

$$
T_{r}\left(\hat{q}^{L_{0}-c_{2}} e^{\alpha I_{3}}\right)=q^{-\varepsilon_{0}} \square\left(1+e^{\tau x_{1}}\right)\left(1+e^{\tau x_{2}}\right)\left(1+e^{-\tau x_{3}}\right)
$$

$x i$ solve $x-\frac{\alpha}{8 \pi^{3}} x^{3}=2 \pi n i$; take soln with tue real part.

$$
\left(t=k-\frac{\alpha k^{3}}{8 \pi^{3}} \text { solved by } k=t\left[F^{F}\left(\frac{1}{3}, \frac{2}{3} ; \frac{3}{2}: \frac{t^{2}}{4 \pi}\right)-1\right]\right)
$$

positions of x_{i}

positions of x_{i}

$$
k=1
$$

positions of x_{i}

$$
k=2
$$

positions of x_{i}

$$
k=3
$$

positions of x_{i}

$$
k=14
$$

1. The argument extends to polynomial GEEs

$$
\operatorname{Tr}(\hat{q}^{L_{0}-c_{24}} e \underbrace{\sum \hat{\alpha}_{2 p+1} I_{2 p+1}})
$$

Highest term is I_{N}

$$
=q^{\varepsilon_{0}} \Pi(\underbrace{\left(1+e^{\tau x_{1}}\right) \cdots\left(1+e^{ \pm \tau x_{n}}\right)}
$$

N terms.

1. The argument extends to polynomial GEEs

$$
\begin{gathered}
\operatorname{Tr}\left(\hat{q}^{L_{0}-c_{24}} e^{\left.e^{\sum \hat{\alpha}_{2 p+1} I_{2 p+1}}\right)}\right. \\
=\underbrace{\text { Highest term in }_{\varepsilon_{0}}^{\varepsilon_{N}}} \underbrace{}_{N \text { terms }} \underbrace{\left(1+e^{\tau x_{1}}\right) \ldots .\left(1+e^{ \pm \tau x_{n}}\right)}
\end{gathered}
$$

2. This was a conjecture - can now prove this.
c.f. Earlier result for "power portions" $\pi\left(1-q^{k^{n}}\right]$ [Zagier 2021] which is a specialisation of this result.
3. The argument extends to polynomial GEEs

$$
\begin{aligned}
& \operatorname{Tr}\left(\hat{q}^{L_{0}-c_{24}} e^{\left.\sum^{\sum \hat{\alpha}_{2 p+1} I_{2 p+1}}\right)}\right. \\
& \text { Highest term is } I_{N} \\
& =q^{\varepsilon_{0}} \Pi \underbrace{\left(1+e^{\tau x_{1}}\right) \ldots .\left(1+e^{ \pm \tau x_{n}}\right)} \\
& N \text { terms. }
\end{aligned}
$$

2. This was a conjecture - can now prove this.
c.f. Earlier result for "power partitions" $\pi\left(1-q^{k^{n}}\right]$ [Zagier 2021] which is a specialisation of this result.
3. Have physical interpretation in terms of defects
4. Have a formal esegnersion for the defect operator

Power partitions
$\frac{1}{\pi\left(1-q^{k}\right)}$ counts partitions into integers
$\bar{\pi}\left(1-q^{k^{n}}\right)$ counts partitions into n-th powers

Power partitions (Zagier 21) (Hardy Ramanujan 1918 for $5=2$)

$$
\begin{aligned}
\eta(\tau) & =q^{-1 / 24} \pi\left(1-q^{k}\right) \\
\eta_{s}(\tau) & =q^{-\frac{1}{2} J(-s)} \pi\left(1-q^{k^{s}}\right) \\
\eta_{s}\left(-\frac{1}{\tau}\right) & =(2 \pi)^{\frac{s-1}{2}} \sqrt{\frac{\tau}{i}} \underbrace{\prod_{\frac{1}{s}}(z)}_{\substack{m^{s}(z)>0 \\
z^{s}= \pm \tau}} \quad\left(-\frac{1}{2} J(-3)=-\frac{1}{240}\right)
\end{aligned}
$$

Physical interpretation: re-examine the ground state enegy

$$
\begin{aligned}
& E_{0}=-\int_{0}^{\infty} \frac{d k}{2 \pi} \log \left(1+e^{-\varepsilon(k)}\right) \quad(+\underbrace{-k+\frac{\alpha k^{3}}{8 \pi^{3}}}_{\varepsilon_{0}(k)}+\int d k \phi(k) \not k^{\prime}) \ldots \\
& \left.\dot{\varepsilon}=\frac{1}{2}=1\right)
\end{aligned}
$$

ground state energy E_{0}

Physical interpretation: re-examine the ground state enegy

$$
\begin{aligned}
E & =\int_{0}^{\infty} \frac{d k}{2 \pi} \log \left(1+e^{-k+\frac{\alpha k^{3}}{8 \pi^{3}}}\right) \\
& =\int_{0}^{\infty} \frac{d k}{2 \pi} \log \left(1+T(-i k) e^{-k}\right)
\end{aligned}
$$

$T(k)=$ phase for transmission through a defect [Bajnolct simon]

ground state energy for system with defect
[Hernaudez-Chiflet et al]

Defect insertion with $T(k)=e^{-i \frac{\alpha k^{3}}{2 \pi^{3}}}$
leads to a new quantisation condition on momentum of fermion modes.

$$
e^{i k-\frac{i \alpha k^{3}}{8 \pi^{3}}}=1
$$

or

$$
k-\frac{\alpha k^{3}}{8 \pi^{3}}=2 n \pi i
$$

The triple product is just the product over allowed fermion modes in the presence of the defect.

Conclusions and out look

- The GGE behaves exactly like (is) a defect under modular transformations
- The modular properties are not like those of characters
- The form of the modular transform agrees with the physics of the defect.
- Could consider extension to massive GGEs
(Paction fr and traces of conserved quantities have good modular properties
[Salurr + Itzykson, Kostor, Bergman Gaberdiel Green, Berg Bringman Gamone, Douning,Murthy ow]
- Would like to consider Lee-Yang, W3 models, etc...

Thank you!

Defect operator construction
Want to write $H=H_{0}+D(0)$ such that the modular transform is a product over the spectrum of H.

Not a simple perturbation of a free fermion because of "extra modes".

Idea:
Adapt ideas of G. Zs. Toth for irrelevant bound any perturbations.

Perturbation term (here D(o)) changes quantisation condition on fermion momentum Gives solution exactly in terms of required $1 e$

But: Very formal

- Constructed knowing which transmission factor is required

Does not appear to be simply related to original $G G E$
(Details to appear)

Power Partions
Simplest if $s=2$

$$
\eta_{2}=\prod_{1,2 \ldots}\left(1+q^{k^{2}}\right)
$$

Take Ir

$$
\begin{aligned}
\log \tilde{\eta}_{2} & =\sum_{k=1,2} \log \left(1+q^{k^{2}}\right) \\
& =\frac{1}{2} \sum_{k \in \mathbb{R}}^{\sum_{k \in \mathbb{T}} \log \left(1+q^{k^{2}}\right)} \quad \underbrace{\Rightarrow}_{\text {(attica Sum } \Rightarrow \text { Poisson (se) summation }}
\end{aligned}
$$

$$
\sum_{k \in \mathbb{Z}} f(k)=\sum_{p \in \mathbb{Z}} \tilde{f}(p)
$$

Fourier transform

$$
\begin{gathered}
\tilde{f}(p)=\int_{-\infty}^{\infty} f(k) e^{-2 \pi i k p} d k \\
\sum_{k \in \mathbb{Z}} \log \left(1+q^{k^{2}}\right)=\sum_{p \in \mathbb{Z}} \int_{-\infty}^{\infty} \log \left(1+q^{k^{2}}\right) e^{-2 \pi i k p} d k \\
=\sum_{p<0}+\sum_{p>0} \int_{-\infty}^{\infty} \log \left(1+q^{k^{2}}\right) e^{-2 \pi i k p} d k+(\text { term } p=0) .
\end{gathered}
$$

more contours, picking up residues as you go

