Q-operators for Open Quantum Spin Chains

Robert Weston

Maxwell Institute for Mathematical Sciences and Heriot-Watt University, Edinburgh

10th Bologna Workshop, Sep 2023

Plan

- Q-operators for closed chains
- Q-operators for open chains
- the challenge
- the resolution: universal-K

Intro

Pause

- Sklyanin-K/universal-K connection
- Light sketch of the rest
- Discussion

> A few details

Joint work with Alec Cooper and Bart Vlaar:
arXiv:2001.10760, 2301.03997

Q-operators for closed spin chains

- $Q(z)$ introduced in 72 by Baxter for $B-V$ model
(i) Diagonalizable \& polynomial
(ii) $[T(z), Q(z)]=\left[Q(z), Q\left(z^{\prime}\right)\right]=0$
(iii) $T(z) Q(z)=a(z) Q(q z)+b(z) Q\left(q^{-1} z\right)$
\Rightarrow Bethe Equs
- QiSml Quantum group picture [Sklyain, BLz96]

$$
\begin{aligned}
& Q(z)= \\
& \bar{Q}(z)=
\end{aligned}
$$

∞ dim $U_{q}(b+)$ repns.
univ $\mathbb{R} \in u_{q}(b+) \otimes u_{q}\left(b_{-}\right)$ [also need twist $]$

Factorization $\quad \exists u_{q}(b+)$ isomorphism

[khoroshkin 1Tsuboil4]
$\pi u_{q}(b+)$ filtered module $\left[\begin{array}{c}\text { Bazhanou, lukowski } \\ \text { Meneghelli, Standacher, }\end{array}\right]$

$$
\Rightarrow
$$

or $\quad Q\left(q^{-\mu} z\right) \bar{Q}\left(q^{\mu} z\right)=T_{\mu}(z)$
\& $T_{(m)}^{(z)}=T_{\mu}(z)-T_{-\mu}(z) ; \quad N=-\frac{(m+1)}{2}$
\Leftrightarrow spin $m / 2$ transfer matrix ; Generalised $\left[\begin{array}{lll}H J & 11, \\ F H & 13\end{array}\right]$

- Q-operators for open spin chains Looks easy!
[Frassek / Szécsényi 15, Baseilhac /Tsuboi 17, lar (Weston 20, Tsuboi 20 J

$$
\begin{aligned}
& T(z)= \\
& Q(z)=
\end{aligned}
$$

[Sklyain 88]
but until recently, full alg. picture of origin of T G reins missing.

The challenge: too many algebras!

$$
u_{q}\left(s \hat{l}_{2}\right) r_{p} n
$$

$$
\infty-\operatorname{din} u_{q}(b+) \text { rep }
$$

- doesn't act on or $u_{q}(b+3$ repns!

$$
\begin{aligned}
& ? \\
& = \\
& =
\end{aligned}
$$

Boundary factorization

Boundary fusion

The resolution [Cooper/Vaar/w 23]

- Exploit recent universal \mathbb{K} matrix
[BaolWang18, BalagovielKolb1a, Appellulaw 20,22] CRM Lectures
- $A=$ coideal subaigebra

$$
\mathbb{K} \in u_{q}(b+)=,[k, A]=0
$$

$\infty-\operatorname{dim} u_{q}(b+)$ repn

So α-dim repr of $\mathbb{K} \in u_{q}(b+)$

holds as equality of $u_{q}(b+)$ intertwiners via Schwis Lemma.

Pause

More Details
Sklyanin-K/universal-K connection
(i) Sklyanin

- $u=$ underlying q-group; $u_{q}($ of $)\left(u_{q}\left(\hat{s i}_{2}\right)\right.$ here $)$ $A=$ 'boundory q-groyp'
- Sklyanin [88] introduced A via FRT construction

$$
\begin{aligned}
& R(z) \in \operatorname{End}(V \otimes v) ; \rightarrow \psi \\
& K^{22}(z) \in \operatorname{End}(v) \otimes A=,
\end{aligned}
$$

Detines satifying RE

$$
\begin{aligned}
& A R\left(z_{1}\left(z_{2}\right) K_{1}^{(2)}\left(z_{1}\right) R\left(z_{1} z_{2}\right) K_{2}^{(2)}\left(z_{2}\right)\right. \\
& =K_{2}^{(2)}\left(z_{2}\right) R\left(z_{1} z_{2}\right) K_{1}^{(2)}\left(z_{1}\right) R\left(z_{1} \mid z_{2}\right)
\end{aligned}
$$

- c.f. $L(z)=\rightarrow\} \in E_{n d}(v) \oplus u$

$$
\begin{aligned}
& R\left(z_{1}\left(z_{2}\right) L_{1}\left(z_{1}\right) L_{2}\left(z_{2}\right)\right. \\
= & L_{2}\left(z_{2}\right) L_{1}\left(z_{1}\right) R\left(z_{1}\left(z_{2}\right)\right.
\end{aligned}
$$

- $K(z)=(\mathbb{\pi} \otimes \varepsilon) K^{(2)}(z)=(\underline{\pi} \otimes \varepsilon)$
$\tau_{\text {comit }}$

$$
=\rightarrow \in \operatorname{End}(V)
$$

- Coproduct (II $\otimes \Delta) K^{(2)}=$

$\in \operatorname{End}(v) \otimes u \otimes A(*)$
$D: A \rightarrow u \otimes A$, so coideal subalgebra.
$(\mathbb{I} \Theta \varepsilon) \Delta=\pi \quad \pi \quad s o(\pi \otimes \mathbb{\pi} \otimes \varepsilon)(*)$

$$
\Rightarrow
$$

- So A gen by matrix elements

$$
\left.x a b=\langle a| k^{(2)}|b\rangle=a \rightarrow\right\} \in A
$$

Prop Given reps π_{w} of A on W, we have
$K_{w} \pi_{w}\left(x_{a b}\right)=\pi_{w}\left(x_{a b}\right) K_{w}$ [Delius/Mackay 03]

Prof RE

Hence, K_{w} is A intertwines ($\left.\& K^{(2)} \in \operatorname{End}(V) \otimes A\right)$
(ii) The universal K-matrix picture
[BaolWang 18, Balagoure/Kolb la, Appel/Vlaar 20/22]

- The objects

$$
\begin{aligned}
& U=\text { underlying } q \text {-group; } \\
& A=\text { coideal subalgebra; } \\
& B=\text { upper Borel subalg. }
\end{aligned}
$$

- universal \mathbb{K} is constructed for wide class of coideal sab. A associated with quantum affine algebra:
$* \mathbb{K} \in B$
; with
* $\mathbb{K} x=x \mathbb{K}$ with $x \in A$
* \mathbb{K} satisfies miversal (twisted) RE.
* $\Delta(\mathbb{K})=$

$$
\epsilon B \otimes B
$$

- If we have B reps π, then $K=\pi(\mathbb{K})=>$

If π not an A reps, no $K \pi(x)=\pi(x) K$, for $x \in A$

- Connection to Sklyain's $K^{(2)}=\xi_{\xi}^{\xi}$ is just

$$
\begin{aligned}
& K^{2}=K^{3} \in B \otimes A \\
& K^{2}=\left(\pi_{B} \otimes \mathbb{I}\right) K^{2} \in \operatorname{End}(U) \otimes A .
\end{aligned}
$$

Summary

VA $\mathbb{K}^{(2)}=\sim_{\sim}^{\sim} \in B \otimes A$
Ski $K^{(2)}=\prod_{3}^{s} \in \operatorname{End}(u) \otimes A$
VA $\quad K=\sim$ B $=(\mathbb{1} \otimes \varepsilon)^{\sim} \in B$

SH $K=\rightarrow=(\pi \otimes \varepsilon) \nrightarrow$ End (v)

Light sketch of the rest

- We consider $U_{q}\left(\hat{s l}_{2}\right)$ case and $A=$ augmented q-Onsager algebra with $k_{\frac{1}{2}}(z)=\left(\begin{array}{ll}\xi z^{2}-1 & \\ & \xi-z^{2}\end{array}\right)$
[Stelyanin 88, Baseilhac/Belliard 13]
- $K_{B}=K_{B} \mathbb{K}$ well defined for all $u_{q}(b+)$
level - 0 repus (including the 4 -dim ones required for factorization).
- In practice find $K B$ by solving RE involury egg.

1-dim sole. space
-
 follow's from Scher's Lemma

R-matrices also well defined as repn

- All repns, - ——, -.f., etc have relatively simple q-ore expressions.

$$
\text { e.g. } \quad \square=e_{q^{2}}\left(q^{2} \bar{a}_{1}^{+} a_{2}\right) q^{\mu\left(D_{2}-D_{1}\right) / 2}
$$

[Khorshkin 1Tsuboi 14]

- Final step

$$
=
$$

$$
\alpha \quad T_{\mu}(z)
$$

reproduces known Bethe Equs.

Discussion

- Question: does this generalise to
(i) Non-diagonal K matrices for Sl_{2} case
(ii) Other $u_{q}($ of $)$?
(iii) Rational / Yangion limit?
- Partial answers
(i) We think so, although RE alg. becomes modified by twist.
However, technically mare difficult to complexity of solving

(ii) We hope so generallses to prefondanental repus [JimbolHemondez, Frenkel [Hermandez] and 'TQ relns' in closed case conj. by
[Frenkel/Reshetikhin], proved by [FrenkellHernandez].
(i'ic) Yes - in $8 l_{2}$ case studied. Reproduces Q, \bar{Q} of [Frassek lSzécsényi, 15]. [Alec Cooper's thesis].

