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Outline

• percolation as basic example in critical phenomena

• ferromagnetism and percolation

• universality classes of critical clusters

• theoretical difficulties

• recent results from CFT



Random percolation

bond present with prob. p

weight = p#bonds (1− p)#absent bonds

for p > pc there is a probability P > 0 that a site belongs to a

cluster extending to infinity

P ∼ (p− pc)β , p→ p+c

β related to fractal dimension



Ferromagnetism as correlated percolation

HIsing = −K
∑

〈i,j〉
sisj , si = ±1

• Fisher ’67: spontaneous magnetization below Tc produced by

percolation of spin clusters; requirements:

1. percolation occurs at Tc

2. percolative and magnetic exponents coincide

• problem: spin clusters found to percolate away from Tc in 3D

Ising [Muller-Krumbhaar ’74]

• way out: Fortuin-Kasteleyn (FK) clusters percolate at Tc in

any dimension and yield magnetic exponents [Coniglio,Klein ’80]



Percolation and the r-state Potts model

Potts model : H = −K ∑

〈i,j〉 δsi,sj , s(x) = 1, . . . , r

symmetry: Sr, permutations of r “colors”

Z =
∑

{s(x)}
e−H = [Fortuin, Kasteleyn ’69] p = 1− e−K

∝
∑

bond configs

p#bonds(1− p)#absent bonds r#clusters

• each cluster can take r colors

• realizes analytic continuation in r

• random percolation for r → 1, correlated percolation otherwise

(Ising for r = 2)



Spin and FK clusters in the 2D Ising model

• in d = 2 spin clusters also percolate at Tc [Coniglio et al ’77] with

new fractal dimension [Sykes,Gaunt ’76]

• unified RG picture for Ising spin and FK clusters [Coniglio,Klein ’80]:

– couple Ising to auxiliary r → 1 Potts

H = HIsing − J
∑

〈ij〉
titj (δsi,sj − 1) , ti = 0,1, si = 1, . . . , r

Z =
∑

{ti}

∑

{si}
e−H = p ≡ 1− e−J

=
∑

{ti}
e−HIsing r# vacancies

∑

{bonds between+ spins}
r# clusters p# bonds (1− p)# absent bonds

– approximate RG at Tc yields two fixed points for J: 0 2/Tc J* J

J = 2/Tc : fixed point for FK clusters

J = J∗ : fixed point for spin clusters (p = 1)

– correspond to critical Ising and tricritical r → 1 Potts (c = 1/2 for both)



cluster size ∼ (linear extension)D

D = 2−Xs fractal dimension

Xs spin field scaling dimension

CFT : D =































15/8 = 1.87.. Ising FK clusters

187/96 = 1.94.. Ising spin clusters

91/48 = 1.89.. random percolation clusters



Conjectured generalization to q-state Potts clusters

• couple q-state Potts to auxiliary r → 1 Potts:

Hq,r = −J1

∑

〈i,j〉
δsi,1,sj,1 − J2

∑

〈i,j〉
δsi,2,sj,2 − J

∑

〈i,j〉
δsi,1sj,1δsi,2,sj,2 , si,1 = 1, . . . , q; si,2 = 1, . . . , r

bond between spin of same color with probability p = 1− e−J

• approximate RG analysis

[Coniglio,Peruggi ’82]

conjecture: spin branch and

FK branch coalesce and

terminate at q = 4

• further conjecture [Vanderzande ’92]: FK and spin branches

related to critical and tricritical Potts, analytical continuation

of each other → formula for fractal dimension of spin clusters

in good agreement with simulations → conjecture accepted



Potts clusters and CFT

• fundamental percolative observables are the connectivities

Pn(x1, . . . , xn) = prob. x1, ..., xn in same cluster

related to correlators of Potts spins σα, α = 1, . . . , q :

P2 =
〈σασα〉
q−1 , P3 =

〈σασασα〉
(q−1)(q−2), · · ·

• P2 determined by scaling dimension Xσ, known for FK clus-

ters from lattice Coulomb gas [Nienhuis ’82], and corresponding

to [Dotsenko,Fateev ’84] Xσ = X1/2,0

Xm,n = [(t+1)m−tn]2−1
2t(t+1)

c = 1− 6
t(t+1)

√
q = 2sin π(t−1)

2(t+1)

• σα nondegenerate for q generic ⇒ no differential eqs for con-

nectivities !

becomes degenerate on a boundary→ crossing probabilities [Cardy ’92,Watts ’96,

....,Smirnov ’01,....]



Three-point connectivity of FK clusters [GD,Viti ’11]

P3 = R
√

P2(x1, x2)P2(x1, x3)P2(x2, x3) R universal

color symmetry factorizes at three-point level ⇒

R =
√
2 CXσXσXσ

CXσXσXσ OPE coefficient of colorless theory = analytic contin-

uation of minimal model OPE coefficients



OPE coefficients in c < 1 CFT [Al.Zamolodchikov ’05; Kostov,Petkova ’06]:

C∆1,∆2,∆3
=

AΥ(2β − β−1 + a1 + a2 + a3)

[Υ(2a1 + β)Υ(2a1 +2β − β−1)]
1

2

×

× Υ(a1 + a2 − a3 + β)Υ(a2 + a3 − a1 + β)Υ(a3 + a1 − a2 + β)

[Υ(2a2 + β)Υ(2a2 +2β − β−1)Υ(2a3 + β)Υ(2a3 +2β − β−1)]
1

2

c = 1− 6

t(t+ 1)
β =

√

t/(t+ 1) ∆i = ai(ai + β − β−1)

A =
ββ−2−β2−1[γ(β2)γ(β−2 − 1)]1/2

Υ(β)
γ(x) ≡ Γ(x)

Γ(1− x)

Υ(x) = exp

{

∫∞
0

dt
t

[

(

Q
2
− x

)2

e−t − sinh2[(Q

2
−x) t

2]
sinh βt

2
sinh t

2β

]}

Q = β + β−1

analytic continuation of minimal model OPE coefficients, up to

special cases where finite (“mysterious”) numbers are obtained

instead of zero



Monte Carlo verification [Ziff,Simmons,Kleban ’11] (q = 1);

[Picco,Santachiara,Viti,GD ’13] (q generic)
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• q = 2 sheds light on Zamolodchikov’s ”mysterious numbers”

• no color symmetry factorization for Pn>3 [GD,Viti ’11]

P4 studied by semi-analytic conformal bootstrap→ Ribault’s talk

→ 26 digit verification of P3 [Nivesvivat, Ribault ’21]



Spin clusters from FK clusters? [GD,Picco,Santachiara,Viti ’13]

q

the conjecture that the properties of spin clusters can be ob-

tained from those of FK clusters by analytic continuation is not

generally true. Where does it fail?



Exact search for RG fixed points [GD ’13]

• Euclidean field theory in 2D ←→ relativistic quantum field the-

ory in (1+1)D −→ particles

• at criticality ∞-dimensional conformal symmetry

makes scattering completely elastic
S

a b

cd

• center of mass energy only relativistic invariant, dimensionful

⇒ constant amplitudes by scale invariance

crossing: Scd
ab = [Scb

ad]
∗

unitarity:
∑

ef S
ef
ab [S

cd
ef ]
∗ = δacδbd

• solutions are RG fixed points with the symmetry implemented

by the particle basis

• used for quenched disorder [GD ’17], liquid crystals [GD,Diouane,

Lamsen ’21], ...



Critical points of coupled q-state and r-state Potts

models [Lamsen,Diouane,GD ’23]

particles: αk ↑ βk, k = 1,2

α1 6= β1 = 1, . . . , q

α2 6= β2 = 1, . . . , r

αk βk

γk

δk

S0,k

αk βk

γk

γk

S1,k

αk αk

γk

δk

S2,k

αk αk

γk

γk

S3,k

α1, α2 α1, α2

β1, α2

α1, β2

S4

α1, α2 β1, β2

α1, β2

α1, β2

S5

α1, α2 β1, β2

β1, α2

α1, β2

S6

S0,k = S∗0,k ≡ ρ0,k, S1,k = S∗2,k ≡ ρ1,ke
iφk, S3,k = S∗3,k ≡ ρ3,k,

S4 = S∗5 ≡ ρ4eiθ, S6 = S∗6 ≡ ρ6

0=(q-4)ρ20,1 +2ρ1,1ρ0,1 cosφ1, 0 = (r − 4)ρ20,2 +2ρ1,2ρ0,2 cosφ2,

1 = (q − 3)ρ20,1 + ρ21,1, 0 = (q − 3)ρ21,1 +2ρ1,1ρ3,1 cosφ1 + (r − 1)ρ24,

1 = (r − 3)ρ20,2 + ρ21,2, 0 = (r − 3)ρ21,2 + 2ρ1,2ρ3,2 cosφ2 + (q − 1)ρ24,

1 = (q − 2)ρ21,1 + ρ23,1 + (r − 1)ρ24, 1 = (r − 2)ρ21,2 + ρ23,2 + (q − 1)ρ24,

0 = ρ4
[

ρ3,2eiθ + ρ3,1e−iθ + (q − 2)ρ1,1e−i(θ+φ1) + (r − 2)ρ1,2ei(θ+φ2)
]

,

1 = ρ24 + ρ26, 0 = 2ρ4ρ6 cos θ



solutions (= RG fixed points) exist in domains of q-r plane, e.g.

• equations very restrictive for q,r integers > 1

• for coupled ferromagnets only q = r = 2
(Ashkin-Teller) → lines of fixed points

• V21 yields coupled antiferromagnets

studied on the lattice [Au-Yang,Perk ’92;

Martins,Nienhuis ’98; Fendley,Jacobsen ’08;

Vernier,Jacobsen,Saleur ’14]
q = r



r → 1 : we solve exactly the RG problem studied approximately

in [Coniglio,Peruggi ’82]

• for r = 1 + ǫ the range q ∈ [2,4] is covered only piecewisely

⇒ no general analytical continuation from FK to spin clusters

is possible

• this explains, in particular, the numerically observed failure of

the analytic continuation conjecture for P3

• the conjectured formula for the spin cluster fractal dimension,

so far consistent with simulations, can be exact if it can be

derived directly at r = 1



Conclusion

• different types of clusters can be simultaneously critical in 2D

spin models

• study of these universality classes made difficult by need of

subtle analytical continuations

• recent progress for connectivities by CFT methods beyond

minimal model technology

• scattering framework allows exact search for critical points and

sheds light on old conjectures


