# NEGATIVE TRIPARTITE INFORMATION AFTER QUANTUM QUENCHES IN INTEGRABLE MODELS

**CFT & INTEGRABLE MODELS** 

@ University of Bologna, Sep 04-07, 2023



VINCENZO ALBA

University of Pisa & INFN



### STATE VS TRAJECTORY ENTANGLEMENT

$$H = \sum_{x=-\infty}^{\infty} \left( c_x^{\dagger} c_{x+1} + c_{x+1}^{\dagger} c_x \right)$$

• Free fermions with local density monitoring: Stochastic Schroedinger Equation

$$d|\psi_t\rangle = -iHdt|\psi_t\rangle + \sum_{x=1}^L \left(\sqrt{\gamma}[n_x - \langle n_x \rangle_t]dW_t^{(x)} - \frac{\gamma}{2}[n_x - \langle n_x \rangle_t]^2dt\right)|\psi_t\rangle \qquad dW_t^{(x)} \text{ noise}$$

initial state  $|01\rangle^{\otimes L/2}$ 

average density matrix 
$$\rho_t = \overline{|\psi_t\rangle\langle\psi_t|}$$

• Lindblad dynamics with dephasing

V.A. and F. Carollo, PRB 103 L020302 (2021) + ...

$$d\overline{\rho_t} = -i[H,\overline{\rho_t}]dt - \gamma \sum_j [n_j, [n_j,\overline{\rho_t}]]dt$$

• Entanglement of trajectories:

$$\overline{S_A} = \operatorname{Tr}_A \overline{\rho_{t,A} \ln(\rho_{t,A})}$$



### VINCENZO ALBA

# QUASIPARTICLE PICTURE

• Hydrodynamic description of entanglement dynamics via emergent quasiparticles



P. Calabrese and J. Cardy, JSTAT 2005

 $V_k$  Entangling quasiparticles are the excitations over the GGE

### VINCENZO ALBA

### COLLAPSED QUASIPARTICLE ANSATZ

• Assuming pairwise correlations: Collapsed Quasiparticle Ansatz

X. Cao, A. Tilloy, and A. De Luca, SciPost Phys. 7, 024 (2019)



Measurement induced entanglement production

#### VINCENZO ALBA

### NUMERICAL CHECKS: BEYOND PAIR CORRELATIONS

$$|01\rangle^{\bigotimes L/2}$$
  $H = \sum_{x=-\infty}^{\infty} (c_x^{\dagger} c_{x+1} + c_{x+1}^{\dagger} c_x)$   
F. Carollo and V. A., PRB 106 L220304 (2022)



• Incomplete description of entanglement dynamics via entangled pairs

### VINCENZO ALBA

# TRIPARTITE MUTUAL INFORMATION

• Quantum correlations between three subsystems

$$S_{A} = - \operatorname{Tr} \rho_{A} \ln(\rho_{A}) \quad \text{Von Neumann entropy}$$

$$L_{2(A, B)} = S(A) + S(B) - S(A \cup B)$$
(tite v and Preskill, PRL 96 110404 (2006), Levin and Wen, PRL 96 110405 (2006) ake topological entropy.  

$$I_{3}(A_{1}, A_{2}, A_{3}) = I_{2}(A_{2}, A_{1}) + I_{2}(A_{2}, A_{3}) - I_{2}(A_{2}, A_{1} \cup A_{3})$$
( Holographic theories  $I_{3} < 0$ )  
P. Hayden, M. Headrick, and A. Maloney, PRD 87, 046003 (2013)  
N. Balasubramanian, A. Bernamonti, N. Copland, B. Craps, F. Galli, PRD 84 105017 (2011)  
Mandom circuits  $I_{3} < 0$   
B. Bertini and L. Piroli, PRB 102 064305 (2020)  
A. Zabalo, M. Gullans, J. Wilson, S. Gopalakrishnan, D. Huse, J. Pixley, PRB 101 060301 (2020)

### NUMERICAL CHECKS: BEYOND PAIR CORRELATIONS

F. Carollo and V. A., PRB 106 L220304 (2022)



VINCENZO ALBA

# What is going on?

### How do we get nonzero TMI?

Can we get negative TMI in integrable systems?

VINCENZO ALBA

# ENTANGLED MULTIPLETS

• TMI is zero if entangled pairs are present



• Shared multiplets contribute to the TMI

### VINCENZO ALBA

# **CLASSICALLY ENTANGLED MULTIPLETS**

• Different classes of entangled multiplets

$$H = \sum_{j=1}^{L} \frac{1}{2} (S_j^+ S_{j+1}^- + h \cdot c.)$$

• Classically entangled multiplets



B. Bertini et al., J. Stat. Mech. (2018) 063104

 $\sum_{j} \rho_{j} = 1 \qquad \rho_{in}(k) = \sum_{j \in A} \rho_{j}(k)$  $s(k) = s_{YY}(\rho_{in})$ 

$$s_{YY}(x) = -x \ln(x) - (1-x) \ln(1-x)$$

#### F. Caceffo and V.A., arXiv:2305.10245

•Entanglement dynamics determined by the GGE

$$I_3 > 0$$

#### VINCENZO ALBA

# POSITIVE TMI FOR CLASSICALLY ENTANGLED MULTIPLETS



$$I_3(t) = \int \frac{dk}{2\pi} \tau_3(k) \mathcal{D}(k, \ell, t))$$

• For n particles multiplets:

$$\begin{aligned} \tau_3(k) &= s_{\{a_i\} \cup \{b_i\} \cup \{c_i\}}(k) - s_{\{a_i\} \cup \{b_i\}}(k) - s_{\{a_i\} \cup \{c_i\}}(k) - s_{\{b_i\} \cup \{c_i\}}(k) + s_{\{a_i\}}(k) + s_{\{b_i\}}(k) + s_{\{c_i\}}(k) \\ a &= \sum_{j=1}^p \rho_{a_j}(k) \qquad b = \sum_{j=1}^q \rho_{b_j}(k) \qquad c = \sum_{j=1}^r \rho_{c_j}(k) \qquad p + q + r \le n \\ f(x) &:= -x \ln(x) - (1 - x) \ln(1 - x) \\ \tau_3(k) &= f(a + b + c) - f(a + b) - f(a + c) - f(b + c) + f(a) + f(b) + f(c) \end{aligned}$$

•  $\tau_3(k)$  vanishes at boundaries and is positive at the unique stationary point.

$$\tau_3(k) \ge 0$$

#### VINCENZO ALBA

## NEGATIVE TMI: QUASIPARTICLE PICTURE

• A more complex entanglement pattern

F. Caceffo and V.A., arXiv:2305.10245

$$H = \sum_{j=1}^{L} \frac{1}{2} (S_{j}^{+}S_{j+1}^{-} + h \cdot c.) \qquad I_{3}(A_{1}, A_{2}, A_{3}) = I_{2}(A_{2}, A_{1}) + I_{2}(A_{2}, A_{3}) - I_{2}(A_{2}, A_{1} \cup A_{3})$$
Entangled quadruplets
$$|\uparrow\uparrow\downarrow\downarrow\downarrow\rangle\otimes I/4 \qquad I_{3}(f) = \int_{\pi/2}^{3\pi/4} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$
not easily related to GGE
$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

$$\int_{\pi/2}^{0} \frac{dk}{2\pi} (S_{3}(k) \otimes (M_{1}(k, \ell, t) + M_{2}(k, \ell, t)))$$

VINCENZO ALBA

### TMI: QUASIPARTICLE PICTURE



 $\mathcal{D}_{1}(k,\ell,t) = \max\{\min\{v_{1}t,\ell+v_{2}t,2\ell-v_{2}t,3\ell-v_{1}t\} - \max\{v_{2}t,\ell-v_{2}t,2\ell-v_{1}t\},0\}$  $\mathcal{D}_{2}(k,\ell,t) = \max\{\min\{\ell+v_{1}t,2\ell+v_{2}t,3\ell-v_{2}t\} - \max\{v_{1}t,\ell+v_{2}t,2\ell-v_{2}t,3\ell-v_{1}t\},0\}$  $v_{j}(k) = 2\sin(k-(j-1)\pi/2)$ 

• Fermionic correlation matrix in multiplet space

$$G(k) = \frac{1}{4} \begin{pmatrix} 2 & -1-i & 0 & -1+i \\ -1+i & 2 & -1-i & 0 \\ 0 & -1+i & 2 & -1-i \\ -1-i & 0 & -1+i & 2 \end{pmatrix}$$

#### VINCENZO ALBA

# A FORMULA TO REMEMBER

F. Caceffo and V.A., arXiv:2305.10245

$$\begin{split} S_{\Lambda}(t) &= \int_{\pi/2}^{3/4\pi} \frac{dk}{2\pi} \Big\{ (s_{\{1\}} + s_{\{3\}}) \Big[ (v_1 - v_2)t \; \Theta(\ell - (v_1 - v_2)t) + \\ \ell \Theta((v_1 - v_2)t - \ell) + (v_4 - v_3)t \; \Theta(\ell - (v_1 - v_3)t) + (\ell - (v_1 - v_4)t)\chi \big(\ell/(v_1t - v_3t), \ell/(v_1t - v_4t)\big) \Big] + \\ (s_{\{2\}} + s_{\{4\}}) \Big[ ((v_1 - v_4)t - \ell)\chi \big(\ell/(v_1t - v_4t), \min\{\ell/(v_1t - v_2t), \ell/(v_2t - v_4t)\} \big) + \\ (v_1 - v_2)t\chi \big(\ell/(v_2t - v_4t), \ell/(v_1t - v_2t)\big) + (v_2 - v_4)t\chi \big(\ell/(v_1t - v_2t), \ell/(v_2t - v_4t)\big) + \\ \ell \Theta \big(t - \max\{\ell/(v_1t - v_2t), \ell/(v_2t - v_4t)\} \big) \Big] + (s_{\{1,2\}} + s_{\{3,4\}}) \Big[ (v_2 - v_4)t\Theta(\ell - (v_1 - v_4)t) + (\ell - (v_1 - v_2)t) + \\ \chi \big(\ell/(v_1t - v_4t), \ell/(v_1t - v_2t)\big) \Big] + s_{\{1,3\}} \Big[ ((v_1 - v_3)t - \ell)\chi \big(\ell/(v_1t - v_3t), \ell/(v_1t - v_3t)\big) + \\ (\ell - (v_2 - v_4)t)\chi \big(\ell/(v_1t - v_4t), \ell/(v_2t - v_4t)\big) \Big] + \int_{3/4\pi}^{\pi} \frac{dk}{2\pi} \{1 \leftrightarrow 2, 3 \leftrightarrow 4\} \end{split}$$

### VINCENZO ALBA

# **ISING QUENCH**

• A more complex entanglement pattern

F. Caceffo and V.A., arXiv:2305.10245

$$H = J \sum_{j=1}^{L} \sigma_j^x \sigma_{j+1}^x + \sum_{j=1}^{L} h_j \sigma_j^z$$

$$I_3(A_1, A_2, A_3) = I_2(A_2, A_1) + I_2(A_2, A_3) - I_2(A_2, A_1 \cup A_3)$$

Entangled quadruplets

A. Bastianello and P. Calabrese, Scipost Phys. 5 033 (2018)

$$|GS(h_{even}, h_{odd})|$$



 $I_{3}(t) = \int_{\pi/2}^{3\pi/4} \frac{dk}{2\pi} \tau_{3}(k) (\mathcal{D}_{1}(k,\ell,t) + \mathcal{D}_{2}(k,\ell,t))$ 





VINCENZO ALBA

# CONCLUSIONS

- TMI ideal to identify the presence of entangled multiplets
- Quasiparticle picture still possible for free systems
- Link between entanglement and thermodynamics weakened
- Multiplet scrambling
- Most likely QP for monitored fermions hard to obtain

# Postdoc positions available at University of Pisa!



# vincenzo.alba@unipi.it

### VINCENZO ALBA

# THANK YOU