From exact WKB analysis to instanton counting at strong coupling

Pietro Longhi
Uppsala University

10th Bologna Workshop on Conformal Field Theory and Integrable Models

This talk is based on joint work with I.Coman and J.Teschner about instanton partition functions of $4 \mathrm{~d} \mathcal{N}=2$ QFT.

Our main goal is to define and compute these away from weak-coupling, where localization techniques based on Lagrangian descriptions cease to apply.

This talk is based on joint work with I.Coman and J.Teschner about instanton partition functions of $4 \mathrm{~d} \mathcal{N}=2$ QFT.

Our main goal is to define and compute these away from weak-coupling, where localization techniques based on Lagrangian descriptions cease to apply.

Outline:

1. Exact results in $4 d \mathcal{N}=2$ gauge theory
2. Quantum curves
3. τ-functions and instantons
4. Weak/strong coupling connection coefficients and the global picture
5. Exact results in $4 d \mathcal{N}=2$ gauge theory

$4 \mathrm{~d} \mathcal{N}=2$ Yang-Mills

The $\mathcal{N}=2$ Yang-Mills Lagrangian $\left(\tau=\theta / 2 \pi+4 \pi i / g^{2}\right.$ and $G=S U(2)$)

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{8 \pi} \operatorname{Im}\left(\int d^{2} \theta \tau W^{\alpha} W_{\alpha}+\int d^{2} \theta d^{2} \bar{\theta} 2 \tau \Phi^{\dagger} e^{-2 V} \Phi\right) \\
=\frac{1}{g^{2}} & \operatorname{Tr}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+g^{2} \frac{\theta}{32 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{2}\left[\phi^{\dagger}, \phi\right]^{2}\right. \\
& \left.-i \lambda \sigma^{\mu} D_{\mu} \bar{\lambda}-i \bar{\psi} \bar{\sigma}^{\mu} D_{\mu} \psi-i \sqrt{2}[\lambda, \psi] \phi^{\dagger}-i \sqrt{2}[\bar{\lambda}, \bar{\psi}] \phi\right)
\end{aligned}
$$

is a supersymmetric extension of Yang-Mills-Higgs models, with (adjoint) Higgs potential

$$
U=-\frac{1}{2 g^{2}} \operatorname{Tr}\left(\left[\phi^{\dagger}, \phi\right]^{2}\right)
$$

Classical vacua are defined by $\left[\phi^{\dagger}, \phi\right]=0$ and come in families parameterized by $\phi \in \mathfrak{t}$ valued in a Cartan subalgebra of \mathfrak{g}.

The classical expectation value $\phi \sim a \sigma_{3}$ induces a spontaneous breaking of $S U(2) \rightarrow U(1)$. The low energy theory is free Abelian gauge theory.

Classical vacua are defined by $\left[\phi^{\dagger}, \phi\right]=0$ and come in families parameterized by $\phi \in \mathfrak{t}$ valued in a Cartan subalgebra of \mathfrak{g}.

The classical expectation value $\phi \sim a \sigma_{3}$ induces a spontaneous breaking of $S U(2) \rightarrow U(1)$. The low energy theory is free Abelian gauge theory.

At the quantum level the IR theory is interacting. The moduli space of 'Coulomb' vacua \mathcal{B} is not lifted, and the gauge-invariant order parameter is

$$
u=\frac{1}{2}\left\langle\operatorname{Tr} \phi^{2}\right\rangle .
$$

At weak coupling $u \sim a^{2}$ specializes to the classical value.

Classical vacua are defined by $\left[\phi^{\dagger}, \phi\right]=0$ and come in families parameterized by $\phi \in \mathfrak{t}$ valued in a Cartan subalgebra of \mathfrak{g}.

The classical expectation value $\phi \sim a \sigma_{3}$ induces a spontaneous breaking of $S U(2) \rightarrow U(1)$. The low energy theory is free Abelian gauge theory.

At the quantum level the IR theory is interacting. The moduli space of 'Coulomb' vacua \mathcal{B} is not lifted, and the gauge-invariant order parameter is

$$
u=\frac{1}{2}\left\langle\operatorname{Tr} \phi^{2}\right\rangle .
$$

At weak coupling $u \sim a^{2}$ specializes to the classical value.

The $U(1)$ low energy effective action is governed by the prepotential \mathcal{F}

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{8 \pi} \operatorname{Im}\left(\int d^{2} \theta \mathcal{F}^{\prime \prime}(\Phi) W^{\alpha} W_{\alpha}+2 \int d^{2} \theta d^{2} \bar{\theta} \mathcal{F}^{\prime}(\Phi) \Phi^{\dagger}\right) \\
\text { with: } \mathcal{F} & =\mathcal{F}_{\text {pert. }}+\mathcal{F}_{\text {instanton }}=\frac{i}{2 \pi} a^{2} \ln \frac{a^{2}}{\Lambda^{2}}+\sum_{k=1}^{\infty} \mathcal{F}_{k}\left(\frac{\Lambda}{a}\right)^{4 k} a^{2}
\end{aligned}
$$

A geometric proposal for \mathcal{F} in terms of elliptic curves Σ with differential λ. [Seiberg Witten]

Dictionary

$$
\begin{gathered}
a(u):=\frac{1}{\pi} \oint_{\alpha} \lambda \quad a_{D}(u):=\frac{1}{\pi} \oint_{\beta} \lambda \\
a_{D}=\frac{\partial \mathcal{F}}{\partial a}
\end{gathered}
$$

A geometric proposal for \mathcal{F} in terms of elliptic curves Σ with differential λ. [Seiberg Witten]

Dictionary

$$
\begin{gathered}
a(u):=\frac{1}{\pi} \oint_{\alpha} \lambda \quad a_{D}(u):=\frac{1}{\pi} \oint_{\beta} \lambda \\
a_{D}=\frac{\partial \mathcal{F}}{\partial a}
\end{gathered}
$$

Singularities on \mathcal{B} :
When a cycle pinches, the corresponding combination of a, a_{D} vanishes. If \mathcal{F} diverges the IR description is not valid. This is due to new massless d.o.f.

Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with [t' Hooft, Polyakov]

$$
\text { mass } M(u) \quad \text { charge } \gamma=(e, m) .
$$

Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with ['t Hooft, Polyakov]

$$
\text { mass } M(u) \quad \text { charge } \gamma=(e, m) \text {. }
$$

4d $\mathcal{N}=2$ supersymmetry has a central extension $\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} \sim \epsilon_{\alpha \beta} \epsilon^{A B} Z$

- Linear in (e, m) [Olive Witten]

$$
Z_{(e, m)}(u) \sim \int d^{3} x \partial_{j}\left[\left(\frac{1}{g^{2}} F^{0 j}+\frac{\tau}{4 \pi} \tilde{F}^{0 j}\right) a^{\dagger}\right] \sim a_{\infty}(e+\tau \cdot m)
$$

Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with ['t Hooft, Polyakov]

$$
\text { mass } M(u) \quad \text { charge } \gamma=(e, m) \text {. }
$$

4d $\mathcal{N}=2$ supersymmetry has a central extension $\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} \sim \epsilon_{\alpha \beta} \epsilon^{A B} Z$

- Linear in (e, m) [Olive Witten]

$$
Z_{(e, m)}(u) \sim \int d^{3} x \partial_{j}\left[\left(\frac{1}{g^{2}} F^{0 j}+\frac{\tau}{4 \pi} \tilde{F}^{0 j}\right) a^{\dagger}\right] \sim a_{\infty}(e+\tau \cdot m)
$$

- If a state carries $(e, m) \neq 0$, it must also have $Z \neq 0$.

Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with ['t Hooft, Polyakov]

$$
\text { mass } M(u) \quad \text { charge } \gamma=(e, m) \text {. }
$$

4d $\mathcal{N}=2$ supersymmetry has a central extension $\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} \sim \epsilon_{\alpha \beta} \epsilon^{A B} Z$

- Linear in (e, m) [Olive Witten]

$$
Z_{(e, m)}(u) \sim \int d^{3} x \partial_{j}\left[\left(\frac{1}{g^{2}} F^{0 j}+\frac{\tau}{4 \pi} \tilde{F}^{0 j}\right) a^{\dagger}\right] \sim a_{\infty}(e+\tau \cdot m)
$$

- If a state carries $(e, m) \neq 0$, it must also have $Z \neq 0$.
- The BPS bound $M \geq|Z|$ implies that all charged states must be massive.

Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with ['t Hooft, Polyakov]

$$
\text { mass } M(u) \quad \text { charge } \gamma=(e, m) \text {. }
$$

4d $\mathcal{N}=2$ supersymmetry has a central extension $\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} \sim \epsilon_{\alpha \beta} \epsilon^{A B} Z$

- Linear in (e, m) [Olive Witten]

$$
Z_{(e, m)}(u) \sim \int d^{3} x \partial_{j}\left[\left(\frac{1}{g^{2}} F^{0 j}+\frac{\tau}{4 \pi} \tilde{F}^{0 j}\right) a^{\dagger}\right] \sim a_{\infty}(e+\tau \cdot m)
$$

- If a state carries $(e, m) \neq 0$, it must also have $Z \neq 0$.
- The BPS bound $M \geq|Z|$ implies that all charged states must be massive.
- The central charge is a holomorphic function $Z_{\gamma}(u)=\frac{1}{\pi} \oint_{\gamma} \lambda$.

Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with ['t Hooft, Polyakov]

$$
\text { mass } M(u) \quad \text { charge } \gamma=(e, m) \text {. }
$$

4d $\mathcal{N}=2$ supersymmetry has a central extension $\left\{Q_{\alpha}^{A}, Q_{\beta}^{B}\right\} \sim \epsilon_{\alpha \beta} \epsilon^{A B} Z$

- Linear in (e, m) [Olive Witten]

$$
Z_{(e, m)}(u) \sim \int d^{3} x \partial_{j}\left[\left(\frac{1}{g^{2}} F^{0 j}+\frac{\tau}{4 \pi} \tilde{F}^{0 j}\right) a^{\dagger}\right] \sim a_{\infty}(e+\tau \cdot m)
$$

- If a state carries $(e, m) \neq 0$, it must also have $Z \neq 0$.
- The BPS bound $M \geq|Z|$ implies that all charged states must be massive.
- The central charge is a holomorphic function $Z_{\gamma}(u)=\frac{1}{\pi} \oint_{\gamma} \lambda$.
- At singularities BPS states become massless $M(u)=\left|Z_{\gamma}(u)\right| \rightarrow 0$.

Light degrees of freedom on the Coulomb branch

The Seiberg-Witten solution has 3 singularities on \mathcal{B} :

- One at weak coupling, where \mathcal{F} has the expansion shown previously \rightsquigarrow d.o.f. of $S U(2)$ Yang-Mills with light W-bosons $Z_{\gamma_{1}+\gamma_{2}} \approx 0$
- Two at strong coupling, where \mathcal{F} has a rather different kind of expansion \rightsquigarrow d.o.f. of 'dual' $U(1)$ QED with light monopole $Z_{\gamma_{1}} \approx 0$ or dyon $Z_{\gamma_{2}} \approx 0$

Instanton counting

The Seiberg-Witten solution was conjectural, but instanton corrections at weak coupling were later confirmed by direct computation in QFT

- Compute k-instanton contributions \mathcal{F}_{k} by considering a $G \times T^{2}$-equivariant integral over the moduli space $\widetilde{\mathcal{M}}_{k}$ [Losev Nekrasov Shatashvili] [Moore Nekrasov Shatashvili]
- Result obtained by localization, reducing to a sum over fixed points labeled by colored partitions $\left(Y_{1}, \ldots, Y_{N}\right)$
- With T^{2} equivariant parameters specialized to $\epsilon_{1}=-\epsilon_{2}=\hbar$

$$
Z_{\text {inst }}(a, \hbar ; q)=\sum_{Y_{1}, Y_{2}} q^{\left|Y_{1}\right|+\left|Y_{2}\right|} \prod_{i, j} \frac{a+\hbar\left(Y_{1, i}-Y_{2, j}+j-i\right)}{a+\hbar(j-i)}
$$

Instanton counting

The Seiberg-Witten solution was conjectural, but instanton corrections at weak coupling were later confirmed by direct computation in QFT

- Compute k-instanton contributions \mathcal{F}_{k} by considering a $G \times T^{2}$-equivariant integral over the moduli space $\widetilde{\mathcal{M}}_{k}$ [Losev Nekrasov Shatashvili] [Moore Nekrasov Shatashvili]
- Result obtained by localization, reducing to a sum over fixed points labeled by colored partitions $\left(Y_{1}, \ldots, Y_{N}\right)$
- With T^{2} equivariant parameters specialized to $\epsilon_{1}=-\epsilon_{2}=\hbar$

$$
Z_{\text {inst }}(a, \hbar ; q)=\sum_{Y_{1}, Y_{2}} q^{\left|Y_{1}\right|+\left|Y_{2}\right|} \prod_{i, j} \frac{a+\hbar\left(Y_{1, i}-Y_{2, j}+j-i\right)}{a+\hbar(j-i)}
$$

Then

$$
\lim _{\hbar \rightarrow 0} \ln Z_{\text {inst }}(a, \hbar ; q)=\frac{1}{\hbar^{2}} \mathcal{F}_{\text {inst }}(a, \Lambda)
$$

Remarks on instanton counting:

- $Z_{\text {inst }}$ recovers the Seiberg Witten prepotential, but also contains much more information: $\mathcal{F}_{\text {inst }}$ is only the leading term in the \hbar expansion.
- Limitation in the range of validity: relying on the Lagrangian description $\left(S U(2)\right.$ Yang-Mills) recovers only the weak-coupling expansion of $\mathcal{F}_{\text {inst }}$.

Remarks on instanton counting:

- $Z_{\text {inst }}$ recovers the Seiberg Witten prepotential, but also contains much more information: $\mathcal{F}_{\text {inst }}$ is only the leading term in the \hbar expansion.
- Limitation in the range of validity: relying on the Lagrangian description $\left(S U(2)\right.$ Yang-Mills) recovers only the weak-coupling expansion of $\mathcal{F}_{\text {inst }}$.

Questions motivating our work:

- What about instanton expansions $\mathcal{F}_{D \text {, inst }}$ near strong coupling singularities? Do they also admit \hbar deformations?
- No UV Lagrangian description amenable to localization is available for the light d.o.f. at the monopole and dyon points. How can they be computed?
- Related in topological strings: how to define $Z_{\text {top }} \sim Z_{\text {inst }}$ away from large volume - large B-field limit?

2. From curve quantization to instantons

Class S theories

A large class of superconformal (and asymptotically free) $4 \mathrm{~d} \mathcal{N}=2$ QFTs can be engineered by partially twisted compactifications of $6 \mathbf{d}(2,0)$ QFT on a Riemann surface C [Gaiotto] [Gaiotto Moore Neitzke] [...]

Class S theories

A large class of superconformal (and asymptotically free) $4 \mathrm{~d} \mathcal{N}=2$ QFTs can be engineered by partially twisted compactifications of $6 \mathbf{d}(2,0)$ QFT on a Riemann surface C [Gaiotto] [Gaiotto Moore Neitzke] [...]

The quantum moduli space of vacua of a class S theory on $\mathbb{R}^{3} \times S_{R}^{1}$ encodes both Coulomb moduli and electric-magnetic Wilson lines on S_{R}^{1} [Seiberg Witten]

$$
T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}
$$

A large class of superconformal (and asymptotically free) $4 \mathrm{~d} \mathcal{N}=2$ QFTs can be engineered by partially twisted compactifications of $6 \mathbf{d}(2,0)$ QFT on a Riemann surface C [Gaiotto] [Gaiotto Moore Neitzke] [...]

The quantum moduli space of vacua of a class S theory on $\mathbb{R}^{3} \times S_{R}^{1}$ encodes both Coulomb moduli and electric-magnetic Wilson lines on S_{R}^{1} [Seiberg Witten]

$$
T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}
$$

\mathcal{M}_{H} is defined by the reduction of instanton equations on C

$$
F+R^{2}[\varphi, \bar{\varphi}]=0, \quad \bar{\partial}_{A} \varphi=0
$$

where A is a \mathfrak{g} connection over C and $\varphi \in H^{0}\left(\mathfrak{g}_{\mathbb{C}} \otimes K\right)$.
$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].

- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B}$.
$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].

- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B} .(\Sigma, \lambda)$ are Seiberg-Witten data [Gorsky Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]
$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].

- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B} .(\Sigma, \lambda)$ are Seiberg-Witten data [Gorsky Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]

- Fibres $T^{2 r}$ are Abelian subvarieties of $\operatorname{Jac}(\Sigma)$ parametrizing holomorphic line bundles on Σ.
$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].
- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B} .(\Sigma, \lambda)$ are Seiberg-Witten data [Gorsky Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]

- Fibres $T^{2 r}$ are Abelian subvarieties of $\operatorname{Jac}(\Sigma)$ parametrizing holomorphic line bundles on Σ. Holonomies encode $U(1)$ Wilson lines of the 4d QFT.
$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].
- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B} .(\Sigma, \lambda)$ are Seiberg-Witten data [Gorsky Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]

- Fibres $T^{2 r}$ are Abelian subvarieties of $\operatorname{Jac}(\Sigma)$ parametrizing holomorphic line bundles on Σ. Holonomies encode $U(1)$ Wilson lines of the 4d QFT.

Hitchin's equations can be formulated as the flatness condition

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0 \quad \text { for } \quad \mathcal{A}=\frac{R}{\zeta} \varphi+A+R \bar{\zeta} \bar{\varphi}
$$

$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].

- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B} .(\Sigma, \lambda)$ are Seiberg-Witten data [Gorsky Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]

- Fibres $T^{2 r}$ are Abelian subvarieties of $\operatorname{Jac}(\Sigma)$ parametrizing holomorphic line bundles on Σ. Holonomies encode $U(1)$ Wilson lines of the 4d QFT.

Hitchin's equations can be formulated as the flatness condition

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0 \quad \text { for } \quad \mathcal{A}=\frac{R}{\zeta} \varphi+A+R \bar{\zeta} \bar{\varphi}
$$

The 'conformal limit' is defined by $\zeta, R \rightarrow 0$ with $\zeta / R=\hbar \in \mathbb{C}$ fixed [Gaiotto]

$$
\mathcal{A}=\frac{1}{\hbar} \varphi+A+O(\hbar)
$$

$T^{2 r} \rightarrow \mathcal{M}_{H} \rightarrow \mathcal{B}$ can be viewed as an integrable system [Hitchin].

- The spectral curve is a covering of C in $T^{*} C$

$$
\Sigma: \operatorname{det}(\lambda-\varphi)=0
$$

determined by $u=\left\{\operatorname{Tr} \varphi^{k}\right\} \in \mathcal{B} .(\Sigma, \lambda)$ are Seiberg-Witten data [Gorsky Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]

- Fibres $T^{2 r}$ are Abelian subvarieties of $\operatorname{Jac}(\Sigma)$ parametrizing holomorphic line bundles on Σ. Holonomies encode $U(1)$ Wilson lines of the 4d QFT.

Hitchin's equations can be formulated as the flatness condition

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0 \quad \text { for } \quad \mathcal{A}=\frac{R}{\zeta} \varphi+A+R \bar{\zeta} \bar{\varphi}
$$

The 'conformal limit' is defined by $\zeta, R \rightarrow 0$ with $\zeta / R=\hbar \in \mathbb{C}$ fixed [Gaiotto]

$$
\mathcal{A}=\frac{1}{\hbar} \varphi+A+O(\hbar)
$$

Then Σ encodes the small \hbar leading WKB asymptotics for $(d+\mathcal{A}) \chi=0$.

Opers

At leading order in \hbar the linear system $(d+\mathcal{A}) \chi=0$ is equivalent to an N-th order ODE (here $\mathfrak{g}=A_{N-1}$)

$$
\left[\left(\hbar \partial_{x}\right)^{N}+\sum_{i=2}^{N} \operatorname{Tr} \varphi^{\mathrm{i}}\left(\hbar \partial_{x}\right)^{N-i}\right] \psi(x)=0
$$

Opers

At leading order in \hbar the linear system $(d+\mathcal{A}) \chi=0$ is equivalent to an N-th order ODE (here $\mathfrak{g}=A_{N-1}$)

$$
\left[\left(\hbar \partial_{x}\right)^{N}+\sum_{i=2}^{N} \operatorname{Tr} \varphi^{\mathrm{i}}\left(\hbar \partial_{x}\right)^{N-i}\right] \psi(x)=0
$$

This is a quantization of Σ, corresponding to the replacement $\lambda \rightarrow \hbar \partial_{x}$.

Opers

At leading order in \hbar the linear system $(d+\mathcal{A}) \chi=0$ is equivalent to an N-th order ODE (here $\mathfrak{g}=A_{N-1}$)

$$
\left[\left(\hbar \partial_{x}\right)^{N}+\sum_{i=2}^{N} \operatorname{Tr} \varphi^{\mathrm{i}}\left(\hbar \partial_{x}\right)^{N-i}\right] \psi(x)=0 .
$$

This is a quantization of Σ, corresponding to the replacement $\lambda \rightarrow \hbar \partial_{x}$.
However this ODE only carries information about φ, and not about A. Hence its spectrum only spans a middle-dimensional locus $\mathcal{M}_{\text {oper }} \subset \mathcal{M}_{H}$.

At leading order in \hbar the linear system $(d+\mathcal{A}) \chi=0$ is equivalent to an N-th order ODE (here $\mathfrak{g}=A_{N-1}$)

$$
\left[\left(\hbar \partial_{x}\right)^{N}+\sum_{i=2}^{N} \operatorname{Tr} \varphi^{\mathrm{i}}\left(\hbar \partial_{x}\right)^{N-i}\right] \psi(x)=0 .
$$

This is a quantization of Σ, corresponding to the replacement $\lambda \rightarrow \hbar \partial_{x}$.
However this ODE only carries information about φ, and not about A. Hence its spectrum only spans a middle-dimensional locus $\mathcal{M}_{\text {oper }} \subset \mathcal{M}_{H}$.

To retain all information about \mathcal{A} one needs to go beyond leading order in \hbar. In general, this leads to opers with apparent singularities. [Coman L Teschner]

Emergence of apparent singularities

To illustrate this point we return to our main example. For Yang-Mills theory $C=\mathbb{P}^{1}$ and $\mathcal{A} \in \mathfrak{s l}_{2}(\mathbb{C})$

$$
\mathcal{A}=\frac{1}{\hbar}\left(\begin{array}{cc}
\mathcal{A}_{0} & \mathcal{A}_{+} \\
\mathcal{A}_{-} & -\mathcal{A}_{0}
\end{array}\right)=\frac{1}{\hbar} \varphi+A+O(\hbar)
$$

Emergence of apparent singularities
To illustrate this point we return to our main example. For Yang-Mills theory $C=\mathbb{P}^{1}$ and $\mathcal{A} \in \mathfrak{s l}_{2}(\mathbb{C})$

$$
\mathcal{A}=\frac{1}{\hbar}\left(\begin{array}{cc}
\mathcal{A}_{0} & \mathcal{A}_{+} \\
\mathcal{A}_{-} & -\mathcal{A}_{0}
\end{array}\right)=\frac{1}{\hbar} \varphi+A+O(\hbar)
$$

Applying a gauge transformation defined by

$$
h=\left(\begin{array}{cc}
\mathcal{A}_{-}^{-1 / 2} & 0 \\
0 & \mathcal{A}_{-}^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{\hbar}{2} \mathcal{A}_{-}^{\prime} / \mathcal{A}_{-}+\mathcal{A}_{0} \\
0 & 1
\end{array}\right)
$$

takes the connection to oper form

$$
\begin{gathered}
h^{-1} \cdot\left(\partial_{x}-\mathcal{A}\right) \cdot h=\partial_{x}-\frac{1}{\hbar}\left(\begin{array}{cc}
0 & q(x, \hbar) \\
1 & 0
\end{array}\right) \\
q(x, \hbar)=\underbrace{\mathcal{A}_{0}^{2}+\mathcal{A}_{+} \mathcal{A}_{-}}_{\frac{1}{2} \operatorname{Tr} \varphi^{2}}-\hbar\left(\mathcal{A}_{0}^{\prime}-\frac{\mathcal{A}_{0} \mathcal{A}_{-}^{\prime}}{\mathcal{A}_{-}}\right)+\hbar^{2}\left(\frac{3}{4}\left(\frac{\mathcal{A}_{-}^{\prime}}{\mathcal{A}_{-}}\right)^{2}-\frac{\mathcal{A}_{-}^{\prime \prime}}{2 \mathcal{A}_{-}}\right)
\end{gathered}
$$

Emergence of apparent singularities
To illustrate this point we return to our main example. For Yang-Mills theory $C=\mathbb{P}^{1}$ and $\mathcal{A} \in \mathfrak{s l}_{2}(\mathbb{C})$

$$
\mathcal{A}=\frac{1}{\hbar}\left(\begin{array}{cc}
\mathcal{A}_{0} & \mathcal{A}_{+} \\
\mathcal{A}_{-} & -\mathcal{A}_{0}
\end{array}\right)=\frac{1}{\hbar} \varphi+A+O(\hbar)
$$

Applying a gauge transformation defined by

$$
h=\left(\begin{array}{cc}
\mathcal{A}_{-}^{-1 / 2} & 0 \\
0 & \mathcal{A}_{-}^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{\hbar}{2} \mathcal{A}_{-}^{\prime} / \mathcal{A}_{-}+\mathcal{A}_{0} \\
0 & 1
\end{array}\right)
$$

takes the connection to oper form

$$
\begin{gathered}
h^{-1} \cdot\left(\partial_{x}-\mathcal{A}\right) \cdot h=\partial_{x}-\frac{1}{\hbar}\left(\begin{array}{cc}
0 & q(x, \hbar) \\
1 & 0
\end{array}\right) \\
q(x, \hbar)=\underbrace{\mathcal{A}_{0}^{2}+\mathcal{A}_{+} \mathcal{A}_{-}}_{\frac{1}{2} \operatorname{Tr} \varphi^{2}}-\hbar\left(\mathcal{A}_{0}^{\prime}-\frac{\mathcal{A}_{0} \mathcal{A}_{-}^{\prime}}{\mathcal{A}_{-}}\right)+\hbar^{2}\left(\frac{3}{4}\left(\frac{\mathcal{A}_{-}^{\prime}}{\mathcal{A}_{-}}\right)^{2}-\frac{\mathcal{A}_{-}^{\prime \prime}}{2 \mathcal{A}_{-}}\right)
\end{gathered}
$$

The \hbar corrections have singularities at $\mathcal{A}_{-}=0$. (eigenvectors of \mathcal{A} do as well)

Quantum curve for $S U(2)$ Yang-Mills

The 'quantum curve' is then

$$
\left[\hbar^{2} \partial_{x}^{2}-q(x, \hbar)\right] \psi(x)=0
$$

Quantum curve for $S U(2)$ Yang-Mills

The 'quantum curve' is then

$$
\left[\hbar^{2} \partial_{x}^{2}-q(x, \hbar)\right] \psi(x)=0 .
$$

For $S U(2)$ Yang-Mills the \hbar-deformed Schrödinger potential is

$$
q(x, \hbar)=\frac{\Lambda^{2}}{x^{3}}+\frac{U}{x^{2}}+\frac{\Lambda^{2}}{x}-\hbar \frac{u(2 x-u)}{x^{2}(x-u)} v+\hbar^{2} \frac{3}{4(x-u)^{2}}
$$

where $U \in \mathcal{B}$ parametrizes a Coulomb vacuum, u is the position of the apparent singularity. v is a dependent parameter determined by $v^{2}=\frac{\Lambda^{2}}{u^{3}}+\frac{U}{u^{2}}+\frac{\Lambda^{2}}{u}$.

Quantum curve for $S U(2)$ Yang-Mills

The 'quantum curve' is then

$$
\left[\hbar^{2} \partial_{x}^{2}-q(x, \hbar)\right] \psi(x)=0
$$

For $S U(2)$ Yang-Mills the \hbar-deformed Schrödinger potential is

$$
q(x, \hbar)=\frac{\Lambda^{2}}{x^{3}}+\frac{U}{x^{2}}+\frac{\Lambda^{2}}{x}-\hbar \frac{u(2 x-u)}{x^{2}(x-u)} v+\hbar^{2} \frac{3}{4(x-u)^{2}}
$$

where $U \in \mathcal{B}$ parametrizes a Coulomb vacuum, u is the position of the apparent singularity. v is a dependent parameter determined by $v^{2}=\frac{\Lambda^{2}}{u^{3}}+\frac{U}{u^{2}}+\frac{\Lambda^{2}}{u}$.

This condition ensures that the solutions $\psi(x)$ have no monodromy (in $\left.P S L_{2} \mathbb{C}\right)$ at $x=u$. The singularity at $x=u$ is therefore 'apparent'.

The 'quantum curve' is then

$$
\left[\hbar^{2} \partial_{x}^{2}-q(x, \hbar)\right] \psi(x)=0
$$

For $S U(2)$ Yang-Mills the \hbar-deformed Schrödinger potential is

$$
q(x, \hbar)=\frac{\Lambda^{2}}{x^{3}}+\frac{U}{x^{2}}+\frac{\Lambda^{2}}{x}-\hbar \frac{u(2 x-u)}{x^{2}(x-u)} v+\hbar^{2} \frac{3}{4(x-u)^{2}}
$$

where $U \in \mathcal{B}$ parametrizes a Coulomb vacuum, u is the position of the apparent singularity. v is a dependent parameter determined by $v^{2}=\frac{\Lambda^{2}}{u^{3}}+\frac{U}{u^{2}}+\frac{\Lambda^{2}}{u}$.

This condition ensures that the solutions $\psi(x)$ have no monodromy (in $\left.P S L_{2} \mathbb{C}\right)$ at $x=u$. The singularity at $x=u$ is therefore 'apparent'.

Apparent singularities arise naturally when describing $S L_{2} \mathbb{C}$ flat connections though 2nd order ODEs. They encode next-to-leading order \hbar corrections to \mathcal{A}, providing a complete parametrization of \mathcal{M}_{H} in a neighbourhood of $\mathcal{M}_{\text {oper }}$.

Viewing \mathcal{M}_{H} as a moduli space of flat connections \mathcal{A}, a local parametrization is given in terms of monodromy data

$$
\mu(u, v, \Lambda) \in \mathcal{M}_{H}
$$

Viewing \mathcal{M}_{H} as a moduli space of flat connections \mathcal{A}, a local parametrization is given in terms of monodromy data

$$
\mu(u, v, \Lambda) \in \mathcal{M}_{H}
$$

While apparent singularities contribute nothing to local monodromy at $x=u$, they contribute \hbar-corrections to global monodromies.

Viewing \mathcal{M}_{H} as a moduli space of flat connections \mathcal{A}, a local parametrization is given in terms of monodromy data

$$
\mu(u, v, \Lambda) \in \mathcal{M}_{H}
$$

While apparent singularities contribute nothing to local monodromy at $x=u$, they contribute \hbar-corrections to global monodromies.

- Σ has rk $H_{1}(\Sigma)=2$ independent cycles, therefore $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{H}=2$
- but $q(x, \hbar)$ depends on 3 parameters: (u, v, Λ)
- Therefore $\mu(u, v, \Lambda)$ is over-parameterized: there must be a 1-parameter family of 'isomonodromic deformations'

Isomonodromic deformations of $S U(2) \mathrm{YM}$ quantum curve are described by a non-autonomous Hamiltonian system (Painlevé $\mathrm{III}_{3} / \mathrm{r}$-sine-Gordon)

$$
\partial_{r} u=\frac{\partial H}{\partial v} \quad \partial_{r} v=-\frac{\partial H}{\partial u} \quad H=\frac{v^{2}}{2 r}-r \cos u
$$

where

$$
r=8 \Lambda, \quad H=4 U / \Lambda
$$

Time evolution describes a family of flat connections with identical monodromy.

Isomonodromic deformations of $S U(2) \mathrm{YM}$ quantum curve are described by a non-autonomous Hamiltonian system (Painlevé III_{3} / r-sine-Gordon)

$$
\partial_{r} u=\frac{\partial H}{\partial v} \quad \partial_{r} v=-\frac{\partial H}{\partial u} \quad H=\frac{v^{2}}{2 r}-r \cos u
$$

where

$$
r=8 \Lambda, \quad H=4 U / \Lambda
$$

Time evolution describes a family of flat connections with identical monodromy.
The tau function is a generating function of isomonodromic Hamiltonians

$$
\partial_{t_{i}} \log \tau(\mu, \mathbf{t})=H_{i}(\mu, \mathbf{t})
$$

where in this case $\mathbf{t}=r$ and $H_{i}=H$.

Isomonodromic deformations of $S U(2) \mathrm{YM}$ quantum curve are described by a non-autonomous Hamiltonian system (Painlevé III_{3} / r-sine-Gordon)

$$
\partial_{r} u=\frac{\partial H}{\partial v} \quad \partial_{r} v=-\frac{\partial H}{\partial u} \quad H=\frac{v^{2}}{2 r}-r \cos u
$$

where

$$
r=8 \Lambda, \quad H=4 U / \Lambda
$$

Time evolution describes a family of flat connections with identical monodromy.
The tau function is a generating function of isomonodromic Hamiltonians

$$
\partial_{t_{i}} \log \tau(\mu, \mathbf{t})=H_{i}(\mu, \mathbf{t})
$$

where in this case $\mathbf{t}=r$ and $H_{i}=H$.
NB: It is important to realize that normalization of τ is ambiguous

$$
\tau \sim f(\mu) \cdot \tau
$$

3. τ-functions and instantons

Tau function and instantons

The relevance of τ to $4 \mathrm{~d} \mathcal{N}=2$ gauge theory lies in the relation [Gamayun lorgov Lisovyy]

$$
\tau_{\mathrm{P}_{V I}} \quad \longleftrightarrow \quad Z_{\text {inst }}^{S U(2)} N_{f}=4
$$

Tau function and instantons

The relevance of τ to $4 \mathrm{~d} \mathcal{N}=2$ gauge theory lies in the relation [Gamayun lorgov Lisovyy]

$$
\tau_{\mathrm{P}_{V I}} \quad \longleftrightarrow \quad Z_{\mathrm{inst}}^{S U(2)} N_{f}=4
$$

In the case of $S U(2)$ Yang-Mills, the corresponding statement was proven in [Gavrylenko Lisovyy]

$$
\tau_{\mathrm{P}_{I I I}} \quad \longleftrightarrow \quad Z_{\mathrm{inst}}^{S U(2) \mathrm{YM}}
$$

Tau function and instantons
The relevance of τ to $4 \mathrm{~d} \mathcal{N}=2$ gauge theory lies in the relation [Gamayun lorgov Lisovyy]

$$
\tau_{\mathrm{P}_{V I}} \quad \longleftrightarrow \quad Z_{\text {inst }}^{S U(2) N_{f}=4}
$$

In the case of $S U(2)$ Yang-Mills, the corresponding statement was proven in [Gavrylenko Lisovyy]

$$
\tau \mathrm{P}_{I I I} \quad \longleftrightarrow Z_{\text {inst }}^{S U(2) \mathrm{YM}}
$$

More instances were found by other groups. In all cases the relation takes the form of a (generalized) Fourier transform.

Tau function and instantons
The relevance of τ to $4 \mathrm{~d} \mathcal{N}=2$ gauge theory lies in the relation [Gamayun lorgov Lisovyy]

$$
\tau_{\mathrm{P}_{V I}} \quad \longleftrightarrow \quad Z_{\mathrm{inst}}^{S U(2) N_{f}=4}
$$

In the case of $S U(2)$ Yang-Mills, the corresponding statement was proven in [Gavrylenko Lisovyy]

$$
\tau \mathrm{P}_{I I I} \quad \longleftrightarrow Z_{\text {inst }}^{S U(2) \mathrm{YM}}
$$

More instances were found by other groups. In all cases the relation takes the form of a (generalized) Fourier transform.

Rmk: These relations can be explained by string theory (in hindsight)

- $\tau \sim Z_{\text {inst }, D}$ is related to free-fermion partition functions on Σ [Nekrasov] [Aganagic Dijkgraaf Klemm Marino Vafa] [Nekrasov Okounkov] [...]
- String dualities further predict that $Z_{\mathrm{ff}}(\Sigma)$ should admit a (Fourier-type) decomposition with coefficients $Z_{\text {top }}$. [Dijkgraaf Hollands Sulkowski Vafa]
- Free fermion representations of conformal blocks are also related to $Z_{\text {inst }}$ by 2d-4d correspondences [Alday Gaiotto Tachiwaka] [Wyllard] [...]

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 1

It was shown by [Gavrylenko Lisovyy] that near $\Lambda \approx 0$ there exist coordinates $\mu=(\sigma, \eta)$ such that

$$
\tau^{(w)}(\sigma, \eta ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} n \eta} \mathcal{N}^{(w)}(\sigma+n) \mathcal{Z}^{(w)}(\sigma+n, \Lambda)
$$

where

$$
\mathcal{N}^{(w)}(\sigma)=\prod_{s= \pm} \frac{1}{G(1+2 s \sigma)}, \quad \mathcal{Z}^{(w)}(\sigma, \Lambda)=\Lambda^{4 \sigma^{2}}\left(1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(w)}(\sigma) \Lambda^{4 k}\right)
$$

with $G(x)$ the Barnes G-function $G(x+1)=\Gamma(x) G(x)$.

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 1

It was shown by [Gavrylenko Lisovyy] that near $\Lambda \approx 0$ there exist coordinates $\mu=(\sigma, \eta)$ such that

$$
\tau^{(w)}(\sigma, \eta ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} n \eta} \mathcal{N}^{(w)}(\sigma+n) \mathcal{Z}^{(w)}(\sigma+n, \Lambda)
$$

where

$$
\mathcal{N}^{(w)}(\sigma)=\prod_{s= \pm} \frac{1}{G(1+2 s \sigma)}, \quad \mathcal{Z}^{(w)}(\sigma, \Lambda)=\Lambda^{4 \sigma^{2}}\left(1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(w)}(\sigma) \Lambda^{4 k}\right)
$$

with $G(x)$ the Barnes G-function $G(x+1)=\Gamma(x) G(x)$.
In particular $\mathcal{Z}_{k}^{(w)}(\sigma)$ admit explicit descriptions in terms of sums over pairs of Young diagrams $\left(Y_{1}, Y_{2}\right)$, reproducing $\mathcal{Z}^{(w)} \sim Z_{\text {inst }}$ of [Nekrasov].

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 2

On the other hand when $\Lambda \rightarrow \infty$ another, rather different, expansion of τ was conjectured by [lts Lysovyy Tykhyy] in another set of coordinates $\mu=(\nu, \rho)$

$$
\tau^{(s)}(\nu, \rho ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} \rho n} \mathcal{N}^{(s)}(\nu+\mathrm{i} n, \Lambda) \mathcal{Z}^{(s)}(\nu+\mathrm{i} n, \Lambda)
$$

where

$$
\begin{aligned}
\mathcal{N}^{(s)}(\nu, \Lambda) & =e^{\frac{\mathrm{i} \pi \nu^{2}}{4}} 2^{\nu^{2}}(2 \pi)^{-\frac{\mathrm{i} \nu}{2}} G(1+\mathrm{i} \nu)(8 \Lambda)^{\frac{\nu^{2}}{2}+\frac{1}{4}} e^{4 \Lambda^{2}+8 \nu \Lambda} \\
\mathcal{Z}^{(s)}(\nu, \Lambda) & =1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(s)}(\nu) \Lambda^{-k}
\end{aligned}
$$

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 2

On the other hand when $\Lambda \rightarrow \infty$ another, rather different, expansion of τ was conjectured by [lts Lysovyy Tykhyy] in another set of coordinates $\mu=(\nu, \rho)$

$$
\tau^{(s)}(\nu, \rho ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} \rho n} \mathcal{N}^{(s)}(\nu+\mathrm{i} n, \Lambda) \mathcal{Z}^{(s)}(\nu+\mathrm{i} n, \Lambda)
$$

where

$$
\begin{aligned}
\mathcal{N}^{(s)}(\nu, \Lambda) & =e^{\frac{\mathrm{i} \pi \nu^{2}}{4}} 2^{\nu^{2}}(2 \pi)^{-\frac{\mathrm{i} \nu}{2}} G(1+\mathrm{i} \nu)(8 \Lambda)^{\frac{\nu^{2}}{2}+\frac{1}{4}} e^{4 \Lambda^{2}+8 \nu \Lambda} \\
\mathcal{Z}^{(s)}(\nu, \Lambda) & =1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(s)}(\nu) \Lambda^{-k}
\end{aligned}
$$

This expansion is more surprising: not predicted from earlier work on dualities.

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 2

On the other hand when $\Lambda \rightarrow \infty$ another, rather different, expansion of τ was conjectured by [lts Lysovyy Tykhyy] in another set of coordinates $\mu=(\nu, \rho)$

$$
\tau^{(s)}(\nu, \rho ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} \rho n} \mathcal{N}^{(s)}(\nu+\mathrm{i} n, \Lambda) \mathcal{Z}^{(s)}(\nu+\mathrm{i} n, \Lambda)
$$

where

$$
\begin{aligned}
\mathcal{N}^{(s)}(\nu, \Lambda) & =e^{\frac{\mathrm{i} \pi \nu^{2}}{4}} 2^{\nu^{2}}(2 \pi)^{-\frac{\mathrm{i} \nu}{2}} G(1+\mathrm{i} \nu)(8 \Lambda)^{\frac{\nu^{2}}{2}+\frac{1}{4}} e^{4 \Lambda^{2}+8 \nu \Lambda} \\
\mathcal{Z}^{(s)}(\nu, \Lambda) & =1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(s)}(\nu) \Lambda^{-k}
\end{aligned}
$$

This expansion is more surprising: not predicted from earlier work on dualities. Key differences:

- μ variables determine different expansions

$$
(\sigma, \eta) \rightarrow \mathcal{N}^{(w)}, \mathcal{Z}^{(w)} \quad(\nu, \rho) \rightarrow \mathcal{N}^{(s)}, \mathcal{Z}^{(s)}
$$

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 2

On the other hand when $\Lambda \rightarrow \infty$ another, rather different, expansion of τ was conjectured by [lts Lysovyy Tykhyy] in another set of coordinates $\mu=(\nu, \rho)$

$$
\tau^{(s)}(\nu, \rho ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} \rho n} \mathcal{N}^{(s)}(\nu+\mathrm{i} n, \Lambda) \mathcal{Z}^{(s)}(\nu+\mathrm{i} n, \Lambda)
$$

where

$$
\begin{aligned}
\mathcal{N}^{(s)}(\nu, \Lambda) & =e^{\frac{\mathrm{i} \pi \nu^{2}}{4}} 2^{\nu^{2}}(2 \pi)^{-\frac{\mathrm{i} \nu}{2}} G(1+\mathrm{i} \nu)(8 \Lambda)^{\frac{\nu^{2}}{2}+\frac{1}{4}} e^{4 \Lambda^{2}+8 \nu \Lambda} \\
\mathcal{Z}^{(s)}(\nu, \Lambda) & =1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(s)}(\nu) \Lambda^{-k}
\end{aligned}
$$

This expansion is more surprising: not predicted from earlier work on dualities. Key differences:

- μ variables determine different expansions

$$
(\sigma, \eta) \rightarrow \mathcal{N}^{(w)}, \mathcal{Z}^{(w)} \quad(\nu, \rho) \rightarrow \mathcal{N}^{(s)}, \mathcal{Z}^{(s)}
$$

- The factor $\mathcal{N}^{(w)} \sim G(\ldots)^{-2}$, while $\mathcal{N}^{(s)} \sim G(\ldots)^{1}$.

Expansions of $\tau_{\mathrm{P}_{I I I}}-$ part 2

On the other hand when $\Lambda \rightarrow \infty$ another, rather different, expansion of τ was conjectured by [lts Lysovyy Tykhyy] in another set of coordinates $\mu=(\nu, \rho)$

$$
\tau^{(s)}(\nu, \rho ; \Lambda)=\sum_{n \in \mathbb{Z}} e^{4 \pi \mathrm{i} \rho n} \mathcal{N}^{(s)}(\nu+\mathrm{i} n, \Lambda) \mathcal{Z}^{(s)}(\nu+\mathrm{i} n, \Lambda)
$$

where

$$
\begin{aligned}
\mathcal{N}^{(s)}(\nu, \Lambda) & =e^{\frac{\mathrm{i} \pi \nu^{2}}{4}} 2^{\nu^{2}}(2 \pi)^{-\frac{\mathrm{i} \nu}{2}} G(1+\mathrm{i} \nu)(8 \Lambda)^{\frac{\nu^{2}}{2}+\frac{1}{4}} e^{4 \Lambda^{2}+8 \nu \Lambda} \\
\mathcal{Z}^{(s)}(\nu, \Lambda) & =1+\sum_{k=1}^{\infty} \mathcal{Z}_{k}^{(s)}(\nu) \Lambda^{-k}
\end{aligned}
$$

This expansion is more surprising: not predicted from earlier work on dualities. Key differences:

- μ variables determine different expansions

$$
(\sigma, \eta) \rightarrow \mathcal{N}^{(w)}, \mathcal{Z}^{(w)} \quad(\nu, \rho) \rightarrow \mathcal{N}^{(s)}, \mathcal{Z}^{(s)}
$$

- The factor $\mathcal{N}^{(w)} \sim G(\ldots)^{-2}$, while $\mathcal{N}^{(s)} \sim G(\ldots)^{1}$.
- $\mathcal{Z}^{(w)}$ is a series in Λ, while $\mathcal{Z}^{(s)}$ in Λ^{-1}.

QFT interpretation [Its Lysovyy Tykhyy] [Bonelli Lisovyy Maruyoshi Sciarappa Tanzin] [...]

	weak	strong (new!)
Λ	small	large
$Z_{\text {pert }}$	$\mathcal{N}^{(w)}(\sigma, \Lambda)$	$\mathcal{N}^{(s)}(\nu, \Lambda)$
$Z_{\text {inst }}$	$\mathcal{Z}^{(w)}(\sigma, \Lambda)$	$\mathcal{Z}^{(s)}(\nu, \Lambda)$
$Z_{\gamma} \approx 0$	W-bosons	monopole $/$ dyon
$Z_{\text {pert }} \sim G(\cdot, \Lambda)^{-\Omega}$	$\Omega=-2$	$\Omega=1$
$?$	(σ, η)	(ν, ρ)

Relation between weak and strong coupling expansions

Just like $\mathcal{Z}^{(w)}$ matches with $Z_{\text {inst }}$, the match between $\mathcal{Z}^{(s)}$ and $\mathcal{F}_{D}\left(a_{D}\right)$ in the $\hbar \rightarrow 0$ limit suggests that this can be taken as a definition of the instanton partition function at strong coupling.

Relation between weak and strong coupling expansions

Just like $\mathcal{Z}^{(w)}$ matches with $Z_{\text {inst }}$, the match between $\mathcal{Z}^{(s)}$ and $\mathcal{F}_{D}\left(a_{D}\right)$ in the $\hbar \rightarrow 0$ limit suggests that this can be taken as a definition of the instanton partition function at strong coupling.

Both $\mathcal{Z}^{(w / s)}$ are obtained from the τ function, but there are differences:

- The expansion of τ that defines \mathcal{Z} is performed in two different sets of monodromy coordinates (σ, η) and (ν, ρ) related by

$$
e^{\pi \nu}=\frac{\sin 2 \pi \eta}{\sin 2 \pi \sigma}, \quad e^{4 \pi \mathrm{i} \rho}=\frac{\sin 2 \pi \eta}{\sin 2 \pi(\sigma+\eta)}
$$

Relation between weak and strong coupling expansions

Just like $\mathcal{Z}^{(w)}$ matches with $Z_{\text {inst }}$, the match between $\mathcal{Z}^{(s)}$ and $\mathcal{F}_{D}\left(a_{D}\right)$ in the $\hbar \rightarrow 0$ limit suggests that this can be taken as a definition of the instanton partition function at strong coupling.

Both $\mathcal{Z}^{(w / s)}$ are obtained from the τ function, but there are differences:

- The expansion of τ that defines \mathcal{Z} is performed in two different sets of monodromy coordinates (σ, η) and (ν, ρ) related by

$$
e^{\pi \nu}=\frac{\sin 2 \pi \eta}{\sin 2 \pi \sigma}, \quad e^{4 \pi \mathrm{i} \rho}=\frac{\sin 2 \pi \eta}{\sin 2 \pi(\sigma+\eta)}
$$

- Tau functions $\tau^{(w / s)}$ are not identical due to the normalization ambiguity

$$
\tau^{(w)}=\chi(\mu) \cdot \tau^{(s)}
$$

4. Weak/strong coupling connection coefficients and the global picture

Geometrization of instanton partition functions

In [Coman PL Teschner] we formulate a proposal that explains:

- why (σ, η) and (ν, ρ) are distinguished coordinates at weak/strong coupling
- why they are related in this particular way
- how the relative normalization factor $\chi(\mu)=\tau^{(w)} / \tau^{(s)}$ arises

Geometrization of instanton partition functions

In [Coman PL Teschner] we formulate a proposal that explains:

- why (σ, η) and (ν, ρ) are distinguished coordinates at weak/strong coupling
- why they are related in this particular way
- how the relative normalization factor $\chi(\mu)=\tau^{(w)} / \tau^{(s)}$ arises

Main results (valid for any theory of class $S\left[A_{1}\right]$)

- There is a natural definition of quantum curve, and of isomonodromic τ.
- We define a decomposition of $\mathcal{M}_{H}=\left\{\mathcal{R}_{\alpha}\right\}_{\alpha}$ with a canonical choice of monodromy coordinates in each region

$$
\left(x_{\alpha}, y_{\alpha}\right): \mathcal{R}_{\alpha} \rightarrow\left(\mathbb{C}^{*}\right)^{2 r}
$$

- We determine relations among coordinates of any two patches, and provide the connection coefficient for τ

$$
\left(x_{\alpha}, y_{\alpha}\right) \rightarrow\left(x_{\beta}, y_{\beta}\right) \quad \tau^{(\beta)}=\chi^{(\beta \alpha)} \tau^{(\alpha)}
$$

- In each region we obtain a geometric definition of $Z_{\text {inst }}^{(\alpha)}$ by series decomposition of $\tau^{(\alpha)}$ w.r.t. the chosen coordinates. In agreement with localization at weak coupling, new predictions for all other regions.

Coordinate charts

Moduli spaces of flat $S L_{2} \mathbb{C}$ connections on C admit two well-known types of coordinates, known as Fenchel-Nielsen and Fock-Goncharov.

Coordinate charts

Moduli spaces of flat $S L_{2} \mathbb{C}$ connections on C admit two well-known types of coordinates, known as Fenchel-Nielsen and Fock-Goncharov.

Remarkably, these coordinates are unified in physics by Spectral Networks.
[Gaiotto Moore Neitzke] [Hollands Neitzke]

Moduli spaces of flat $S L_{2} \mathbb{C}$ connections on C admit two well-known types of coordinates, known as Fenchel-Nielsen and Fock-Goncharov.

Remarkably, these coordinates are unified in physics by Spectral Networks.
[Gaiotto Moore Neitzke] [Hollands Neitzke]
Definition for 2nd order ODEs: given the (classical) quadratic differential $q(x)$, the network $\mathcal{W}(U, \vartheta)$ consists of critical leaves of the horizontal foliation

$$
\operatorname{Im}\left[e^{-i \vartheta} \int^{x} d x^{\prime} \sqrt{q\left(x^{\prime}\right)}\right]=0
$$

Moduli spaces of flat $S L_{2} \mathbb{C}$ connections on C admit two well-known types of coordinates, known as Fenchel-Nielsen and Fock-Goncharov.

Remarkably, these coordinates are unified in physics by Spectral Networks.
[Gaiotto Moore Neitzke] [Hollands Neitzke]
Definition for 2nd order ODEs: given the (classical) quadratic differential $q(x)$, the network $\mathcal{W}(U, \vartheta)$ consists of critical leaves of the horizontal foliation

$$
\operatorname{Im}\left[e^{-i \vartheta} \int^{x} d x^{\prime} \sqrt{q\left(x^{\prime}\right)}\right]=0
$$

Coincides with the Stokes graph of exact WKB analysis of Schrödinger's equation with [see Ito's talk]

$$
V(x)-E=q(x) \quad \arg \hbar=\vartheta
$$

For the quantum curve of $S U(2) \mathrm{YM}$, the appropriate potential $q(x, \hbar)$ is determined by by the choice between limits $r \rightarrow 0$ or $r \rightarrow \infty$

- At weak coupling the spectral network produces Fenchel-Nielsen coordinates $(\mathcal{U}, \mathcal{V})$
- At strong coupling the spectral network produces Fock-Goncharov coordinates $(\mathcal{X}, \mathcal{Y})$

For the quantum curve of $S U(2) \mathrm{YM}$, the appropriate potential $q(x, \hbar)$ is determined by by the choice between limits $r \rightarrow 0$ or $r \rightarrow \infty$

- At weak coupling the spectral network produces Fenchel-Nielsen coordinates $(\mathcal{U}, \mathcal{V})$
- At strong coupling the spectral network produces Fock-Goncharov coordinates $(\mathcal{X}, \mathcal{Y})$

In both cases, coordinates correspond to Borel-resummed Voros symbols of the ODE.
[Iwaki Nakanishi] [Allegretti]

$$
\begin{gathered}
\left(-\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi(x)=0 \quad \psi^{(a)}(x)=\exp \left(\frac{1}{\hbar} \int^{x} y^{(a)}\left(x^{\prime}, \hbar\right) d x\right) \\
V_{\gamma}:=\mathscr{B}\left[\exp \left(\frac{1}{\hbar} \int_{\wp(\gamma)} y_{\text {odd }}^{(a)}\left(x^{\prime}, \hbar\right) d x\right)\right]
\end{gathered}
$$

For the quantum curve of $S U(2) \mathrm{YM}$, the appropriate potential $q(x, \hbar)$ is determined by by the choice between limits $r \rightarrow 0$ or $r \rightarrow \infty$

- At weak coupling the spectral network produces Fenchel-Nielsen coordinates $(\mathcal{U}, \mathcal{V})$
- At strong coupling the spectral network produces Fock-Goncharov coordinates $(\mathcal{X}, \mathcal{Y})$

In both cases, coordinates correspond to Borel-resummed Voros symbols of the ODE.
[Iwaki Nakanishi] [Allegretti]

$$
\begin{aligned}
& \left(-\hbar^{2} \partial_{x}^{2}+q(x, \hbar)\right) \psi(x)=0 \quad \psi^{(a)}(x)=\exp \left(\frac{1}{\hbar} \int^{x} y^{(a)}\left(x^{\prime}, \hbar\right) d x\right) \\
& V_{\gamma}:=\mathscr{B}\left[\exp \left(\frac{1}{\hbar} \int_{\wp(\gamma)} y_{\text {odd }}^{(a)}\left(x^{\prime}, \hbar\right) d x\right)\right]
\end{aligned}
$$

What changes from FN to FG is, essentially, the type of Stokes graph:

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols.

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols. In addition, they also encode the relation between $(\mathcal{U}, \mathcal{V})$ and $(\mathcal{X}, \mathcal{Y})$.

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols. In addition, they also encode the relation between $(\mathcal{U}, \mathcal{V})$ and $(\mathcal{X}, \mathcal{Y})$.

FG coordinate patches: 1-1 with triangulations dual to the Stokes graph

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols. In addition, they also encode the relation between $(\mathcal{U}, \mathcal{V})$ and $(\mathcal{X}, \mathcal{Y})$.

FG coordinate patches: 1-1 with triangulations dual to the Stokes graph

Triangulations 'flip' if the Stokes graph degenerates. FG coordinates (Voros symbols) jump by Stokes automorphism [Delabaere Dillinger Pham]. \Rightarrow (FG $\rightarrow \mathrm{FG}$)

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols. In addition, they also encode the relation between $(\mathcal{U}, \mathcal{V})$ and $(\mathcal{X}, \mathcal{Y})$.

FG coordinate patches: 1-1 with triangulations dual to the Stokes graph

Triangulations 'flip' if the Stokes graph degenerates. FG coordinates (Voros symbols) jump by Stokes automorphism [Delabaere Dillinger Pham]. \Rightarrow (FG $\rightarrow \mathrm{FG}$)

Relations to ODE/IM [Dorey Tateo] [Bazhanov Lukyanov Zamolodchikov] [talks by Rossi and Gregori] and to wall-crossing of $4 \mathrm{~d} \mathcal{N}=2 \mathrm{BPS}$ states [Kontsevich Soibelman] [Gaiotto Moore Neitzke].

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols. In addition, they also encode the relation between $(\mathcal{U}, \mathcal{V})$ and $(\mathcal{X}, \mathcal{Y})$.

FG coordinate patches: 1-1 with triangulations dual to the Stokes graph

Triangulations 'flip' if the Stokes graph degenerates. FG coordinates (Voros symbols) jump by Stokes automorphism [Delabaere Dillinger Pham]. \Rightarrow (FG $\rightarrow \mathrm{FG}$)

Relations to ODE/IM [Dorey Tateo] [Bazhanov Lukyanov Zamolodchikov] [talks by Rossi and Gregori] and to wall-crossing of $4 \mathrm{~d} \mathcal{N}=2 \mathrm{BPS}$ states [Kontsevich Soibelman] [Gaiotto Moore Neitzke].

Novelty: finitely many flips take FG \rightarrow FG, but an infinite sequence of flips (a.k.a. the 'juggle') takes Fock-Goncharov to Fenchel-Nielsen coordinates

Juggling between Fock-Goncharov and Fenchel-Nielsen
Spectral Networks compute FN/FG coordinates as Voros symbols.
In addition, they also encode the relation between $(\mathcal{U}, \mathcal{V})$ and $(\mathcal{X}, \mathcal{Y})$.
FG coordinate patches: 1-1 with triangulations dual to the Stokes graph

Triangulations 'flip' if the Stokes graph degenerates. FG coordinates (Voros symbols) jump by Stokes automorphism [Delabaere Dillinger Pham]. \Rightarrow (FG $\rightarrow \mathrm{FG}$)

Relations to ODE/IM [Dorey Tateo] [Bazhanov Lukyanov Zamolodchikov] [talks by Rossi and Gregori] and to wall-crossing of $4 \mathrm{~d} \mathcal{N}=2$ BPS states [Kontsevich Soibelman] [Gaiotto Moore Neitzke].

Novelty: finitely many flips take FG \rightarrow FG, but an infinite sequence of flips (a.k.a. the 'juggle') takes Fock-Goncharov to Fenchel-Nielsen coordinates

$$
\cdots \quad \rightarrow \quad \mathcal{X}=\left(\frac{\mathcal{V} \mathcal{U}-(\mathcal{V U})^{-1}}{\mathcal{U}-\mathcal{U}^{-1}}\right)^{2}, \quad \mathcal{Y}=\left(\frac{\mathcal{U}-\mathcal{U}^{-1}}{\mathcal{V}+\mathcal{V}^{-1}}\right)^{2}
$$

We prove: $\left(\mathcal{U}=e^{2 \pi i \sigma}, \mathcal{V}=i e^{2 \pi i \eta}\right)$ and $\left(\mathcal{X}=-e^{-8 \pi i \rho+2 \pi \nu}, \mathcal{Y}=-e^{-2 \pi \nu}\right)$ and that $(\mathcal{U}, \mathcal{V}) \leftrightarrow(\mathcal{X}, \mathcal{Y})$ coincides with $(\sigma, \eta) \leftrightarrow(\rho, \nu)$ from [Its Lisovyy Tykhyy].

Normalization of τ
In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$.

Normalization of τ
In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$. In fact, normalization must change from one patch to another.

Normalization of τ
In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$.
In fact, normalization must change from one patch to another.

- Series for $\tau^{(w / s)}$ are quasi-periodic, with different periods

$$
\tau^{(w)}(\sigma+1, \eta ; \Lambda)=e^{-4 \pi \mathrm{i} \eta} \tau^{(w)}(\sigma, \eta ; \Lambda), \quad \tau^{(s)}(\nu+\mathrm{i}, \rho ; \Lambda)=e^{-4 \pi \mathrm{i} \rho} \tau^{(s)}(\nu, \rho ; \Lambda)
$$

Normalization of τ
In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$.

In fact, normalization must change from one patch to another.

- Series for $\tau^{(w / s)}$ are quasi-periodic, with different periods

$$
\tau^{(w)}(\sigma+1, \eta ; \Lambda)=e^{-4 \pi \mathrm{i} \eta} \tau^{(w)}(\sigma, \eta ; \Lambda), \quad \tau^{(s)}(\nu+\mathrm{i}, \rho ; \Lambda)=e^{-4 \pi \mathrm{i} \rho} \tau^{(s)}(\nu, \rho ; \Lambda)
$$

- Relative normalization is necessary to absorb this: $\chi=\tau^{(w)} / \tau^{(s)}$ s.t.

$$
\chi(\sigma+1, \nu)=e^{-4 \pi i \eta} \chi(\sigma, \nu), \quad \chi(\sigma, \nu+i)=e^{4 \pi i \rho} \chi(\sigma, \nu)
$$

Normalization of τ

In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$.

In fact, normalization must change from one patch to another.

- Series for $\tau^{(w / s)}$ are quasi-periodic, with different periods

$$
\tau^{(w)}(\sigma+1, \eta ; \Lambda)=e^{-4 \pi \mathrm{i} \eta} \tau^{(w)}(\sigma, \eta ; \Lambda), \quad \tau^{(s)}(\nu+\mathrm{i}, \rho ; \Lambda)=e^{-4 \pi \mathrm{i} \rho} \tau^{(s)}(\nu, \rho ; \Lambda)
$$

- Relative normalization is necessary to absorb this: $\chi=\tau^{(w)} / \tau^{(s)}$ s.t.

$$
\chi(\sigma+1, \nu)=e^{-4 \pi i \eta} \chi(\sigma, \nu), \quad \chi(\sigma, \nu+i)=e^{4 \pi i \rho} \chi(\sigma, \nu)
$$

How to determine the change of normalization between patches?

Normalization of τ
In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$.

In fact, normalization must change from one patch to another.

- Series for $\tau^{(w / s)}$ are quasi-periodic, with different periods

$$
\tau^{(w)}(\sigma+1, \eta ; \Lambda)=e^{-4 \pi \mathrm{i} \eta} \tau^{(w)}(\sigma, \eta ; \Lambda), \quad \tau^{(s)}(\nu+\mathrm{i}, \rho ; \Lambda)=e^{-4 \pi \mathrm{i} \rho} \tau^{(s)}(\nu, \rho ; \Lambda)
$$

- Relative normalization is necessary to absorb this: $\chi=\tau^{(w)} / \tau^{(s)}$ s.t.

$$
\chi(\sigma+1, \nu)=e^{-4 \pi i \eta} \chi(\sigma, \nu), \quad \chi(\sigma, \nu+i)=e^{4 \pi i \rho} \chi(\sigma, \nu)
$$

How to determine the change of normalization between patches?

- Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.
- Canonical transformations $(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)$ can be described by a generating function such that $\frac{\partial F\left(x, x^{\prime}\right)}{\partial x}=p, \frac{\partial F\left(x, x^{\prime}\right)}{\partial x^{\prime}}=-p^{\prime}$
- χ is reminiscent of this: except that it is difference generating function for canonical transformations $(\sigma, \eta) \rightarrow(\nu, \rho)$.

Normalization of τ
In order to extract $Z_{\text {inst }}$ from τ it is not sufficient to have the correct choice of coordinates. It is also necessary to fix the normalization ambiguity $\tau \sim \chi(\mu) \cdot \tau$.

In fact, normalization must change from one patch to another.

- Series for $\tau^{(w / s)}$ are quasi-periodic, with different periods

$$
\tau^{(w)}(\sigma+1, \eta ; \Lambda)=e^{-4 \pi \mathrm{i} \eta} \tau^{(w)}(\sigma, \eta ; \Lambda), \quad \tau^{(s)}(\nu+\mathrm{i}, \rho ; \Lambda)=e^{-4 \pi \mathrm{i} \rho} \tau^{(s)}(\nu, \rho ; \Lambda)
$$

- Relative normalization is necessary to absorb this: $\chi=\tau^{(w)} / \tau^{(s)}$ s.t.

$$
\chi(\sigma+1, \nu)=e^{-4 \pi i \eta} \chi(\sigma, \nu), \quad \chi(\sigma, \nu+i)=e^{4 \pi i \rho} \chi(\sigma, \nu)
$$

How to determine the change of normalization between patches?

- Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.
- Canonical transformations $(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)$ can be described by a generating function such that $\frac{\partial F\left(x, x^{\prime}\right)}{\partial x}=p, \frac{\partial F\left(x, x^{\prime}\right)}{\partial x^{\prime}}=-p^{\prime}$
- χ is reminiscent of this: except that it is difference generating function for canonical transformations $(\sigma, \eta) \rightarrow(\nu, \rho)$.

Given the known relation $(\sigma, \eta) \leftrightarrow(\nu, \rho)$, one could set up the difference equation. But it is hard to solve.

Generating function for the flip

Strategy: Since FG \rightarrow FN is described by infinitely many flips, it is sufficient to compute the generating function for the single flip ($\mathrm{FG} \rightarrow \mathrm{FG}$).

Generating function for the flip

Strategy: Since FG \rightarrow FN is described by infinitely many flips, it is sufficient to compute the generating function for the single flip ($\mathrm{FG} \rightarrow \mathrm{FG}$).

Consider the composition of a flip and a relabeling of coordinates

$$
X^{\prime}=Y^{-1}, \quad Y^{\prime}=X\left(1+Y^{-1}\right)^{-1}
$$

Generating function for the flip

Strategy: Since FG \rightarrow FN is described by infinitely many flips, it is sufficient to compute the generating function for the single flip ($\mathrm{FG} \rightarrow \mathrm{FG}$).

Consider the composition of a flip and a relabeling of coordinates

$$
X^{\prime}=Y^{-1}, \quad Y^{\prime}=X\left(1+Y^{-1}\right)^{-1}
$$

Passing to log-coordinates $x=\frac{1}{2 \pi i} \log X, x^{\prime}=\frac{1}{2 \pi i} \log X^{\prime}$, one may express 'momenta' Y, Y^{\prime} in terms of 'positions'

$$
Y=e^{-2 \pi i x^{\prime}} \quad Y^{\prime}=e^{2 \pi i x}\left(1-e^{2 \pi i x^{\prime}}\right)^{-1}
$$

Generating function for the flip

Strategy: Since FG \rightarrow FN is described by infinitely many flips, it is sufficient to compute the generating function for the single flip ($\mathrm{FG} \rightarrow \mathrm{FG}$).

Consider the composition of a flip and a relabeling of coordinates

$$
X^{\prime}=Y^{-1}, \quad Y^{\prime}=X\left(1+Y^{-1}\right)^{-1}
$$

Passing to log-coordinates $x=\frac{1}{2 \pi i} \log X, x^{\prime}=\frac{1}{2 \pi i} \log X^{\prime}$, one may express 'momenta' Y, Y^{\prime} in terms of 'positions'

$$
Y=e^{-2 \pi i x^{\prime}} \quad Y^{\prime}=e^{2 \pi i x}\left(1-e^{2 \pi i x^{\prime}}\right)^{-1}
$$

Definition: the difference generating function for the single flip must obey

$$
\frac{\chi_{\text {flip }}\left(x+1, x^{\prime}\right)}{\chi_{\text {flip }}\left(x, x^{\prime}\right)}=Y^{-1}\left(x, x^{\prime}\right) \quad \frac{\chi_{\text {flip }}\left(x, x^{\prime}+1\right)}{\chi_{\text {flip }}\left(x, x^{\prime}\right)}=Y^{\prime}\left(x, x^{\prime}\right)
$$

Generating function for the flip

Strategy: Since FG \rightarrow FN is described by infinitely many flips, it is sufficient to compute the generating function for the single flip ($\mathrm{FG} \rightarrow \mathrm{FG}$).

Consider the composition of a flip and a relabeling of coordinates

$$
X^{\prime}=Y^{-1}, \quad Y^{\prime}=X\left(1+Y^{-1}\right)^{-1}
$$

Passing to log-coordinates $x=\frac{1}{2 \pi i} \log X, x^{\prime}=\frac{1}{2 \pi i} \log X^{\prime}$, one may express 'momenta' Y, Y^{\prime} in terms of 'positions'

$$
Y=e^{-2 \pi i x^{\prime}} \quad Y^{\prime}=e^{2 \pi i x}\left(1-e^{2 \pi i x^{\prime}}\right)^{-1}
$$

Definition: the difference generating function for the single flip must obey

$$
\frac{\chi_{\text {flip }}\left(x+1, x^{\prime}\right)}{\chi_{\text {flip }}\left(x, x^{\prime}\right)}=Y^{-1}\left(x, x^{\prime}\right) \quad \frac{\chi_{\text {flip }}\left(x, x^{\prime}+1\right)}{\chi_{\text {flip }}\left(x, x^{\prime}\right)}=Y^{\prime}\left(x, x^{\prime}\right)
$$

Solution:

$$
\chi_{\text {flip }}\left(x, x^{\prime}\right)=\exp \left(2 \pi i x x^{\prime}+\frac{1}{2 \pi i} \operatorname{Li}_{2}\left(1-e^{2 \pi i x^{\prime}}\right)\right)
$$

Change of normalization for τ under flip

As before, series expansions in FG charts imply different quasi-periodicity

$$
\begin{aligned}
& \tau(x, y ; \Lambda)=\sum_{n} e^{2 \pi i n y} \mathcal{G}(x+n, \Lambda) \quad \Rightarrow \tau(x+1, y ; \Lambda)=e^{-2 \pi \mathrm{i} y} \tau(x, y ; \Lambda) \\
& \tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)=\sum_{n} e^{2 \pi i n y^{\prime}} \mathcal{G}\left(x^{\prime}+n, \Lambda\right) \quad \Rightarrow \quad \tau^{\prime}\left(x^{\prime}+1, y^{\prime} ; \Lambda\right)=e^{-2 \pi \mathrm{i} y^{\prime}} \tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)
\end{aligned}
$$

Change of normalization for τ under flip

As before, series expansions in FG charts imply different quasi-periodicity

$$
\begin{aligned}
& \tau(x, y ; \Lambda)=\sum_{n} e^{2 \pi i n y} \mathcal{G}(x+n, \Lambda) \Rightarrow \tau(x+1, y ; \Lambda)=e^{-2 \pi \mathrm{i} y} \tau(x, y ; \Lambda) \\
& \tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)=\sum_{n} e^{2 \pi i n y^{\prime}} \mathcal{G}\left(x^{\prime}+n, \Lambda\right) \quad \Rightarrow \quad \tau^{\prime}\left(x^{\prime}+1, y^{\prime} ; \Lambda\right)=e^{-2 \pi \mathrm{i} y^{\prime}} \tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)
\end{aligned}
$$

Then τ, τ^{\prime} must be related by a normalization factor

$$
\tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)=\chi\left(x^{\prime}, x\right) \tau(x, y ; \Lambda)
$$

that absorbs the different periodicity

$$
\chi\left(x^{\prime}+1, x\right)=e^{-2 \pi \mathrm{i} y^{\prime}} \chi\left(x^{\prime}, x\right), \quad \chi\left(x^{\prime}, x+1\right)=e^{2 \pi \mathrm{i} y} \chi\left(x^{\prime}, x\right)
$$

and $\chi\left(x^{\prime}, x\right) \equiv \chi_{\text {flip }}\left(x^{\prime}, x\right)$ satisfies precisely this property.

Change of normalization for τ under flip

As before, series expansions in FG charts imply different quasi-periodicity

$$
\begin{aligned}
& \tau(x, y ; \Lambda)=\sum_{n} e^{2 \pi i n y} \mathcal{G}(x+n, \Lambda) \Rightarrow \quad \tau(x+1, y ; \Lambda)=e^{-2 \pi \mathrm{i} y} \tau(x, y ; \Lambda) \\
& \tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)=\sum_{n} e^{2 \pi i n y^{\prime}} \mathcal{G}\left(x^{\prime}+n, \Lambda\right) \quad \Rightarrow \quad \tau^{\prime}\left(x^{\prime}+1, y^{\prime} ; \Lambda\right)=e^{-2 \pi \mathrm{i} y^{\prime}} \tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)
\end{aligned}
$$

Then τ, τ^{\prime} must be related by a normalization factor

$$
\tau^{\prime}\left(x^{\prime}, y^{\prime} ; \Lambda\right)=\chi\left(x^{\prime}, x\right) \tau(x, y ; \Lambda)
$$

that absorbs the different periodicity

$$
\chi\left(x^{\prime}+1, x\right)=e^{-2 \pi \mathrm{i} y^{\prime}} \chi\left(x^{\prime}, x\right), \quad \chi\left(x^{\prime}, x+1\right)=e^{2 \pi \mathrm{i} y} \chi\left(x^{\prime}, x\right),
$$

and $\chi\left(x^{\prime}, x\right) \equiv \chi_{\text {flip }}\left(x^{\prime}, x\right)$ satisfies precisely this property.
The difference generating function of the change of coordinates between two neighbouring patches (flip) is also the relative normalization of τ.

Normalized τ and $Z_{\text {inst }}$ across moduli space: a proposal

A system of charts $\left\{\mathcal{R}_{\alpha}\right\}$ over \mathcal{M}_{H} is defined by Stokes graphs. In \mathcal{R}_{α} a distinguished set of coordinates (x_{α}, y_{α}) (FG/FN or Voros).

Normalized τ and $Z_{\text {inst }}$ across moduli space: a proposal

A system of charts $\left\{\mathcal{R}_{\alpha}\right\}$ over \mathcal{M}_{H} is defined by Stokes graphs. In \mathcal{R}_{α} a distinguished set of coordinates (x_{α}, y_{α}) (FG/FN or Voros).

Coordinates in neighbouring patches are related by the difference generating function of canonical transformations

$$
\chi_{\text {fip }}\left(x_{\alpha}, x_{\beta}\right)=\exp \left(2 \pi i x_{\alpha} x_{\beta}+\frac{1}{2 \pi i} \operatorname{Li}_{2}\left(1-e^{2 \pi i x_{\beta}}\right)\right)
$$

Normalized τ and $Z_{\text {inst }}$ across moduli space: a proposal

A system of charts $\left\{\mathcal{R}_{\alpha}\right\}$ over \mathcal{M}_{H} is defined by Stokes graphs. In \mathcal{R}_{α} a distinguished set of coordinates (x_{α}, y_{α}) (FG/FN or Voros).

Coordinates in neighbouring patches are related by the difference generating function of canonical transformations

$$
\chi_{\mathrm{flip}}\left(x_{\alpha}, x_{\beta}\right)=\exp \left(2 \pi i x_{\alpha} x_{\beta}+\frac{1}{2 \pi i} \operatorname{Li}_{2}\left(1-e^{2 \pi i x_{\beta}}\right)\right)
$$

τ transforms as a section of a line bundle, whose transition functions coincide with normalization factors $\chi_{\text {flip }}$

$$
\left\{\mathcal{R}_{\alpha}, \tau^{(\alpha)}\right\}_{\alpha}
$$

Normalized τ and $Z_{\text {inst }}$ across moduli space: a proposal

A system of charts $\left\{\mathcal{R}_{\alpha}\right\}$ over \mathcal{M}_{H} is defined by Stokes graphs. In \mathcal{R}_{α} a distinguished set of coordinates (x_{α}, y_{α}) (FG/FN or Voros).

Coordinates in neighbouring patches are related by the difference generating function of canonical transformations

$$
\chi_{\mathrm{flip}}\left(x_{\alpha}, x_{\beta}\right)=\exp \left(2 \pi i x_{\alpha} x_{\beta}+\frac{1}{2 \pi i} \operatorname{Li}_{2}\left(1-e^{2 \pi i x_{\beta}}\right)\right)
$$

τ transforms as a section of a line bundle, whose transition functions coincide with normalization factors $\chi_{\text {flip }}$

$$
\left\{\mathcal{R}_{\alpha}, \tau^{(\alpha)}\right\}_{\alpha}
$$

This data provides a definition of instanton partition function in each patch

$$
\tau^{(\alpha)}\left(x_{\alpha}, y_{\alpha}, \Lambda\right) \quad \rightarrow \quad Z_{\text {inst }}^{(\alpha)}\left(x_{\alpha}, \Lambda\right)
$$

Chart system and BPS spectrum
Charts $\left\{\mathcal{R}_{\alpha}\right\}_{\alpha}$ are regions where the Stokes graph is regular. Degenerations due to Stokes automorphisms (flips) of (x, y) happen along lines in \mathcal{B}

(fixed ϑ)

Chart system and BPS spectrum
Charts $\left\{\mathcal{R}_{\alpha}\right\}_{\alpha}$ are regions where the Stokes graph is regular. Degenerations due to Stokes automorphisms (flips) of (x, y) happen along lines in \mathcal{B}

For $S U(2)$ Yang-Mills:

- Infinitely many chambers at weak coupling.
- Finitely many at strong coupling.
- Global consistency ensured by wall-crossing identities of $\log \chi_{\text {flip }} \sim \operatorname{Li}_{2}$

Chart system and BPS spectrum

Charts $\left\{\mathcal{R}_{\alpha}\right\}_{\alpha}$ are regions where the Stokes graph is regular. Degenerations due to Stokes automorphisms (flips) of (x, y) happen along lines in \mathcal{B}

For $S U(2)$ Yang-Mills:

- Infinitely many chambers at weak coupling.
- Finitely many at strong coupling.
- Global consistency ensured by wall-crossing identities of $\log \chi_{\text {flip }} \sim \operatorname{Li}_{2}$

Indeed Stokes automorphisms are 1-1 with BPS states of the 4d theory

$$
\text { ‘Stokes' lines in } \mathcal{B}:\left\{\arg Z_{\gamma}=\vartheta \& \Omega(\gamma, u) \neq 0\right\} .
$$

The BPS spectrum governs the chart system and the definition of $Z_{\text {inst }}$
5. Conclusions

Summary

4d $\mathcal{N}=2$ QFTs of class S are naturally associated to quantum curves arising from quantization of Hitchin spectral curves, with apparent singularitites.

Exact WKB analysis defines a system of charts \& coordinates over \mathcal{M}_{H}. The global structure is governed by the BPS spectrum and its wall-crossing.

Coordinate transformations across charts are described by a known universal function $\chi_{\text {flip }}$. The same function describes renormalization of τ.

Taking a Fourier transform of appropriately normalized $\tau^{(\alpha)}$ with respect to local coordinates $\left(x_{\alpha}, y_{\alpha}\right)$ yields a definition of $Z_{\text {inst }}\left(x_{\alpha}\right)$.

Agreement with a Lagrangian description where available (weak coupling). In all other patches the definition is new. A field theoretic interpretation likely involves the identification of local degrees of freedom within \mathcal{R}_{α}.

Outlook

Generalizations beyond A_{1} theories presents new features with interesting implications for/from integrability:

- Higher order ODEs still governed by TBAs [Hollands Neitzke] [Fioravanti Poghossian Poghossian] [lto Marino Shu] [lto Kondo Shu] [...], however new 'wild regions' are present with dense jumps in ϑ [Galakhov PL Mainiero Moore Neitzke].
- 5d $\mathcal{N}=1$ QFT on S^{1} also feature an integrable SW structure [Nekrasov]. Exact WKB analysis of q-difference equations, still largely undeveloped, plays a central role [Banerjee PL Romo] [Alim Saha Teschner Tulli] [Alim Hollands Tulli] [Grassi Hao Neitzke] [Del Monte PL]. Quantum periods governed by TBAs via q DE/IM [Frenkel Koroteev Zeitlin], conjecturally related to doubly periodic monopoles [Cherkis] and multiplicative Hitchin systems [Elliott Pestun].

