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1. Exact results in 4d N = 2 gauge theory



4d N = 2 Yang-Mills

The N = 2 Yang-Mills Lagrangian (τ = θ/2π + 4πi/g2 and G = SU(2))

L =
1

8π
Im
(∫

d2θ τ WαWα +

∫
d2θd2θ̄ 2τ Φ†e−2V Φ

)
=

1

g2
Tr
(
− 1

4
FµνF

µν + g2 θ

32π2
Fµν F̃

µν + (Dµφ)†(Dµφ)− 1

2
[φ†, φ]2

− i λσµDµλ̄− i ψ̄σ̄µDµψ − i
√

2[λ, ψ]φ† − i
√

2[λ̄, ψ̄]φ
)

is a supersymmetric extension of Yang-Mills-Higgs models, with (adjoint) Higgs
potential

U = − 1

2g2
Tr
(

[φ†, φ]2
)
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Classical vacua are defined by [φ†, φ] = 0 and come in families parameterized
by φ ∈ t valued in a Cartan subalgebra of g.

The classical expectation value φ ∼ a σ3 induces a spontaneous breaking of
SU(2)→ U(1). The low energy theory is free Abelian gauge theory.

At the quantum level the IR theory is interacting. The moduli space of
‘Coulomb’ vacua B is not lifted, and the gauge-invariant order parameter is

u =
1

2
〈Trφ2〉 .

At weak coupling u ∼ a2 specializes to the classical value.

The U(1) low energy effective action is governed by the prepotential F

L =
1

8π
Im
(∫

d2θF ′′(Φ)WαWα + 2

∫
d2θd2θ̄F ′(Φ)Φ†

)
with: F = Fpert. + Finstanton =

i

2π
a2 ln

a2

Λ2
+

∞∑
k=1

Fk
(

Λ

a

)4k

a2

2 / 30



Classical vacua are defined by [φ†, φ] = 0 and come in families parameterized
by φ ∈ t valued in a Cartan subalgebra of g.

The classical expectation value φ ∼ a σ3 induces a spontaneous breaking of
SU(2)→ U(1). The low energy theory is free Abelian gauge theory.

At the quantum level the IR theory is interacting. The moduli space of
‘Coulomb’ vacua B is not lifted, and the gauge-invariant order parameter is

u =
1

2
〈Trφ2〉 .

At weak coupling u ∼ a2 specializes to the classical value.

The U(1) low energy effective action is governed by the prepotential F

L =
1

8π
Im
(∫

d2θF ′′(Φ)WαWα + 2

∫
d2θd2θ̄F ′(Φ)Φ†

)
with: F = Fpert. + Finstanton =

i

2π
a2 ln

a2

Λ2
+

∞∑
k=1

Fk
(

Λ

a

)4k

a2

2 / 30



Classical vacua are defined by [φ†, φ] = 0 and come in families parameterized
by φ ∈ t valued in a Cartan subalgebra of g.

The classical expectation value φ ∼ a σ3 induces a spontaneous breaking of
SU(2)→ U(1). The low energy theory is free Abelian gauge theory.

At the quantum level the IR theory is interacting. The moduli space of
‘Coulomb’ vacua B is not lifted, and the gauge-invariant order parameter is

u =
1

2
〈Trφ2〉 .

At weak coupling u ∼ a2 specializes to the classical value.

The U(1) low energy effective action is governed by the prepotential F

L =
1

8π
Im
(∫

d2θF ′′(Φ)WαWα + 2

∫
d2θd2θ̄F ′(Φ)Φ†

)
with: F = Fpert. + Finstanton =

i

2π
a2 ln

a2

Λ2
+

∞∑
k=1

Fk
(

Λ

a

)4k

a2

2 / 30



A geometric proposal for F in terms of elliptic curves Σ with differential λ.
[Seiberg Witten]

Dictionary

a(u) :=
1

π

∮
α
λ aD(u) :=

1

π

∮
β
λ

aD =
∂F
∂a

Singularities on B:
When a cycle pinches, the corresponding combination of a, aD vanishes.
If F diverges the IR description is not valid. This is due to new massless d.o.f.
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Singularities from massless BPS particles

Yang-Mills-Higgs models have finite-energy particle states with [’t Hooft, Polyakov]

mass M(u) charge γ = (e,m) .

4d N = 2 supersymmetry has a central extension {QAα , QBβ } ∼ εαβεABZ
I Linear in (e,m) [Olive Witten]

Z(e,m)(u) ∼
∫
d3x ∂j

[(
1

g2
F 0j +

τ

4π
F̃ 0j

)
a†
]
∼ a∞(e+ τ ·m)

I If a state carries (e,m) 6= 0, it must also have Z 6= 0.

I The BPS bound M ≥ |Z| implies that all charged states must be massive.

I The central charge is a holomorphic function Zγ(u) = 1
π

∮
γ
λ.

I At singularities BPS states become massless M(u) = |Zγ(u)| → 0.
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Light degrees of freedom on the Coulomb branch

The Seiberg-Witten solution has 3 singularities on B:

I One at weak coupling, where F has the expansion shown previously
 d.o.f. of SU(2) Yang-Mills with light W-bosons Zγ1+γ2 ≈ 0

I Two at strong coupling, where F has a rather different kind of expansion
 d.o.f. of ‘dual’ U(1) QED with light monopole Zγ1 ≈ 0 or dyon
Zγ2 ≈ 0

[Figure from Lerche 9611190]
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Instanton counting

The Seiberg-Witten solution was conjectural, but instanton corrections at weak
coupling were later confirmed by direct computation in QFT

I Compute k-instanton contributions Fk by considering a
G× T 2-equivariant integral over the moduli space M̃k [Losev Nekrasov

Shatashvili] [Moore Nekrasov Shatashvili]

I Result obtained by localization, reducing to a sum over fixed points
labeled by colored partitions (Y1, . . . , YN )

I With T 2 equivariant parameters specialized to ε1 = −ε2 = ~ [Nekrasov]

Zinst(a, ~; q) =
∑
Y1,Y2

q|Y1|+|Y2|
∏
i,j

a+ ~(Y1,i − Y2,j + j − i)
a+ ~(j − i)

Then

lim
~→0

lnZinst(a, ~; q) =
1

~2
Finst(a,Λ)
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Remarks on instanton counting:

I Zinst recovers the Seiberg Witten prepotential, but also contains much
more information: Finst is only the leading term in the ~ expansion.

I Limitation in the range of validity: relying on the Lagrangian description
(SU(2) Yang-Mills) recovers only the weak-coupling expansion of Finst.

Questions motivating our work:

I What about instanton expansions FD,inst near strong coupling
singularities? Do they also admit ~ deformations?

I No UV Lagrangian description amenable to localization is available for the
light d.o.f. at the monopole and dyon points. How can they be computed?

I Related in topological strings: how to define Ztop ∼ Zinst away from large
volume - large B-field limit?
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2. From curve quantization to instantons



Class S theories

A large class of superconformal (and asymptotically free) 4d N = 2 QFTs can
be engineered by partially twisted compactifications of 6d (2, 0) QFT on a
Riemann surface C [Gaiotto] [Gaiotto Moore Neitzke] [...]

The quantum moduli space of vacua of a class S theory on R3 × S1
R encodes

both Coulomb moduli and electric-magnetic Wilson lines on S1
R [Seiberg Witten]

T 2r →MH → B .

MH is defined by the reduction of instanton equations on C

F +R2[ϕ, ϕ̄] = 0 , ∂̄Aϕ = 0 ,

where A is a g connection over C and ϕ ∈ H0(gC ⊗K).
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T 2r →MH → B can be viewed as an integrable system [Hitchin].

I The spectral curve is a covering of C in T ∗C

Σ : det(λ− ϕ) = 0 ,

determined by u = {Trϕk} ∈ B.

(Σ, λ) are Seiberg-Witten data [Gorsky

Krichever Marshakov Mironov Morozov] [Martinec Warner] [Donagi Witten]

I Fibres T 2r are Abelian subvarieties of Jac(Σ) parametrizing holomorphic
line bundles on Σ. Holonomies encode U(1) Wilson lines of the 4d QFT.

Hitchin’s equations can be formulated as the flatness condition

dA+A ∧A = 0 for A =
R

ζ
ϕ+A+Rζ̄ϕ̄

The ‘conformal limit’ is defined by ζ,R→ 0 with ζ/R = ~ ∈ C fixed [Gaiotto]

A =
1

~
ϕ+A+O(~) .

Then Σ encodes the small ~ leading WKB asymptotics for (d+A)χ = 0.
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Opers

At leading order in ~ the linear system (d+A)χ = 0 is equivalent to an N -th
order ODE (here g = AN−1)[

(~∂x)N +

N∑
i=2

Trϕi(~∂x)N−i
]
ψ(x) = 0 .

This is a quantization of Σ, corresponding to the replacement λ→ ~∂x.

However this ODE only carries information about ϕ, and not about A.
Hence its spectrum only spans a middle-dimensional locus Moper ⊂MH .

To retain all information about A one needs to go beyond leading order in ~.
In general, this leads to opers with apparent singularities. [Coman L Teschner]
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Emergence of apparent singularities

To illustrate this point we return to our main example. For Yang-Mills theory
C = P1 and A ∈ sl2(C)

A =
1

~

(
A0 A+

A− −A0

)
=

1

~
ϕ+A+O(~)

Applying a gauge transformation defined by

h =

(
A−1/2
− 0

0 A1/2
−

)(
1 ~

2
A′−/A− +A0

0 1

)
takes the connection to oper form

h−1 · (∂x −A) · h = ∂x −
1

~

(
0 q(x, ~)
1 0

)

q(x, ~) = A2
0 +A+A−︸ ︷︷ ︸

1
2

Trϕ2

−~
(
A′0 −

A0A′−
A−

)
+ ~2

(
3

4

(
A′−
A−

)2

− A
′′
−

2A−

)

The ~ corrections have singularities at A− = 0. (eigenvectors of A do as well)
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Quantum curve for SU(2) Yang-Mills

The ‘quantum curve’ is then[
~2∂2

x − q(x, ~)
]
ψ(x) = 0 .

For SU(2) Yang-Mills the ~-deformed Schrödinger potential is

q(x, ~) =
Λ2

x3
+
U

x2
+

Λ2

x
− ~u(2x− u)

x2(x− u)
v + ~2 3

4(x− u)2

where U ∈ B parametrizes a Coulomb vacuum, u is the position of the apparent

singularity. v is a dependent parameter determined by v2 = Λ2

u3 + U
u2 + Λ2

u
.

This condition ensures that the solutions ψ(x) have no monodromy (in
PSL2C) at x = u. The singularity at x = u is therefore ‘apparent’.

Apparent singularities arise naturally when describing SL2C flat connections
though 2nd order ODEs. They encode next-to-leading order ~ corrections to A,
providing a complete parametrization of MH in a neighbourhood of Moper.
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Isomonodromy

Viewing MH as a moduli space of flat connections A, a local parametrization
is given in terms of monodromy data

µ(u, v,Λ) ∈MH .

While apparent singularities contribute nothing to local monodromy at x = u,
they contribute ~-corrections to global monodromies.

I Σ has rk H1(Σ) = 2 independent cycles, therefore dimCMH = 2

I but q(x, ~) depends on 3 parameters: (u, v,Λ)

I Therefore µ(u, v,Λ) is over-parameterized: there must be a 1-parameter
family of ‘isomonodromic deformations’
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Isomonodromic deformations of SU(2) YM quantum curve are described by a
non-autonomous Hamiltonian system (Painlevé III3 / r-sine-Gordon)

∂ru =
∂H

∂v
∂rv = −∂H

∂u
H =

v2

2r
− r cosu

where
r = 8Λ , H = 4U/Λ .

Time evolution describes a family of flat connections with identical monodromy.

The tau function is a generating function of isomonodromic Hamiltonians

∂ti log τ(µ, t) = Hi(µ, t) .

where in this case t = r and Hi = H.

NB: It is important to realize that normalization of τ is ambiguous

τ ∼ f(µ) · τ
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3. τ -functions and instantons



Tau function and instantons

The relevance of τ to 4d N = 2 gauge theory lies in the relation [Gamayun Iorgov

Lisovyy]

τPV I ←→ Z
SU(2)Nf=4

inst

In the case of SU(2) Yang-Mills, the corresponding statement was proven in
[Gavrylenko Lisovyy]

τPIII ←→ Z
SU(2) YM
inst

More instances were found by other groups. In all cases the relation takes the
form of a (generalized) Fourier transform.

Rmk: These relations can be explained by string theory (in hindsight)

I τ ∼ Zinst,D is related to free-fermion partition functions on Σ [Nekrasov]

[Aganagic Dijkgraaf Klemm Marino Vafa] [Nekrasov Okounkov] [...]

I String dualities further predict that Zff(Σ) should admit a (Fourier-type)
decomposition with coefficients Ztop. [Dijkgraaf Hollands Sulkowski Vafa]

I Free fermion representations of conformal blocks are also related to Zinst

by 2d-4d correspondences [Alday Gaiotto Tachiwaka] [Wyllard] [...]
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Expansions of τPIII – part 1

It was shown by [Gavrylenko Lisovyy] that near Λ ≈ 0 there exist coordinates
µ = (σ, η) such that

τ (w)(σ, η; Λ) =
∑
n∈Z

e4πin ηN (w)(σ + n)Z(w)(σ + n,Λ)

where

N (w)(σ) =
∏
s=±

1

G(1 + 2sσ)
, Z(w)(σ,Λ) = Λ4σ2

(
1 +

∞∑
k=1

Z(w)
k (σ)Λ4k

)
,

with G(x) the Barnes G-function G(x+ 1) = Γ(x)G(x).

In particular Z(w)
k (σ) admit explicit descriptions in terms of sums over pairs of

Young diagrams (Y1, Y2), reproducing Z(w) ∼ Zinst of [Nekrasov].
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Expansions of τPIII – part 2

On the other hand when Λ→∞ another, rather different, expansion of τ was
conjectured by [Its Lysovyy Tykhyy] in another set of coordinates µ = (ν, ρ)

τ (s)(ν, ρ; Λ) =
∑
n∈Z

e4πiρnN (s)(ν + in,Λ)Z(s)(ν + in,Λ)

where

N (s)(ν,Λ) = e
iπν2

4 2ν
2

(2π)−
iν
2 G(1 + iν)(8Λ)

ν2

2
+ 1

4 e4Λ2+8νΛ

Z(s)(ν,Λ) = 1 +

∞∑
k=1

Z(s)
k (ν)Λ−k

This expansion is more surprising: not predicted from earlier work on dualities.
Key differences:

I µ variables determine different expansions

(σ, η)→ N (w),Z(w) (ν, ρ)→ N (s),Z(s)

I The factor N (w) ∼ G(. . . )−2, while N (s) ∼ G(. . . )1.

I Z(w) is a series in Λ, while Z(s) in Λ−1.
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QFT interpretation [Its Lysovyy Tykhyy] [Bonelli Lisovyy Maruyoshi Sciarappa Tanzini] [...]

weak strong (new!)

Λ small large

Zpert N (w)(σ,Λ) N (s)(ν,Λ)

Zinst Z(w)(σ,Λ) Z(s)(ν,Λ)

Zγ ≈ 0 W-bosons monopole / dyon

Zpert ∼ G(·,Λ)−Ω Ω = −2 Ω = 1

? (σ, η) (ν, ρ)

18 / 30



Relation between weak and strong coupling expansions

Just like Z(w) matches with Zinst, the match between Z(s) and FD(aD) in the
~→ 0 limit suggests that this can be taken as a definition of the instanton
partition function at strong coupling.

Both Z(w/s) are obtained from the τ function, but there are differences:

I The expansion of τ that defines Z is performed in two different sets of
monodromy coordinates (σ, η) and (ν, ρ) related by

eπν =
sin 2πη

sin 2πσ
, e4πiρ =

sin 2πη

sin 2π(σ + η)
.

I Tau functions τ (w/s) are not identical due to the normalization ambiguity

τ (w) = χ(µ) · τ (s)
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4. Weak/strong coupling connection coefficients and the global picture



Geometrization of instanton partition functions

In [Coman PL Teschner] we formulate a proposal that explains:

I why (σ, η) and (ν, ρ) are distinguished coordinates at weak/strong coupling

I why they are related in this particular way

I how the relative normalization factor χ(µ) = τ (w)/τ (s) arises

Main results (valid for any theory of class S[A1])

I There is a natural definition of quantum curve, and of isomonodromic τ .

I We define a decomposition of MH = {Rα}α with a canonical choice of
monodromy coordinates in each region

(xα, yα) : Rα → (C∗)2r

I We determine relations among coordinates of any two patches, and
provide the connection coefficient for τ

(xα, yα)→ (xβ , yβ) τ (β) = χ(βα) τ (α) .

I In each region we obtain a geometric definition of Z
(α)
inst by series

decomposition of τ (α) w.r.t. the chosen coordinates. In agreement with
localization at weak coupling, new predictions for all other regions.
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Coordinate charts

Moduli spaces of flat SL2C connections on C admit two well-known types of
coordinates, known as Fenchel-Nielsen and Fock-Goncharov.

Remarkably, these coordinates are unified in physics by Spectral Networks.
[Gaiotto Moore Neitzke] [Hollands Neitzke]

Definition for 2nd order ODEs: given the (classical) quadratic differential q(x),
the network W(U, ϑ) consists of critical leaves of the horizontal foliation

Im

[
e−i ϑ

∫ x

dx′
√
q(x′)

]
= 0

Coincides with the Stokes graph of exact WKB analysis of Schrödinger’s
equation with [see Ito’s talk]

V (x)− E = q(x) arg ~ = ϑ
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For the quantum curve of SU(2) YM, the appropriate potential q(x, ~) is
determined by by the choice between limits r → 0 or r →∞
I At weak coupling the spectral network produces Fenchel-Nielsen

coordinates (U ,V)

I At strong coupling the spectral network produces Fock-Goncharov
coordinates (X ,Y)

In both cases, coordinates correspond to Borel-resummed Voros symbols of
the ODE. [Iwaki Nakanishi] [Allegretti]

(
−~2∂2

x + q(x, ~)
)
ψ(x) = 0 ψ(a)(x) = exp

(
1

~

∫ x

y(a)(x′, ~) dx

)

Vγ := B

[
exp

(
1

~

∫
℘(γ)

y
(a)
odd(x′, ~) dx

)]

What changes from FN to FG is, essentially, the type of Stokes graph:

Vγ
↙ ↘

weak coupling (U ,V) (X ,Y) strong coupling
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Juggling between Fock-Goncharov and Fenchel-Nielsen

Spectral Networks compute FN/FG coordinates as Voros symbols.

In addition, they also encode the relation between (U ,V) and (X ,Y).

FG coordinate patches: 1-1 with triangulations dual to the Stokes graph

Triangulations ‘flip’ if the Stokes graph degenerates. FG coordinates (Voros
symbols) jump by Stokes automorphism [Delabaere Dillinger Pham]. ⇒ (FG → FG)

Relations to ODE/IM [Dorey Tateo] [Bazhanov Lukyanov Zamolodchikov] [talks by Rossi and Gregori]

and to wall-crossing of 4d N = 2 BPS states [Kontsevich Soibelman] [Gaiotto Moore Neitzke].

Novelty: finitely many flips take FG → FG, but an infinite sequence of flips
(a.k.a. the ‘juggle’) takes Fock-Goncharov to Fenchel-Nielsen coordinates

· · · → X =
(
VU−(VU)−1

U−U−1

)2

, Y =
(
U−U−1

V+V−1

)2

.

We prove: (U = e2πiσ , V = i e2πiη) and (X = −e−8πiρ+2πν ,Y = −e−2πν)
and that (U ,V)↔ (X ,Y) coincides with (σ, η)↔ (ρ, ν) from [Its Lisovyy Tykhyy].
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Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Normalization of τ

In order to extract Zinst from τ it is not sufficient to have the correct choice of
coordinates. It is also necessary to fix the normalization ambiguity τ ∼ χ(µ) · τ .

In fact, normalization must change from one patch to another.

I Series for τ (w/s) are quasi-periodic, with different periods

τ (w)(σ+1, η; Λ) = e−4πi η τ (w)(σ, η; Λ), τ (s)(ν+i, ρ; Λ) = e−4πi ρ τ (s)(ν, ρ; Λ)

I Relative normalization is necessary to absorb this: χ = τ (w)/τ (s) s.t.

χ(σ + 1, ν) = e−4πiηχ(σ, ν) , χ(σ, ν + i) = e4πiρχ(σ, ν) .

How to determine the change of normalization between patches?

I Both (σ, η) and (ν, ρ) are Darboux coordinates for monodromy data.

I Canonical transformations (x, p)→ (x′, p′) can be described by a

generating function such that ∂F (x,x′)
∂x

= p , ∂F (x,x′)
∂x′ = −p′

I χ is reminiscent of this: except that it is difference generating function for
canonical transformations (σ, η)→ (ν, ρ).

Given the known relation (σ, η)↔ (ν, ρ), one could set up the difference
equation. But it is hard to solve.

24 / 30



Generating function for the flip

Strategy: Since FG → FN is described by infinitely many flips, it is sufficient to
compute the generating function for the single flip (FG→FG).

Consider the composition of a flip and a relabeling of coordinates

X ′ = Y −1, Y ′ = X(1 + Y −1)−1.

Passing to log-coordinates x = 1
2πi

logX, x′ = 1
2πi

logX ′, one may express
‘momenta’ Y, Y ′ in terms of ‘positions’

Y = e−2πix′ Y ′ = e2πix(1− e2πix′)−1

Definition: the difference generating function for the single flip must obey

χflip(x+ 1, x′)

χflip(x, x′)
= Y −1(x, x′)

χflip(x, x′ + 1)

χflip(x, x′)
= Y ′(x, x′)

Solution:

χflip(x, x′) = exp

(
2πixx′ +

1

2πi
Li2(1− e2πix′)

)
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Change of normalization for τ under flip

As before, series expansions in FG charts imply different quasi-periodicity

τ(x, y; Λ) =
∑
n

e2πi n y G(x+ n,Λ) ⇒ τ(x+ 1, y; Λ) = e−2πi y τ(x, y; Λ)

τ ′(x′, y′; Λ) =
∑
n

e2πi n y′ G(x′ + n,Λ) ⇒ τ ′(x′ + 1, y′; Λ) = e−2πi y′ τ ′(x′, y′; Λ)

Then τ, τ ′ must be related by a normalization factor

τ ′(x′, y′; Λ) = χ(x′, x)τ(x, y; Λ)

that absorbs the different periodicity

χ(x′ + 1, x) = e−2πiy′χ(x′, x) , χ(x′, x+ 1) = e2πiyχ(x′, x) ,

and χ(x′, x) ≡ χflip(x′, x) satisfies precisely this property.

The difference generating function of the change of coordinates between two
neighbouring patches (flip) is also the relative normalization of τ .
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Normalized τ and Zinst across moduli space: a proposal

A system of charts {Rα} over MH is defined by Stokes graphs.
In Rα a distinguished set of coordinates (xα, yα) (FG/FN or Voros).

Coordinates in neighbouring patches are related by the difference generating
function of canonical transformations

χflip(xα, xβ) = exp

(
2πixαxβ +

1

2πi
Li2(1− e2πixβ )

)

τ transforms as a section of a line bundle, whose transition functions coincide
with normalization factors χflip

{Rα, τ (α)}α

This data provides a definition of instanton partition function in each patch

τ (α)(xα, yα,Λ) → Z
(α)
inst (xα,Λ) .
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Chart system and BPS spectrum

Charts {Rα}α are regions where the Stokes graph is regular. Degenerations
due to Stokes automorphisms (flips) of (x, y) happen along lines in B

(fixed ϑ)

For SU(2) Yang-Mills:

I Infinitely many chambers at weak coupling.

I Finitely many at strong coupling.

I Global consistency ensured by wall-crossing identities of logχflip ∼ Li2

Indeed Stokes automorphisms are 1-1 with BPS states of the 4d theory

‘Stokes’ lines in B : {argZγ = ϑ & Ω(γ, u) 6= 0} .

The BPS spectrum governs the chart system and the definition of Zinst
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5. Conclusions



Summary

4d N = 2 QFTs of class S are naturally associated to quantum curves arising
from quantization of Hitchin spectral curves, with apparent singularitites.

Exact WKB analysis defines a system of charts & coordinates over MH .
The global structure is governed by the BPS spectrum and its wall-crossing.

Coordinate transformations across charts are described by a known universal
function χflip. The same function describes renormalization of τ .

Taking a Fourier transform of appropriately normalized τ (α) with respect to
local coordinates (xα, yα) yields a definition of Zinst(xα).

Agreement with a Lagrangian description where available (weak coupling). In
all other patches the definition is new. A field theoretic interpretation likely
involves the identification of local degrees of freedom within Rα.
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Outlook

Generalizations beyond A1 theories presents new features with interesting
implications for/from integrability:

I Higher order ODEs still governed by TBAs [Hollands Neitzke] [Fioravanti Poghossian

Poghossian] [Ito Marino Shu] [Ito Kondo Shu] [...], however new ‘wild regions’ are present
with dense jumps in ϑ [Galakhov PL Mainiero Moore Neitzke].

I 5d N = 1 QFT on S1 also feature an integrable SW structure [Nekrasov].
Exact WKB analysis of q-difference equations, still largely undeveloped,
plays a central role [Banerjee PL Romo] [Alim Saha Teschner Tulli] [Alim Hollands Tulli] [Grassi

Hao Neitzke] [Del Monte PL]. Quantum periods governed by TBAs via qDE/IM
[Frenkel Koroteev Zeitlin], conjecturally related to doubly periodic monopoles
[Cherkis] and multiplicative Hitchin systems [Elliott Pestun].
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