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I. Introduction
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Overview
Goal: Understand how to obtain inverse scattering from the infinite-length limit of
spectral curves.

Overview:
• motivation
• review: spectral curves and inverse scattering in KdV
• intuition: explicit wave train and soliton solution in KdV
• finite-length extrapolation for KdV
• continuous Heisenberg model
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Solving 1D Integrable Models

Integrable models solved by efficient methods.

Boundary conditions relevant for fields and chains.
Relevant equations often embody these boundary conditions. Main cases:

finite domain
open/closed boundaries
spectral curve method

L x
ϕ

←→

infinite domain
asymptotic boundaries
inverse scattering method

x
ϕ

←→
ǩn

ρ(k)

Both methods based on an auxiliary linear problem (ALP) specified by Lax connection.
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Infinite-Length Limit

Can relate different boundary conditions: open/closed to asymptotic.

L x
ϕ

−→ x
ϕ

?−→
ǩn

ρ(k)

Questions:
• Asymptotic boundary conditions for spectral curves:
Which families of spectral curves have proper infinite-length limits?

• How do integrable structures transform into each other?
Spectral curve and inverse scattering technically rather different!

• Understood how to obtain solitons from periodic solution (1970’s: Matveev, Its)
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Spectral Curves

Represent periodic states as spectral curve with divisor:

L x
ϕ

←→

State encoded as:
• complex curve: conserved charges of state (space and time-invariant)
• dynamical divisor: phase degrees of freedom (depends on space and time)
• space and time evolution: linear on Jacobian of curve

Equivalent information on both sides, transformation non-trivial:
• state → spectral curve: parallel transport, eigenvalue problem
• construction of spectral curve: complex analysis (. . . )
• spectral curve → state: expansion at distinguished point
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Hyper-Elliptic Curves

Consider simpler class of states (finite gap): restrict to curves with finite genus g.

Hyper-elliptic curve(
dq

du

)2

=
P≈g(u)

2

Q≈2g(u) Reu

Imu C̄

two sheets connected
by g + 1 branch cuts

Interpretation of Cuts:
• n-th cut represents n-th periodic mode
• location of cut fixed by n (periodicity)
• size of cut ∼ amplitude (action variable)
• marked point on cut ∼ phase (angle variable)

Altogether: spectral curve acts as adjusted non-linear Fourier decomposition.
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Inverse Scattering

Represent asymptotic states as reflection function plus bound state poles.

x
ϕ

←→
ǩn

ρ(k)

Scattering problem using of state as potential → scattering data:
• reflection function probes amplitude and phase of state at continuous momentum
• zeros of transmission function in upper half-plane indicate bound states: solitons
• scattering data has linear time evolution
• original state can be reconstructed from scattering data by GLM integral equation

Altogether: scattering transformation acts as Fourier transformations plus solitons.
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Motivation
Goal: Understand infinite-length limit of spectral curves:

?−→
ǩn

ρ(k)

Issues:
• Easy to specify scattering data; then solve concrete GLM integral equation.
• Elaborate to set up spectral curve with divisor; need to solve abstract RH problem.
• How to obtain two classes of objects in the infinite-length limit?
• What determines allowable momenta of solitons (imaginary axis)?
• Why are solitons very simple while reflective potentials difficult?
• Do we need spectral curves with infinite genus needed?
• How to impose asymptotic limit in spectral curve and divisor?
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II. Korteweg-de Vries Equation:
Spectral Curve and Inverse Scattering
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Korteweg-de Vries Equation

Choose KdV equation as a simple model where above questions can be addressed

ϕ̇ = 6ϕϕ′ − ϕ′′′.

Integrable structures encoded in Lax connection (u ∈ C̄ is spectral parameter)

∂

∂x

(
ψ(u;x)
ψ′(u;x)

)
=

(
0 1

ϕ(x)− u 0

)(
ψ(u;x)
ψ′(u;x)

)
, ψ′′(u;x) =

(
ϕ(x)− u

)
ψ(u;x).

Here: second-order linear differential equation for auxiliary function ψ(u;x).

Infinitely many local conserved charges

Q =

∫
dx 1

2
ϕ, P =

∫
dx 1

2
ϕ2, E =

∫
dx

[
1
2
ϕ′2 + ϕ3

]
, . . .

Galilei-invariant momentum P̃ = P − 2Q2/L, energy Ẽ = E − 12PQ/L+ 16Q3/L2.
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Spectral Curves

Spectral curve dq/du defined by monodromy eigenvalue problem:

ψ(u;x+ L) = exp
(̊
ıq(u)

)
ψ(u;x).

Monodromy trace is 2 cos q(u) and branch points are where cos q(u) = ±1.
Sketch of quasi-momentum function q(u) and cos q(u):

Re q
Im q

û1 û2 û3 û4 û5

0

π

2π

u

cos q

û1

û2 û3

û4 û5

0

+1

−1
u

• Cuts are forbidden zones for (real) cosine function. • One cut stretches to u = −∞.
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Cuts and Divisor
A,B-period integrals describe moduli of spectral curve:

A1B1 A2

B2

û1 û2 û3 û4 û5

u

Reu

Imu

∮
Aj

dq = 0,

1

2π

∮
Bj
dq = nj,

1

ı̊π

∮
Aj

u dq = Ij.

• mode number nj determines location; • action variable Ij determines size of cut.

Dynamical divisor is set of poles {ũj(x)} of ψ′(u;x)/ψ(u;x):
• one pole on each cut; one pole fixed at u =∞;
• pole oscillates nj times over one period of x;
• divisor specified by point on Jacobian: linear space and time dependence.
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Inverse Scattering

Scattering Data consists of:
• reflection coefficient function ρ(k) ∈ C for k ∈ R;
satisfies momentum space reality ρ(k)∗ = ρ(−k∗) and is bounded: |ρ(k)| < 1.

• bound state momenta ǩn ∈ ı̊R+ and associated dynamical variables µn ∈ R+.

KdV solved by GLM integral equation with scattering data in N(w)

Ψ(x, y) = N(x+ y) +

∫ x

−∞
dz Ψ(x, z)N(z + y), ϕ(x) = 2∂x

(
Ψ(x, x)

)
Transmission function from scattering dispersion formula

τ(k) =

[∏
j

k + ǩj

k − ǩj

]
exp

[
1

2π̊ı

∫
dk′

k′ − k − ı̊0
log

(
1− |ρ(k′)|2

)]
.

Expansion at k =∞ describes local conserved charges.
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III. Wave Trains and Solitons in KdV
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Travelling Wave States

Gain intuition from class of states with fixed shape and velocity: ϕ(x, t) = ϕ(x− vt).
Explicit solutions: Periodic wave train (cnoidal wave) and soliton with asymptotic decay

ϕ(x) =

{
−1

6
v − 2

3
α2(1− 2m)− 2α2m cn(αx+ β,m)2 (0 < m < 1)

−1
6
v + 2

3
α2 − 2α2 sech(αx+ β)2

v L x

ϕ

v

ϕ0

x

ϕ

Periodicity length L = 2K(m)/α among moduli of solution.
Straight-forward to take infinite-length limit: m→ 1 with α, β, v fixed.
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Elliptic Curve

How does infinite-length limit act on spectral curve?

Auxiliary function ψ(u;x) determined by matching of singularities:

ψ = exp
(
ı̊
2
(αx+ β)q/K

) tn(αx+ β + z)

tn(αx+ β) tn(z)
,

u = −1
6
v + 1

3
α2(m− 2)− α2 cs(z)2,

q = 2̊ıK
[
zn(z) + cs(z) dn(z)

]
.

Sketch of cuts and quasi-momentum function:

AB

û1 û2 û3

u

Reu

Imu

Re q
Im q

û1 û2 û3

0

π

u

cos q

û1

û2 û3

0

+1

−1
u

Divisor pole oscillates (in space and time) back and forth on cut.
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Infinite-Length Limit of Curve

Sketch of curve and quasi-momentum at m ≈ 1:

û1 û2 û3

u

Reu

Imu

Re q
Im q

û1 û2 û3

0

π

u

cos q

û1

û2 û3

+1

−1
u

Exponentially small separation of cuts, spectral curve pinched:

û2 − û1 = α2(1−m) = 16α2e−αL + . . . .

Singular point given by soliton momentum: û1,2 → −1
6
− 1

3
α2 = −(Im ǩ)2.

Divisor: • at x→ ∓∞ pole resides almost fixed at singular point;
• near soliton location x = x0 pole moves back and forth to other end of branch cut.
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IV. Finite-Length Extrapolation
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Procedure
Some further thoughts:
• Genus-g curves yield g-soliton states upon complete degeneration.
• How to obtain non-trivial continuum in reflection function ρ(k)?
• How to set up family of spectral curves with appropriate infinite-length limit?

Procedure:
• Start with generic asymptotic state described by scattering data ρ(k), {ǩj}.
• Periodically identify region of interest with adjustable length L.
• Analyse spectral curve for resulting family of states.

x
ϕ

−→
L L
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Approximation

Key Insight: Same field ϕ(x), auxiliary function ψ(u, x) compatible for both situations!

Consider Lax transport with spectral parameter u = k2

W (k; b, a) :=
←
P

[
exp

∫ b

a

dx A(k;x)
]
.

Defines Lax monodromy T (k) and auxiliary scattering matrix S(k)

T = W (x+ L, x), S = lim
a,b→∓∞

diag(eı̊kb, e−̊ıkb)W (b, a) diag(e−̊ıka, eı̊ka).

If asymptotic limit exists, can approximate finite Lax transport (over region of interest)

W (b, a) ≈ diag(e−̊ıkb, eı̊kb)S diag(eı̊ka, e−̊ıka).

Note: Patching discontinuous! Expect small glitches.
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Reconstruction
Form of scattering matrix in inverse scattering

S(k) =

(
1/τ(k) ρ(k)/τ(k)

ρ(−k)/τ(−k) 1/τ(−k)

)
.

Transmission function τ(k) determined through reflection function ρ(k).
Recover Lax transport:

W (b, a) ∼
(

e−̊ık(b−a)/τ(k) e−̊ık(b+a)ρ(k)/τ(k)
eı̊k(b+a)ρ(−k)/τ(−k) eı̊k(b−a)/τ(−k)

)
.

Further steps:
• Determine branch cuts for real k: continuum cuts.
• Determine divisor for real k: continuum divisor.
• Determine branch cuts for imaginary k: solitons.
• Figure out divisor for solitons.
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Continuum Cuts
Determine cuts on real axis as forbidden zones for cos q:

cos q(k) = 1
2
trT (k) ≈ e−̊ıkL

2τ(k)
+

eı̊kL

2τ(−k)
=

1

|τ(k)|
cos

(
kL+ arg τ(k)

)
.

Note: kL induces fast oscillation while τ(k) is slow; approximate as constant τn.

cos q

0

+1

−1

k

πn

array of small cuts:
• size: ∆kn = (2/L) arccos|τn|.
• position: kn = (πn− arg τn)/L.
note:
• unitarity: ∆kn = (2/L) arcsin|ρn|.
• full filling ∆kn = π/L for |ρ| = 1.

Action variable for cut In = −(2πn/L2) log(1− |ρn|2).
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Continuum Divisor
Divisor poles where monodromy eigenvector aligned with (1, 1). Resulting condition:

sin
(
k̃L+ arg τ(k̃)

)
≈ −|ρ(k̃)| sin

(
k̃(L+ 2x)− arg ρ(k̃) + arg τ(k̃)

)
.

Note: difficulty to interpret x of monodromy: near region of interest vs. asymptotic.

One solution k̃n on each cut:
• effective phase σn := 2πnx/L− arg ρn determines position around cut (non-linear).
• one period in dynamical reflection phase arg ρn yields one cycle around cut.
• one period in x yields n cycles around cut.
• effective phase shifts by σn+1 − σn ≈ 2πx/L between adjacent cuts.

k
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Soliton Cuts
Cuts for solitons are along positive imaginary k-axis. Problem:
• Exponents exp(̊ık∗) converge or diverge exponentially fast.
• Errors in approximations may get unduly attenuated.
• Only 1/τ(k) well-defined and holomorphic on upper half-plane.

Branch points determined by cos q(k) = ±1:
• function typically large and dominated by 1/τ(k);
• contribution by 1/τ(−k) typically small.

cos q(k) ≈ e−̊ıkL

2τ(k)
= ±1.

Soliton intermissions at poles ǩn of τ(k); width ∆k determined by residue

kn ≈ ǩn, ∆kn ≈ −4 res τ(ǩn) exp(̊ıǩnL).
Action variable for cut between two poles In = (4̊ıL/3π)(ǩ3n − ǩ3n+1).
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Soliton Divisor
Unfortunately, the dynamical data µn describing the soliton positions are suppressed by
the regularisation an therefore not even encoded into the scattering matrix.

Not easy to reconstruct. Consider instead divisor of soliton states:

Spatial dependence of divisor for single soliton: soliton shape in u-space

u0

ǔ
x

ũ

How to encode positions for N solitons on N consecutive branch cuts?
• Note: 1 ≤ n ≤ N full cycles around n-th cut!
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Soliton Divisor
Consider explicit two-soliton state. Determine divisor.
Find superposition of two soliton shapes:

u0

ǔ1

ǔ2
x

ũ

u0

ǔ1

ǔ2
x

ũ

u0

ǔ1

ǔ2
x

ũ

Amazing function:
• repulsion for two poles on same side of cuts.
• crossing for two poles on opposite sides of cuts (at singularity).
• Constraints: 1 ≤ n ≤ N full cycles for n-th cut. Precisely 1 pole per cut.

Anyway: • Divisor can be in arbitrary position depending on relative positions.
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Limit of Curves
Summary:
A family of curves with L→∞ has a proper asymptotic limit if:
• the action variables of the first N cuts scale as L and the dynamical divisor has a
proper L→∞ limit.

• the action and angle variables of the remaining cuts must behave as

In ∼ −
2πn

L2
log

(
1− |ρ(2πn/L)|

)
, σn ∼

2πnx

L
− arg ρ(2πn/L).

• Scattering data follows from limiting values as described earlier.

Notes:
• Solitons require 1 cut each.
• Continuum implies an array of small cuts.
• Can work with finite but linearly growing number of cuts.
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V. Continuous Heisenberg Model
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Continuous Heisenberg Model

Can analogously consider infinite-length limit for Continuous Heisenberg Model:
• Spectral curve and inverse scattering methods work analogously.
• Many details different that need adjustments in construction.

Relevant (interrelated) differences:
• Spectral curve has vertical cuts.
• No forbidden zones for cos q.
• Reflection coefficient unbounded.
• Soliton poles can be anywhere on positive half plane.
• Solitons can form breathers.

In a Nutshell:
• Array of small vertical cuts of length ∼ arsinh ρn.
• Two (or 2k) exponentially similar long cuts make up a soliton (breather).
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VI. Summary and Outlook
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Infinite-Length Limit of Spectral Curves

understood how to prepare suitable family of spectral curves

understood how solitons and continuum arise.

discussed divisor where feasible.

Open Questions:

can the soliton divisor be made more concrete?

other more elaborate models?

derive GLM equations for inverse scattering from infinite-length limit.

CFT-IM 10 2023, Niklas Beisert 32

http://people.phys.ethz.ch/~nbeisert

	Title
	Introduction
	Korteweg-de Vries Equation: Spectral Curve and Inverse Scattering
	Wave Trains and Solitons in KdV
	Finite-Length Extrapolation
	Continuous Heisenberg Model
	Summary and Outlook

