



# Gas of Bethe ansatz wavepackets and an ab initio derivation of generalised hydrodynamics

Benjamin Doyon with

Friedrich Hübner

Department of Mathematics, King's College London

arXiv:2307.09307

University of Bologna, Italy, 4 September 2023

#### Introduction

 The dynamics of integrable models at larges scales of space and time is well described by generalised hydrodynamics (GHD) [Castro-Alvaredo, BD, Yoshimura, 2016; Bertini, Collura, De Nardis, Fagotti 2016]

$$\partial_t \rho_\mathrm{p}(x,t;\theta) + \partial_x \left[ v^\mathrm{eff}(x,t;\theta) \rho_\mathrm{p}(x,t;\theta) \right] = 0.$$
 where 
$$v^\mathrm{eff}(\theta) = \theta + \int \mathrm{d}\alpha \, \varphi(\theta-\alpha) \, \rho_\mathrm{p}(\alpha) \left( v^\mathrm{eff}(\alpha) - v^\mathrm{eff}(\theta) \right)$$

- Holds for classical and quantum models, particles, spins, and continuous fields; confirmed experimentally in cold atom gases [Schemmer et al 2019; Møller et al 2021; Malvania et al 2021].
- Rigorous proofs that this equation emerges from the microscopic dynamics in hard-rod models [Boldrighini, Dobrushin, Sukhov 1983; Ferrari, Franceschini, Grevino, Spohn 2022], in cellular automata [Croydon Sasada 2020], in gases of solitons [El, Kamchatnov, Pavlov, Tovbis 2003-2022].
- In all quantum models the only known derivation until now is based on the assumption of local entropy maximisation. As usual for hydrodynamic equations more generally.
- ⇒ We provide a derivation in the quantum delta-interaction Bose gas (Lieb-Liniger model) from its Schrödinger equation.



As an example consider the Lieb-Liniger model, which describes point-like interactions of Galilean invariant Bose gases. Its Hamiltonian is

$$H = -\sum_{i=1}^{N} \frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}} + \sum_{(i \neq j)=1}^{N} \frac{c}{2} \delta(x_{i} - x_{j})$$

It admits infinitely many local conserved quantities  $Q_i$ :

$$\hat{Q}_a = \int \mathrm{d}x \, \hat{q}_a(x).$$

with conservation laws

$$\partial_t \hat{q}_a + \partial_x \hat{j}_a = 0.$$

For instance, the number of particle  $\hat{Q}_0$ , the momentum  $\hat{Q}_1$ , the energy  $H=\hat{Q}_2/2$ , and the first non-trivial one  $\hat{Q}_3$ , with densities

$$\hat{q}_0(x) = \sum_i \delta(x - \hat{x}_i)$$

$$\hat{q}_1(x) = \text{He } \sum_i \delta(x - \hat{x}_i) \hat{p}_i$$

$$\hat{q}_2(x) = \text{He } \sum_i \delta(x - \hat{x}_i) \left( \hat{p}_i^2 + \sum_{j \neq i} c \delta(\hat{x}_i - \hat{x}_j) \right)$$

$$\hat{q}_3(x) = \text{He } \sum_i \delta(x - \hat{x}_i) \left( \hat{p}_i^3 + \sum_{j \neq i} 3c \delta(\hat{x}_i - \hat{x}_j) \hat{p}_i \right)$$

We can describe theoretically the problem as follows. The initial state is an equilibrium state with inhomogeneous external fields

$$\langle \hat{A} \rangle = \frac{\operatorname{Tr}(\hat{\varrho}\hat{A})}{\operatorname{Tr}\hat{\varrho}}, \quad \hat{\varrho} = \exp\left[-\sum_{a} \int dx \, \beta_{a}(x) \hat{q}_{a}(x)\right]$$

with a slowly varying fields  $\beta_a(x) = \bar{\beta}_a(x/L)$ , L large.

For instance, one realises in cold atom experiments the initial state

$$\exp\left[-\beta\left(\hat{H} + \int dx V(x)\hat{q}_0(x)\right)\right]$$

Then the evolution occurs with the original Hamiltonian

$$\langle \hat{A}(x,t) \rangle = \langle e^{i\hat{H}t} \hat{A}(x) e^{-i\hat{H}t} \rangle$$

We are interested in the finite-density Euler scaling limit

$$\lim_{L \to \infty} \langle \hat{A}(x,t) \rangle, \quad N/L = \nu, \quad x = L\bar{x}, \ t = L\bar{t}$$

Even if the model is integrable, this remains a formidable task with standard methods.



#### 2. Hydrodynamics

One may use the **hydrodynamic principle**: the assumption that locally, in every fluid cell, entropy maximises with respect to the available conserved quantities. Thus locally we have generalised Gibbs ensembles (GGEs) [reviews Polkovnikov, Sengupta, Silva, Vengalattore 2011; Eisert, Friesdorf, Gogolin 2015; Essler, Fagotti 2016; Vidmar, Rigol 2016; Ilievski, Medenjak, Prosen, Zadnik 2016]

at fluid cell 
$$x,t$$
:  $\exp\left[-\sum_a \beta_a(x,t)\hat{Q}_a\right]$ 

Macroscopic Mesoscopic (fluid cells) Microscopic



## 2. Hydrodynamics

All densities and currents are approximated by

$$\langle \hat{q}_a(x,t) \rangle \approx \langle \hat{q}_a \rangle_{\mathrm{GGE}(x,t)} =: \mathbf{q}_a(x,t), \quad \langle \hat{j}_a(x,t) \rangle \approx \langle \hat{j}_a \rangle_{\mathrm{GGE}(x,t)} =: \mathbf{j}_a(x,t)$$

• The microscopic conservation equations are recast into "mesoscopic" equations

$$\partial_t \mathbf{q}_a + \partial_x \mathbf{j}_a = 0$$

ullet Using the Bethe ansatz in finite volume L and taking the limit  $L,N\to\infty$  (or other techniques), one evaluates the GGE averages. The crucial result is the currents (GGE equations of state) [reviews Borsi, Pozsgay, Pristyák 2021, Cubero, Yoshimura, Spohn 2021]

$$\mathbf{q}_a = \int \mathrm{d}\theta \, \theta^a \rho_\mathrm{p}(\theta), \quad \mathbf{j}_a = \int \mathrm{d}\theta \, \theta^a v^\mathrm{eff}(\theta) \rho_\mathrm{p}(\theta)$$

• Considering this for all *a*'s, this is the GHD equation.



# 3. Interpretation

There is a simple physical interpretation of the Bethe root density  $\rho_{\mathrm{p}}(\theta)$ :



This is based on **elastic scattering**.

#### 3. Interpretation

There is a simple **classical kinetic interpretation** to the effective velocity:

$$v^{\text{eff}}(\theta) = \theta + \int d\alpha \, \varphi(\theta - \alpha) \, \rho_{\text{p}}(\alpha) \left(v^{\text{eff}}(\alpha) - v^{\text{eff}}(\theta)\right)$$

where

$$\varphi(\theta) = \partial_{\theta} \phi(\theta) = \frac{2c}{\theta^2 + c^2}$$



This is based on factorised scattering.

# 3. Interpretation

The function  $\varphi(\theta)$  is the semiclassical scattering shift, seen in scattering of wave packets [see e.g. Bouchoule, Dubail 2022]:





We would like to show that, in the **macrocanonical ensemble** and under  $x=L\bar{x},\ t=L\bar{t},$ 

$$\lim_{L \to \infty} \frac{\operatorname{Tr}\left(\hat{\varrho} \, e^{i\hat{H}t} \hat{q}_a(x) e^{-i\hat{H}t}\right)}{\operatorname{Tr}\hat{\varrho}} = \int d\theta \, \theta^a \rho_p(\bar{x}, \bar{t}; \theta)$$

for all a, where  $\rho_{\rm p}(\bar x,\bar t;\theta)$  satisfies GHD.

Two problems:

- $\hat{q}_a(x)$  are complicated in general
- ullet  $\operatorname{Tr} e^{\mathrm{i} \hat{H} t} \hat{\varrho} e^{\mathrm{i} \hat{H} t} \cdots$  is difficult to evaluate

#### Reminder on the Bethe wavefunction...

With  $\theta_1 > \theta_2 > \ldots > \theta_N$  this is a basis for the Hilbert space,

$$\Psi_{\boldsymbol{\theta}}(\boldsymbol{x}) = s(\boldsymbol{x}) \sum_{\sigma \in S_N} (-1)^{|\sigma|} e^{i\Phi_{\boldsymbol{\theta}}(\boldsymbol{x}_{\sigma})}$$

where  $s(\boldsymbol{x}) = \prod_{i < j} \operatorname{sgn}(x_{ij})$  and

$$\Phi_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\theta} \cdot \boldsymbol{x} + \frac{1}{2} \sum_{i < j} \phi(\theta_{ij}) \operatorname{sgn}(x_{ij}), \quad \phi(\theta) = 2 \operatorname{Arctan} \frac{\theta}{c}$$

"Scattering eigenfunctions" on the line, that is

$$\hat{H}\Psi_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{\boldsymbol{\theta}^2}{2}\Psi_{\boldsymbol{\theta}}(\boldsymbol{x}).$$

Note: no need to quantise the momenta...

Define the empirical density operator  $\hat{\rho}(x,\theta) = \sum_i \delta(x-\hat{x}_i)\delta(\theta-\hat{\theta}_i)$ :

$$\hat{\rho}(x,\theta)\Psi_{\boldsymbol{\theta}}(\boldsymbol{x}) = s(\boldsymbol{x}) \sum_{\sigma \in S_N} (-1)^{|\sigma|} \delta(x - x_{\sigma(i)}) \delta(\theta - \theta_i) e^{i\Phi_{\boldsymbol{\theta}}(\boldsymbol{x}_{\sigma})}$$

Define the empirical density operator  $\hat{\rho}(x,\theta) = \sum_i \delta(x-\hat{x}_i)\delta(\theta-\hat{\theta}_i)$ :

$$\hat{\rho}(x,\theta)\Psi_{\boldsymbol{\theta}}(\boldsymbol{x}) = s(\boldsymbol{x}) \sum_{\sigma \in S_N} (-1)^{|\sigma|} \delta(x - x_{\sigma(i)}) \delta(\theta - \theta_i) e^{i\Phi_{\boldsymbol{\theta}}(\boldsymbol{x}_{\sigma})}$$

1. Representation of local densities: we can show that for all  $a=0,1,2,\ldots$ 

$$\hat{q}_a(x) = \text{He} \int d\theta \, \theta^a \hat{\rho}(x,\theta)$$

are local conserved densities.

So for the GHD equation, we only have to show that

$$\lim_{L \to \infty} \frac{\operatorname{Tr} \left( \hat{\varrho} \, e^{i\hat{H}t} \hat{\rho}(x) e^{-i\hat{H}t} \right)}{\operatorname{Tr} \hat{\varrho}} = \rho_{\mathbf{p}}(\bar{x}, \bar{t}; \theta)$$

We may write

$$\hat{\varrho} = \exp\left[-\operatorname{He}\hat{\rho}[\beta]\right]$$

where

$$\hat{\rho}[\beta] = \int dx d\theta \, \beta(x,\theta) \hat{\rho}(x,\theta), \qquad \beta(x,\theta) = \sum_{a} \beta_{a}(x) \theta^{a}$$

We may write

$$\hat{\varrho} = \exp\left[-\operatorname{He}\hat{\rho}[\beta]\right]$$

where

$$\hat{\rho}[\beta] = \int dx d\theta \, \beta(x,\theta) \hat{\rho}(x,\theta), \qquad \beta(x,\theta) = \sum_{a} \beta_{a}(x) \theta^{a}$$

2. "Macroscopic classicalisation": the macroscopic operators  $\hat{\rho}[f]$  are essentially classical

$$[\hat{\rho}[f], \hat{\rho}[g]] = O(1), \quad [\hat{\rho}[f], \hat{\rho}[f]^{\dagger}] = O(1)$$

We may write

$$\hat{\varrho} = \exp\left[-\operatorname{He}\hat{\rho}[\beta]\right]$$

where

$$\hat{\rho}[\beta] = \int dx d\theta \, \beta(x,\theta) \hat{\rho}(x,\theta), \qquad \beta(x,\theta) = \sum_{a} \beta_a(x) \theta^a$$

2. "Macroscopic classicalisation": the macroscopic operators  $\hat{
ho}[f]$  are essentially classical

$$[\hat{\rho}[f], \hat{\rho}[g]] = O(1), \quad [\hat{\rho}[f], \hat{\rho}[f]^{\dagger}] = O(1)$$

As a consequence,

$$\langle \boldsymbol{\theta} | \hat{\varrho} | \boldsymbol{\theta} \rangle = c_N \int d^N x \, \Psi_{\boldsymbol{\theta}}(x)^{\dagger} \exp\left(-\operatorname{He} \hat{\rho}[\beta]\right) \Psi_{\boldsymbol{\theta}}(\boldsymbol{x}) = c_N ||\Psi_A||^2$$

where we are left with slowly-varying amplitude modulations of the Bethe ansatz wave functions:

$$\Psi_A(\boldsymbol{x}) = s(\boldsymbol{x}) \sum_{\sigma \in S_N} (-1)^{|\sigma|} A(\boldsymbol{x}_{\sigma}, \boldsymbol{\theta}) e^{i\Phi_{\boldsymbol{\theta}}(\boldsymbol{x}_{\sigma})}, \quad A(\boldsymbol{x}, \boldsymbol{\theta}) = \prod_i e^{-\beta(x_i, \theta_i)/2}$$

So the macrocanonical partition function is the "total mass" of a measure on **classical phase** space

$$Z_A = \operatorname{Tr} \hat{\varrho} = \sum_{N=0}^{\infty} c_N \int_{\theta_i > \theta_{i+1}} d^N \theta \int d^N x \, \Psi_A^*(\boldsymbol{x}) \Psi_A(\boldsymbol{x})$$

So the macrocanonical partition function is the "total mass" of a measure on **classical phase** space

$$Z_A = \operatorname{Tr} \hat{\varrho} = \sum_{N=0}^{\infty} c_N \int_{\theta_i > \theta_{i+1}} d^N \theta \int d^N x \, \Psi_A^*(\boldsymbol{x}) \Psi_A(\boldsymbol{x})$$

#### Strategy:

Evolve the amplitude modulation

$$e^{-\mathrm{i}\hat{H}t}\Psi_A(\boldsymbol{x}) = \Psi_{A_t}(\boldsymbol{x})$$

Perturb to get the density

$$A_t^{\gamma}(\boldsymbol{x}, \boldsymbol{\theta}) = A_t(\boldsymbol{x}, \boldsymbol{\theta}) e^{\sum_i \bar{\gamma}(x_i/L, \theta_i)/2}, \quad \rho_{\mathrm{p}}(\bar{x}, \bar{t}; \theta) = \frac{\delta}{\delta \bar{\gamma}(\bar{x}, \theta)} \log Z_{A_t^{\gamma}}$$



Consider the "Bethe-Fourier transform"

$$A(\boldsymbol{x},\boldsymbol{\theta}) = \int d^N \alpha A^{\mathrm{BF}}(\boldsymbol{\alpha},\boldsymbol{\theta}) e^{\mathrm{i}\boldsymbol{y}^{\boldsymbol{\theta}}(\boldsymbol{x}) \cdot \boldsymbol{\alpha}}$$

which combines the Fourier transform with the Bethe transform

$$y_i^{\theta}(\mathbf{x}) = \frac{\partial \Phi_{\theta}(\mathbf{x})}{\partial \theta_i} = x_i + \frac{1}{2} \sum_j \varphi(\theta_{ij}) \operatorname{sgn}(x_{ij})$$

Consider the "Bethe-Fourier transform"

$$A(\boldsymbol{x},\boldsymbol{\theta}) = \int d^N \alpha A^{\mathrm{BF}}(\boldsymbol{\alpha},\boldsymbol{\theta}) e^{\mathrm{i}\boldsymbol{y}^{\boldsymbol{\theta}}(\boldsymbol{x}) \cdot \boldsymbol{\alpha}}$$

which combines the Fourier transform with the Bethe transform

$$y_i^{\theta}(\mathbf{x}) = \frac{\partial \Phi_{\theta}(\mathbf{x})}{\partial \theta_i} = x_i + \frac{1}{2} \sum_j \varphi(\theta_{ij}) \operatorname{sgn}(x_{ij})$$

Slowly varying  $\Rightarrow A^{\mathrm{BF}}(\boldsymbol{\alpha}, \boldsymbol{\theta})$  supported on small values  $\alpha_i = O(L^{-1})$ . So

$$\Phi_{\theta+\alpha}(x) = \Phi_{\theta}(x) + y^{\theta}(x) \cdot \alpha + O(1)$$

and

$$A(\boldsymbol{x}, \boldsymbol{\theta}) e^{i\Phi_{\boldsymbol{\theta}}(\boldsymbol{x}_{\sigma})} \simeq \int d^{N} \alpha A^{\mathrm{BF}}(\boldsymbol{\alpha}, \boldsymbol{\theta}) e^{i\Phi_{\boldsymbol{\theta}+\boldsymbol{\alpha}}(\boldsymbol{x})}$$

3. Eigenstate decomposition of amplitude modulations (coefficient is  $\approx$  to what is written)

$$\Psi_A = \int d^N \alpha \, A^{BF}(\boldsymbol{\alpha}, \boldsymbol{\theta}) \Psi_{\boldsymbol{\theta} + \boldsymbol{\alpha}}$$

3. Eigenstate decomposition of amplitude modulations (coefficient is  $\approx$  to what is written)

$$\Psi_A = \int d^N \alpha \, A^{BF}(\boldsymbol{\alpha}, \boldsymbol{\theta}) \Psi_{\boldsymbol{\theta} + \boldsymbol{\alpha}}$$

Therefore Lieb-Liniger evolution is simple:

$$e^{-iHt}\Psi_{A} = \int d^{N}\alpha A^{BF}(\boldsymbol{\alpha}, \boldsymbol{\theta}) e^{-i(\boldsymbol{\theta} + \boldsymbol{\alpha})^{2}t/2} \Psi_{\boldsymbol{\theta} + \boldsymbol{\alpha}}$$
$$= e^{-i\boldsymbol{\theta}^{2}t/2} \int d^{N}\alpha A^{BF}(\boldsymbol{\alpha}, \boldsymbol{\theta}) e^{-i\boldsymbol{\theta} \cdot \boldsymbol{\alpha} t} \Psi_{\boldsymbol{\theta} + \boldsymbol{\alpha}}$$

3. Eigenstate decomposition of amplitude modulations (coefficient is  $\approx$  to what is written)

$$\Psi_A = \int d^N \alpha \, A^{BF}(\boldsymbol{\alpha}, \boldsymbol{\theta}) \Psi_{\boldsymbol{\theta} + \boldsymbol{\alpha}}$$

So the BF transform evolves simply for all macroscopic times  $t=L\bar{t}=O(L)$ 

$$A_t^{\mathrm{BF}}(\boldsymbol{\alpha}, \boldsymbol{\theta}) = A^{\mathrm{BF}}(\boldsymbol{\alpha}, \boldsymbol{\theta}) e^{-\mathrm{i}\boldsymbol{\theta}\cdot\boldsymbol{\alpha}t}$$

Transforming back to real space, we have nonlinear trajectories for the coordinates of the amplitude,  $A_t(x,\theta) \approx A(x(-t),\theta)$  with

$$y_i + \theta_i t = x_i(t) + \frac{1}{2} \sum_j \varphi(\theta_{ij}) \operatorname{sgn}(x_{ij}(t))$$

$$y_i + \theta_i t = x_i(t) + \frac{1}{2} \sum_j \varphi(\theta_{ij}) \operatorname{sgn}(x_{ij}(t))$$

Gas of interacting wave packets which automatically implements the kinetic picture:



Taking the time derivative

$$\theta_i = \dot{x}_i + \sum_j \varphi(\theta_{ij}) \delta(x_{ij}) (\dot{x}_i - \dot{x}_j)$$

This is solved using the effective velocity functional

$$\dot{x}_i = v_{[\rho]}^{\text{eff}}(x_i, \theta_i)$$

Taking the time derivative

$$\theta_i = \dot{x}_i + \sum_j \varphi(\theta_{ij}) \delta(x_{ij}) (\dot{x}_i - \dot{x}_j)$$

This is solved using the effective velocity functional

$$\dot{x}_i = v_{[\rho]}^{\text{eff}}(x_i, \theta_i)$$

4. GHD equation for the wave packets' phase-space density

$$\rho(\bar{x}, \bar{t}; \theta) = L^{-1} \sum_{i} \delta(\bar{x} - x_i(t)/L) \delta(\theta - \theta_i)$$

satisfies the GHD equation

$$\partial_{\bar{t}}\rho + \partial_{\bar{x}}(v^{\text{eff}}\rho) = 0$$

Finally, by mean-field argument of the explicit integrals defining  $Z_A$  (interpreted as a **signed** measure on classical phase space) one argues that

$$\frac{\delta}{\delta \bar{\gamma}(\bar{x}, \theta)} \log Z_{A_t^{\gamma}} \stackrel{L \to \infty}{\to} \rho(\bar{x}, \bar{t}; \theta)$$

| 6. New integrable models               |  |
|----------------------------------------|--|
| [BD, Hübner, Yoshimura in preparation] |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |

#### 6. New integrable models

The classical mechanics of wave packets: the Lieb-Liniger phase  $\Phi_{\theta}(x)$  is a generating function for the canonical transformation to scattering coordinates

$$y_i = \frac{\partial \Phi_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \theta_i}$$

$$p_i = \frac{\partial \Phi_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial x_i}$$

$$\{y_i, \theta_j\} = \delta_{ij} \qquad \Leftrightarrow \qquad \{x_i, p_j\} = \delta_{ij}$$

$$H = \frac{\boldsymbol{\theta}^2}{2} = \frac{\boldsymbol{p}^2}{2} + V(\boldsymbol{x}, \boldsymbol{p})$$

The model is Liouville integrable, has elastic, factorised scattering and has local interaction (the potential V(x, p) depends on both x and p in a complicated way...).

# 6. New integrable models

- ullet This works for "any"  $\Phi_{m{ heta}}(m{x})$  of the Bethe ansatz form.
- We can show that the free energy of these models is given by the (classical) TBA.
- We can evaluate e.g. the real momentum distribution

$$distribution(p) = n(\theta(p))$$

in terms of the occupation function and of the inverse of the Dressed momentum.

 $\bullet$  These occur as  $T\bar{T}$  deformations of free particles.



#### Conclusion

#### We have:

- Derived the GHD equations from the microscopic evolution in LL model
- Explained the kinetic picture in terms of a gas of wave packets

What more can be done with the gas of wave packets?

- Introduce external force (we think we know how...)
- Study correlations and fluctuations (macroscopic fluctuations?)
- Derive the diffusive terms, perhaps higher-order hydrodynamics (dispersion, all orders?)
- Apply similar ideas to quantum chains