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Introduction \

The dynamics of integrable models at larges scales of space and time is well described by
generalised hydrodynamics (GHD) [Castro-Alvaredo, BD, Yoshimura, 2016; Bertini, Collura, De Nardis,
Fagotti 2016]

Opp(x,t;0) + 0y [veﬁ(a:, t;0)pp(z, t; 9)] = 0.
where  v1(9) = 6+ [ dap(6 — ) py() (1°7(a) ~ v (9)

Holds for classical and quantum models, particles, spins, and continuous fields; confirmed
experimentally in cold atom gases [Schemmer et al 2019; Maller et al 2021; Malvania et al 2021].

Rigorous proofs that this equation emerges from the microscopic dynamics in hard-rod
models [Boldrighini, Dobrushin, Sukhov 1983: Ferrari, Franceschini, Grevino, Spohn 2022], in cellular
automata [Croydon Sasada 2020], in gases of solitons [El, Kamchatnov, Pavlov, Tovbis 2003-2022].

In all quantum models the only known derivation until now is based on the assumption of
local entropy maximisation. As usual for hydrodynamic equations more generally.

We provide a derivation in the quantum delta-interaction Bose gas (Lieb-Liniger model)
from its Schrodinger equation. /




1. The problem: inhomogeneous dynamics of many-body integrable systems




/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \
As an example consider the Lieb-Liniger model, which describes point-like interactions of
Galilean invariant Bose gases. Its Hamiltonian is

N
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/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

It admits infinitely many local conserved quantities ();:

0, = /dx@a<x>-

with conservation laws
atha + aa:ja = 0.




/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

For instance, the number of particle QO, the momentum Ql, the energy H = QQ/Q, and the
first non-trivial one Qg, with densities




/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

We can describe theoretically the problem as follows. The initial state is an equilibrium state

with inhomogeneous external fields

A Tr (A
(A) = T(fgé)a 0 = exp [ Z/dx 5a<x)ga(m>]
with a slowly varying fields 3, (z) = 3, (x/L), L large.

For instance, one realises in cold atom experiments the initial state

exp [—5 (H + / dz V(a:)do(a:))]

Then the evolution occurs with the original Hamiltonian

(A, 1)) = (T A(z)e )

" /




/ 1. The problem: inhomogeneous dynamics of many-body integrable systems \

We are interested in the finite-density Euler scaling limit

lim (A(z,t)), N/L=v, z=1LZ%, t=1L%

L—o0

Even if the model is integrable, this remains a formidable task with standard methods.




2. Hydrodynamics




/ 2. Hydrodynamics \

One may use the hydrodynamic principle: the assumption that locally, in every fluid cell,
entropy maximises with respect to the available conserved quantities. Thus locally we have
generalised Gibbs ensembles (GGES) [reviews Polkovnikov, Sengupta, Silva, Vengalattore 2011; Eisert,
Friesdorf, Gogolin 2015; Essler, Fagotti 2016; Vidmar, Rigol 2016; llievski, Medenjak, Prosen, Zadnik 2016]

at fluid cell x,t: exp [ — Z Ba(z, t)Qa}

Macroscopic Mesoscopic (fluid cells) Microscopic

e_ Zl Bi(xl’t/)Qi
(x/7 t/
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/ 2. Hydrodynamics

e All densities and currents are approximated by

<qAa(x7t)> ~ <qAa>GGE(a:,t) = qa(xvt)a <.§a(x7t>> ~ <5a>GGE(x,t) = ja(xvt)

e The microscopic conservation equations are recast into “mesoscopic” equations

atqa + a:z:ja =0

e Using the Bethe ansatz in finite volume L and taking the limit L, N — oo (or other
techniques), one evaluates the GGE averages. The crucial result is the currents (GGE
equations of state) [reviews Borsi, Pozsgay, Pristyak 2021, Cubero, Yoshimura, Spohn 2021]

Qe = / d06%p,(0), o = / do 6°v°™ (6)p, (6)

\0 Considering this for all a’s, this is the GHD equation. /
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3. Interpretation
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/ 3. Interpretation

There is a simple physical interpretation of the Bethe root density p,,(6):

Gas fluid cell

NN
0, - Oy

Pp(0)

This is based on elastic scattering.
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/ 3. Interpretation

There is a simple classical kinetic interpretation to the effective velocity:

o1(8) =0+ [ dacp( ~ o) pyla) (07 (@) = v (0)

where
2c

02 4 2

p(0) = 0pp(0) =

ez

\//\T/'

\This is based on factorised scattering.
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/ 3. Interpretation \

The function 90(9) is the semiclassical scattering shift, seen in scattering of wave packets [see

e.g. Bouchoule, Dubail 2022]:
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4. Microscopic origin: slowly varying amplitudes

16




/ 4. Microscopic origin: slowly varying amplitudes

We would like to show that, in the macrocanonical ensemble and under x = LZ, t = Lf,

. Tr (@ BthCja (x)e—th)

L—oo TI'@

= /de 0% po (2, %, 0)

for all a, where p,,(Z, t; 0) satisfies GHD.

Two problems:
e (,(x) are complicated in general

o Trefltpeltlt . .. s difficult to evaluate

~
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/ 4. Microscopic origin: slowly varying amplitudes
Reminder on the Bethe wavefunction...

With 81 > 65 > ... > O this is a basis for the Hilbert space,

\IJQ(CE) = S(CE) Z (_1)|U|6i‘1>9(33a)

ocESN

where s(x) = | [,_ . sgn(x;;) and

i<j
1 0
Gg(x) =0 - x + 5 Z ¢(0;5)sgn(xi;), ¢(f) = 2Arctan .
1<)
“Scattering eigenfunctions” on the line, that is

HUg(x) = %\pg(w).

Note: no need to quantise the momenta...

-
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4. Microscopic origin: slowly varying amplitudes

Define the empirical density operator p(z,0) = > .. 6(z — Z;)0(0 — 0;):

pA(xv 9)\119(53) — S(ZB) Z <—1)|0|5(33 — ZBU(Z-))5(9 — 91) 6i<1>9(a:o.)

cESN
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/ 4. Microscopic origin: slowly varying amplitudes

Define the empirical density operator p(z,0) = > .. 6(z — Z;)0(0 — 0;):

plz,0)We(x) = s(x) Y (=1)1716(x — 243;)5(0 — 6;) €T (*)

cESN

1. Representation of local densities: we can show thatforalla = 0,1, 2, . ..

iulw) = He [ 466" 0(.0)

are local conserved densities.

So for the GHD equation, we only have to show that

Ty (éeiﬁtﬁ(x)e_iﬁt) o
li = t; 0
A, Trg el 150)

-
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We may write

where

4. Microscopic origin: slowly varying amplitudes
6 =exp | — He plf]

pl6) = [ dwd6 Bz, 0)p(w.0).  5(.0) = 3 Bu(a)e"

a
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/ 4. Microscopic origin: slowly varying amplitudes \
We may write
6 =exp | — He plf]
where
pl6) = [ dwd6 Bz, 0)p(w.0).  5(.0) = 3 Bu(a)e"

2. “Macroscopic classicalisation”: the macroscopic operators p| f| are essentially classical

plf], plgll = O1),  [plf1, pLf]T] = O(1)
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/ 4. Microscopic origin: slowly varying amplitudes \
We may write
0 = exp [ — He ﬁ[ﬁ]]
where

pl6) = [ dwd6 Bz, 0)p(w.0).  B(.0) = 3 Au(a)e"
2. “Macroscopic classicalisation”: the macroscopic operators p| f| are essentially classical

BLf), plel) = 0(1), [plf], plf]T] = O(1)

As a consequence,

<mmw:wN/HMm%uwam<—mem¢mmr:qmmﬂﬁ

where we are left with slowly-varying amplitude modulations of the Bethe ansatz wave
functions:

Uu(x) = s(x) Z (—1)|0|A(w0,9) eito (o) A(z, 0) = He—ﬁ(xi,ei)/Q

ocESN 7

" /
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4. Microscopic origin: slowly varying amplitudes

~

So the macrocanonical partition function is the “total mass” of a measure on classical phase

space

Za=Tro= ) cN/
N=0 0

dN e / ANz ¥ ()W 4 (x)

i>0i11
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/ 4. Microscopic origin: slowly varying amplitudes \

So the macrocanonical partition function is the “total mass” of a measure on classical phase
space

dN e / ANz ¥ ()W 4 (x)

Z4="Trp= ZCN/
N=0 0

i>0i41

Strategy:

e Evolve the amplitude modulation
e A(z) = Ua,(2)
e Perturb to get the density

A;fy (33, 9) = Ay (213, 9)627' '7(:1:7;/L,0i)/2, pp(

“€~3|
SHI
D
N——"
|
)
0Q
N
N
o+ 2

" /
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5. Microscopic origin: gas of wave packets
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/ 5. Microscopic origin: gas of wave packets

Consider the “Bethe-Fourier transform”
.0
Az, 0) = / AV o ABF (o, )Y (@)

which combines the Fourier transform with the Bethe transform

(@) = T 23 ) senn)

J
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/ 5. Microscopic origin: gas of wave packets

Consider the “Bethe-Fourier transform”
.0
Az, 0) = / AV o ABF (o, )Y (@)

which combines the Fourier transform with the Bethe transform

(@) = 220 — ok 3 0 s

J

Slowly varying = APY(a, 8) supported on small values o; = O(L™1). So
By o) = Po(x) + 9y’ () - o+ O(1)

and

A(m,H)ei%(’”") =~ /dNoz ABF(a,H)e@“O‘(‘”)
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3. Eigenstate decomposition of amplitude modulations (coefficient is < to what is written)

5. Microscopic origin: gas of wave packets

\IJA — /dNOéABF(a,Q)\If9_|_a

~
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5. Microscopic origin: gas of wave packets

3. Eigenstate decomposition of amplitude modulations (coefficient is < to what is written)

\IJA — /dNOéABF(a,Q)\If9_|_a

Therefore Lieb-Liniger evolution is simple:

e_lHt\IjA

/dNaABF(a’9)6—1(9+a)2t/2\110+a

_ e—iOQt/Q/dNa ABF(a76)e—iO-at Voo

~
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/ 5. Microscopic origin: gas of wave packets \

3. Eigenstate decomposition of amplitude modulations (coefficient is < to what is written)

\IJA — /dNOéABF(a,Q)\If9_|_a

So the BF transform evolves simply for all macroscopic times t = Lt = O(L)
AP (@, 0) = A" (e, )0

Transforming back to real space, we have nonlinear trajectories for the coordinates of the
amplitude, A;(x,0) < A(x(—t), ) with

yi + 0it = x;(t) + % Z ©(0;5) sgn(wi;(t))

" /
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5. Microscopic origin: gas of wave packets

yi + 0it = x;(t) + % Z p(0:5) sgn(wi;(t))

J

Gas of interacting wave packets which automatically implements the kinetic picture:

Position x

32




/ 5. Microscopic origin: gas of wave packets

Taking the time derivative
9_$z+290 i5)0(xij)(T; — 5)

This is solved using the effective velocity functional

Zl.fi = v[eg(xi, (92)
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/ 5. Microscopic origin: gas of wave packets

Taking the time derivative
Q_Jiz‘l‘ZSO i5)0(xij)(T; — 5)

This is solved using the effective velocity functional

Zl.fi = v[eg(xi, (92)

4. GHD equation for the wave packets’ phase-space density
p(Z, 1; IZM—% )/L)5(0 — 6;)

satisfies the GHD equation

Ozp 4 0z (v p) = 0

-
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5. Microscopic origin: gas of wave packets

Finally, by mean-field argument of the explicit integrals defining Z 4 (interpreted as a signed

measure on classical phase space) one argues that

0

oy(z, 0)

L—o0 —

log Z 4 "= p(Z,t;0)

~
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6. New integrable models

[BD, Hiibner, Yoshimura in preparation]
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/ 6. New integrable models \

The classical mechanics of wave packets: the Lieb-Liniger phase <I>g(:1:) IS a generating

function for the canonical transformation to scattering coordinates

- (‘9<I>9(:L-)
Yi = 90,

o (9(1)9(56)
Pi = oz,

{yi,0;} = 0i5 = {zi,pj} = 6ij

The model is Liouville integrable, has elastic, factorised scattering and has local

interaction (the potential V'(x, p) depends on both & and p in a complicated way...).

" /
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/ 6. New integrable models

e This works for “any” ®g () of the Bethe ansatz form.
e \We can show that the free energy of these models is given by the (classical) TBA.

e We can evaluate e.g. the real momentum distribution
distribution(p) = n(6(p))

in terms of the occupation function and of the inverse of the Dressed momentum.

e These occur as T'T deformations of free particles.
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/ Conclusion

We have:

e Derived the GHD equations from the microscopic evolution in LL model
e Explained the kinetic picture in terms of a gas of wave packets
What more can be done with the gas of wave packets?
e Introduce external force (we think we know how...)
e Study correlations and fluctuations (macroscopic fluctuations?)

e Derive the diffusive terms, perhaps higher-order hydrodynamics (dispersion, all orders?)

e Apply similar ideas to quantum chains

\_
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