How to get into an excited state
Bologna 2023

(war kin progress with Brando Morrison; and also earlier work with Roberto Tate, Lorenz Hifficre,INan Szecsenyi)

1. Basic problem
2. A simple example
3. Yang-Lee \& TBA continuation
4. Sinh-Gordon core
5. Results (including movies)
6. Basic problem

Suppose we know the ground-state energy of some
system. (a) Does this tell us the energies of its excited states?
(b) If so, how are they connected?

Often the answer to @is ges,it we can do conalytic continuation in a parameter: an old idea, se eg Bender \& Wu's work for the Q.M. case.

Big goal: greta similar bevel of understanding fora QFT.

- Back in ancient times, we (PED+RT) used this as a trick to find excited-state TBA equations for some simple models, around the time Frances co and collaborators were developing excited. State equations using NLIE:
¿ Why return to the problem now?
- White we were able to find out how some low-lying states were connected, the full picture remained elusive for the perturbed minimal models we studied.
¿ Why return to the problem now?
- White we were able to find out how some low-ying states were connected, the full picture remained elusive for the perturbed minimal models we studied.
- New angle: look at the sini-Gorcher model, whin has an extra parameter - systematic patterns appear as this parameter becomes small.

2. A simple example

Using field theory on a cylinder

- Off.critical ling model in thermal direction.
- One mass m, correlation length $\}=1 / m$.

2. A simple example
sing field theory on a cylinder

- Off -critical sing model in thermal direction.
- One mass m, correlation length $\xi=1 / m$.

Ground state energy on a circle is known in
 closed form:

$$
E_{0}(m, R)=E_{\text {bulk }}(m, R)-\frac{\pi}{6 R} c^{(i s i n g)}(m R)^{\text {sometimes col led the "effective }} \text { "central charge". }
$$

with $C^{(\text {is in } n)}(r)=\frac{1}{2}-\frac{3 r^{2}}{2 \pi^{2}}\left[\log \frac{1}{r}+\frac{1}{2}+\ln \pi-Y_{E}\right]$

$$
+\frac{6}{\pi} \sum_{k=1}^{\infty}\left(\sqrt{r^{2}+(2 k-1)^{2} \pi^{2}}-(2 k-1) \pi-\frac{r^{2}}{2(2 k-1) \pi}\right)
$$

and $E_{\text {bulk }} \propto R^{2} \log R \leftarrow$ bulcterm
2. A simple example

Using field theory on a cylinder

- Off -critical sing model in thermal direction.
- One mass m, Correlation length $\xi=1 / m$.

Ground state energy on a circle is known in

closed form:

$$
E_{0}(m, R)=E_{\text {bulk }}(m, R)-\frac{\pi}{6 R} c^{\text {living) }}(m R)^{0} \begin{gathered}
\text { Sometimes ad led the "effective } \\
\text { central charge". } \\
\text { "system ire in units of correl. Cent) }
\end{gathered}
$$

with $C^{(\text {is in } m)}(r)=\frac{1}{2}-\frac{3 r^{2}}{2 \pi^{2}}\left[\log \frac{1}{r}+\frac{1}{2}+\ln \pi-Y_{E}\right]$

$$
+\frac{6}{\pi} \sum_{k=1}^{\infty}\left(\sqrt{r^{2}+(2 k-1)^{2} \pi^{2}}-(2 k-1) \pi-\frac{r^{2}}{2(2 k-1) \pi}\right)
$$

and $E_{\text {bulk }} \propto R^{2} \log R \leftarrow$ bulcterm
Correct for the ground state
Note: $C(0)=\frac{1}{2}$ so $E_{0}(R \rightarrow 0) \sim-\frac{\pi}{6 R} \cdot \frac{1}{2}=\frac{2 \pi}{R}\left(0+0-\frac{1 / 2}{12}\right)=\frac{2 \pi}{R}\left(d+\bar{d}-\bar{c}-\frac{c}{12}\right)$ found os $R \rightarrow 0$

Continuation in r:
We have $E_{0}(m, R)=E_{\text {bulk }}(m, R)-\frac{\pi}{6 R} c^{(\text {ising })}(r)$
with $c^{(\text {sing })}(r)=\frac{1}{2}-\frac{3 r^{2}}{2 \pi^{2}}\left[\log \frac{1}{r}+\frac{1}{2}+\ln \pi-Y_{E}\right]+\frac{6}{\pi} \sum_{k=1}^{\infty}\left(\sqrt{r^{2}+(2 k-1)^{2} \pi^{2}}-(2 k-1) \pi-\frac{r^{2}}{2(2 k-1) \pi}\right)$
Complex
r plane:
 R ∞ sequence of \sqrt{s}
$\sqrt{ }$ branch points at $r=(2 k-1) \pi i, k \in \mathbb{Z}$.

Continuation in r:
We have $E_{0}(m, R)=E_{\text {bulk }}(m, R)-\frac{\pi}{6 R} c^{(\text {icing })}(r)$
with $\left.c^{(i s i n g}\right)(r)=\frac{1}{2}-\frac{3 r^{2}}{2 \pi^{2}}\left[\log \frac{1}{r}+\frac{1}{2}+\ln \pi-Y_{E}\right]+\frac{6}{\pi} \sum_{k=1}^{\infty}\left(\sqrt{r^{2}+(2 k-1)^{2} \pi^{2}}-(2 k-1) \pi-\frac{r^{2}}{2(2 k-1) \pi}\right)$
Complex
r plane:
 2 ∞ sequence of $\sqrt{5}$
$\sqrt{ }$ branch points at $r=(2 k-1) \pi i, k \in \mathbb{Z}$.

Take C around $k_{1}, k_{2}, \ldots k_{n}$. This flips the signs of the square roots in E_{0} from minus to plus. Retum to real axis to find

Alternative viewpoint, closer to the Thermodynamic Bethe Ansatz:

- Another expression for $\left.c^{(i s i n g}\right)(r)$:

$$
c^{(\sin \sin)}(r)=\frac{3}{\pi^{2}} \int_{-\infty}^{\infty} d \theta r \cosh \theta \log \left(1+e^{-r \cosh \theta}\right)
$$

Alternative viewpoint, closer to the Thermodynamic Bethe Ansatz:

- Another expression for $\left.c^{(i s i n g}\right)(r)$:

$$
c^{(i \operatorname{sing})}(r)=\frac{3}{\pi^{2}} \int_{-\infty}^{\infty} d \theta r \cosh \theta \log \left(1+e^{-r \cosh \theta}\right)
$$

- As r becomes complex, potential trouble when $1+e^{-r \operatorname{cosin} \theta_{0}}=0$ for some real θ_{0} (ie on the integration contour).

Alternative Viewpoint, closer to the Thermodynamic Bethe Arsatz:

- Another expression for $c^{(\text {sing })}(r)$:

$$
c^{(\sin \sin)}(r)=\frac{3}{\pi^{2}} \int_{-\infty}^{\infty} d \theta r \cosh \theta \log \left(1+e^{-r \cosh \theta}\right)
$$

- As r becomes complex, potential trouble when $1+e^{-r \operatorname{cosin} \theta_{0}}=0$ for some real θ_{0} (ie on the integration contour).
- Usually, you con distort the integration contour ahead of the trouble: $\frac{{ }_{x} O_{0}(r)}{\mathbb{R}} \leadsto$ and all is well.

Alternative Viewpoint, closer to the Thermodynamic Bethe Ansate:

- Another expression for $\left.c^{(i s i n g}\right)(r)$:

$$
c^{(i \operatorname{sing})}(r)=\frac{3}{\pi^{2}} \int_{-\infty}^{\infty} d \theta r \cosh \theta \log \left(1+e^{-r \cosh \theta}\right)
$$

- As r becomes complex, potential trouble when $1+e^{-r \operatorname{cosin} \theta_{0}}=0$ for some real θ_{0} (ie on the integration contour).
- Usually, you con distort the integration contour ahead of the trouble: $\frac{\sum_{x} O_{0}(r)}{\mathbb{R}} \leadsto \underbrace{2}$ and all is well.
- This fails if boo singularities approach the contour from opposite sides: a pinch singularity: $\frac{\lambda_{x<\text { pinch! }}^{x} \mathbb{R}}{x}$.

This generates the branch points!
3. Yang -Lee and TBA continuation

Problem: in general we don't have a closed form for $E_{0}(R)$. But for integrable $Q F T_{s}$ we do know the TBA equation exactly. This is enough to continue it to an "excited TBA" equation, and use this to explore the connectivity of the sinite-size energy levels in the complex r plane.
3. Yang -Lee and TBA continuation

Problem: in general we don't have a closed form for $E_{0}(R)$. But for integrable $Q F T_{s}$ we do know the TBA equation exactly. This is enough to continue it to an "excited TBA" equation, and use this to explore the connectivity of the finite-cize energy levels in the complex r plane.

Simplest example is the Yang lee model, a perturbation of the M_{25} minimal CFT:

- The co volume theory has just one particle type and a very simple S matrix $S(\theta)=\frac{\sin h \theta+i \sin \pi / 3}{\sin n \theta-i \sin \pi / 3}$
- Its mass is $m(\lambda)=(2.642)(-\lambda)^{5 / 12}$
- Its mass is $m(\lambda)=(2.642.)(-\lambda)^{5 / 12}$
- Since $r=m(x) R$ we can equivalently think of air procedure

$$
C \theta=\text { rapidity; momentum }=
$$ as analytic continuation in the coupling λ.

$$
\left(P_{0}, \beta_{0},=m(\cos \theta \theta \sin \theta \theta)\right)
$$

(inf. vol. spectrum is red for λ negative)

TBA equation to find $c(r)$:
Solve $\varepsilon(\theta)=r \cosh \theta-\phi * L(\theta)$
where $L(\theta)=\log \left(1+e^{-\varepsilon(\theta)}\right)$

$$
\begin{aligned}
& f * g(\theta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \theta^{\prime} f\left(\theta \cdot \theta^{\prime}\right) g\left(\theta^{\prime}\right) \\
& \phi(\theta)=-i \frac{\partial}{\partial \theta} \log S(\theta)
\end{aligned}
$$

Then $c(r)=\frac{3}{\pi^{2}} \int_{-\infty}^{\infty} d \theta r \operatorname{cosin} \theta L(\theta)$
and

$$
\begin{aligned}
& E_{0}(m, R)=E_{\text {bulk }}(m, R)-\frac{\pi}{6 R} c(r) \\
& \quad\left(\& E_{\text {balk }}(m, R)=-\frac{m^{2}}{4 \sqrt{3}} R-\text { nt repeat for our continuation }\right)
\end{aligned}
$$

TBA equation to find $c(r)$:
Solve $\varepsilon(\theta)=r \cosh \theta-\phi * L(\theta)$
where $L(\theta)=\log \left(1+e^{-\varepsilon(\theta)}\right)$

$$
\begin{aligned}
& f * g(\theta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \theta^{\prime} f\left(\theta \cdot \theta^{\prime}\right) g\left(\theta^{\prime}\right) \\
& \phi(\theta)=-i \frac{\partial}{\partial \theta} \log S(\theta)
\end{aligned}
$$

Then $c(r)=\frac{3}{\pi^{2}} \int_{-\infty}^{\infty} d \theta r \operatorname{cosin} \theta L(\theta)$
and

$$
\begin{aligned}
& E_{0}(m, R)=E_{\text {bulk }}(m, R)-\frac{\pi}{6 R} c(r) \\
& \quad\left(\& E_{\text {balk }}(m, R)=-\frac{m^{2}}{4 \sqrt{3}} R-\text { nt repeat for our continuation }\right)
\end{aligned}
$$

Usually we solve this for real r. But nothing stops us from making r complex, solving on a computer, and plotting the results...

Plot of $\operatorname{Im}(c(r))$ from ground-state YL TBA at complex r

Note A and B look like 5 branch points-can suspect similar causes to the king field theory case, but more subtle since the TBA equation, as well as the integral giving $c(r)$, may undergo monodromy.
(NB: $\operatorname{lm} l((0))=0$ on real axis, but also on the line $O A$. This line comerponds to λ real but positive rather than negative -so $\arg (r)=\frac{5 \pi}{12}$ sine $\left.r=m R \operatorname{and} m a(-x)^{5 / 2}.\right)$

Bask mechanism:
$L(\theta)=\log \left(1+e^{-\varepsilon(\theta)}\right)$ has singularities in the complex θ plane when $e^{-c(t)}=-1$ (\& also when $e^{c(0)}=0$ but these wont be so important) For general r these are all clear of the real axis.

Bask mechanism:
$L(\theta)=\log \left(1+e^{-\varepsilon(\theta)}\right)$ has singularities in the complex θ plane when $e^{-c(t)}=-1$ (\& also when $e^{c(0)}=0$ but these wont be so important) For general r these are all clear of the real axis. But what if, say, singularities at θ_{0} and $-\theta_{0}$ approach the real axis as r varies along some path? (NB:TBA eqn is symuretic in θ so singularities core always paired like ennis.)

Bask mechanism:
$L(\theta)=\log \left(1+e^{-\varepsilon(\theta)}\right)$ has singularities in the complex θ plane when $e^{-\varepsilon(10)}=-1$ (\& also when $e^{\varepsilon(0)}=0$ but these wont be so important) For general r these are all clear of the real axis.
But what if, say, singularities at θ_{0} and $-\theta_{0}$ approach the real axis as r varies along some path? (NB:TBA eqn is symuretic in θ so singularities cere always paired like this.)

contour
Then the TBA convolution

$$
\phi * L(\theta)=\frac{1}{2 \pi} \int_{\mathbb{R}} \phi\left(\theta-\theta^{\prime}\right) \log \left(1+e^{-\varepsilon\left(\theta^{\prime}\right)}\right) d \theta^{\prime}
$$

is in danger...

Step 1: avoid the problem by distorting the contour:

$$
\left.\phi * L(\theta) \rightarrow \phi * c L(\theta)=\frac{1}{2 \pi} \int_{c} \phi\left(\theta-\theta^{\prime}\right) \log C 1+e^{-\varepsilon\left(\theta^{\prime}\right)}\right) d \theta^{\prime}
$$

This gives the correct analytic continuation of the equation.

Step 1: avoid the problem by distorting the contour:

$$
\left.\phi * L(\theta) \rightarrow \phi * c L(\theta)=\frac{1}{2 \pi} \int_{c} \phi\left(\theta-\theta^{\prime}\right) \log C 1+e^{-\varepsilon\left(\theta^{\prime}\right)}\right) d \theta^{\prime}
$$

This gives the correct analytic continuation of the equation.
Step 2: return the contour to the real axis:

The relevant residue terms can be fond explicitly...

To find the residue, integrate by parts:

$$
\begin{aligned}
\phi *_{c} L(\theta)= & \frac{1}{2 \pi i} \int_{c} \log S\left(\theta-\theta^{\prime}\right) \frac{\varepsilon^{\prime}\left(\theta^{\prime}\right)}{1+e^{-\varepsilon\left(\theta^{\prime}\right)}} d \theta^{\prime} \\
& {\left[\text { Recall } \sin (\theta)=-i \frac{\partial}{\partial \theta} S(\theta)\right] \quad \text { Useful fact: if } e^{-\varepsilon(\theta)}=-1, \text { the residue } } \\
& \text { of unis at } \theta \text {, is equal to }-1 .
\end{aligned}
$$

To find the residue, integrate by parts:

$$
\phi *_{c} L(\theta)=\frac{1}{2 \pi i} \int_{c} \log S\left(\theta-\theta^{\prime}\right) \frac{\varepsilon^{\prime}\left(\theta^{\prime}\right)}{1+e^{-\varepsilon\left(\theta^{\prime}\right)}} d \theta^{\prime}
$$

$$
\left[\begin{array}{l}
\text { Recall } \left.s(\theta)=-i \frac{\partial}{\partial \theta} S(\theta)\right] \quad \begin{array}{r}
\text { Useful fact: if } e^{-\varepsilon(\theta)}=-1, t \\
\text { of chis at } \theta_{0} \text { is equal to }-1 .
\end{array}
\end{array}\right.
$$

Hence $\phi * *_{c} L(\theta)=\frac{\frac{1}{2 \pi} \int \phi\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}}{\phi_{*} L}-\underbrace{\log \frac{S\left(\theta-\theta_{0}\right)}{S\left(\theta+\theta_{0}\right)}}_{\begin{array}{l}\text { Extra term from the two } \\ \text { residues at } \theta= \pm \theta_{0}\end{array}}$

To find the residue, integrate by parts:

$$
\phi *_{c} L(\theta)=\frac{1}{2 \pi i} \int_{c} \log S\left(\theta-\theta^{\prime}\right) \frac{\varepsilon^{\prime}\left(\theta^{\prime}\right)}{1+e^{-\varepsilon\left(\theta^{\prime}\right)}} d \theta^{\prime}
$$

$$
\left[\begin{array}{l}
\text { Recall } \left.s(\theta)=-i \frac{\partial}{\partial \theta} S(\theta)\right] \quad \begin{array}{l}
\text { Useful fact: if } e^{-\varepsilon(\theta)}=-1, t \\
\text { of chis at } \theta_{0} \text { is equal to }-1 .
\end{array}
\end{array}\right.
$$

Hence $\phi * *_{c} L(\theta)=\frac{\frac{1}{2 \pi \int} \int \phi\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}}{\phi_{*} L}-\underbrace{\log \frac{S\left(\theta-\theta_{0}\right)}{S\left(\theta+\theta_{0}\right)}}_{\begin{array}{l}\text { Extra term from the two } \\ \text { residues at } \theta= \pm \theta_{0}\end{array}}$
and the $T B A$ equation becomes

$$
\varepsilon(\theta)=r \cosh \theta+\log \frac{s\left(\theta-\theta_{0}\right)}{s\left(\theta+\theta_{0}\right)}-\phi * L(\theta)
$$

To find the residue, integrate by parts:

$$
\phi *_{c} L(\theta)=\frac{1}{2 \pi i} \int_{c} \log S\left(\theta-\theta^{\prime}\right) \frac{\varepsilon^{\prime}\left(\theta^{\prime}\right)}{1+e^{-\varepsilon\left(\theta^{\prime}\right)}} d \theta^{\prime}
$$

$$
\left[\text { Recall } s(\theta)=-i \frac{\partial}{\partial \theta} s(\theta)\right] \quad \begin{aligned}
& \text { Useful fact: if } e^{-\varepsilon(\theta)}=-1, t \\
& \text { of chis at } \theta_{0} \text { is equal to }-1 .
\end{aligned}
$$

$$
\text { Hence } \phi *_{c} L(\theta)=\frac{\frac{1}{2 \pi \int} \int \phi\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}}{\phi_{*} L}-\underbrace{\log \frac{S\left(\theta-\theta_{0}\right)}{S\left(\theta+\theta_{0}\right)}}_{\begin{array}{c}
\text { Extraterm from the two } \\
\text { residues at } \theta= \pm \theta_{0}
\end{array}}
$$

and the $T B A$ equation becomes

$$
\varepsilon(\theta)=r \cosh \theta+\log \frac{S\left(\theta-\theta_{0}\right)}{S\left(\theta+\theta_{0}\right)}-\phi * L(\theta)
$$

Likewise $((r)$ gets an extra bit:

$$
c(r)=\frac{12 r}{\pi} \cdot i \sinh \theta_{0}+\frac{3}{\pi^{2}} \int_{\infty}^{\infty} r \cosh \theta L(\theta) d \theta
$$

- The new TBA equation has an extra unknown: θ_{0}, the location of the singularity which crossed the integration contour.
- It is fixed by imposing $e^{\varepsilon(0)}=-1 \Rightarrow \varepsilon\left(\theta_{0}\right)=(2 N+1) \pi i$
- N maps onto the BA number for the state at large r.
- The new TBA equation has an extra unknown: θ_{0}, the location of the singularity which crossed the integration contour.
- It is fixed by imposing $e^{\varepsilon(0)}=-1 \Rightarrow \varepsilon\left(\theta_{0}\right)=(2 N+1) \pi i$
- N maps onto the BA number for che state at large r.

A natural question: what is the full surface of $c(r)$, and how are levels with diffent Ns connected to each other?

Grand plan:

- Start with ground state TBA, continue to find connectivity with dirst-exaited-state $T B A$, continue that to find connectivities with higher excited-stateTBAs, and soon, to find the Riemann surface of the holomorphic function $c(r)$.

Grand plan:

- Start with ground -state TBA, continue to find connectivity with dirst-exaited-state TBA, continue that to find connectivities with higher excited-stateTBAs, and soon, to find the Riemann surface of the holomorphic function $c(r)$.

Unfortunately this is hard! Numerical iteration of TBA equations tends not to converge near branch points.

Grand plan:

- Start with ground state TBA, continue to find connectivity with dirst-exaited-state TBA, continue that to find connectivities with higher excited-stateTBAs, and soon, to find the Riemann surface of the holomorphic function $c(r)$.

Unfortunately this is hard! Numerical iteration of TBA equations tends not to converge near branch points.

Despite some progress with stan 8 Lorenz, jul picture is still missing. Instead try a different model: sinh-Gordon.
4. Sinh-Gordon case

Again a single type of particle, but now the 5 -matrix depends on a parameter p :

$$
S(\theta)=\frac{\sinh (\theta)-i \sin \pi p}{\sinh (\theta)+i \sin \pi p}
$$

This has zeroes (hot poles) at iirp, ir (1-p), and maps to tiff under $p \rightarrow 1-p$. The TBA is as before

$$
\begin{aligned}
& \text { is as before } \varepsilon(\theta)=r \operatorname{cosin} \theta-\frac{1}{2 \pi} \int_{\mathbb{R}} \phi\left(\theta \cdot \theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime} \\
& \text { where } L(\theta)=\log \left(1+e^{-(\theta)}\right), \quad \phi(\theta)=-i \frac{\partial}{\partial \theta} \log s(\theta) .
\end{aligned}
$$

This provides a representation of $\varepsilon(\theta)$ for $-\pi p<\ln \theta<\pi p$.

This was analysed in detail by Al, Zamolodchikov (JPA 2008).
The continuous parameter p complicates the story!

He introduced

$$
Y(\theta)=e^{-\varepsilon(\theta)}=\exp \left(-r \cosh \theta+\frac{1}{2 \pi} \int_{\mathbb{R}} \phi\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}\right)
$$

and
(Modesto - $-\pi p<\ln (\theta)(+t p)$

$$
X(\theta)=\exp \left(-\frac{r}{2 \sin \pi p} \cosh \theta+\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{1}{\operatorname{cosin}\left(\theta-\theta^{\prime}\right)} L\left(\theta^{\prime}\right) d \theta^{\prime}\right)
$$

Note the initial definition of X holds on a wider strip than Y.
X, Y and $X \cdot Y$ systems
Set $a=1-2 p$. Then

$$
X\left(\theta+\frac{i \pi}{2}\right) X\left(\theta-\frac{i \pi}{2}\right)=1+X\left(\theta+\frac{i a \pi}{2}\right) X\left(\theta-\frac{i a \pi}{2}\right)
$$

$$
Y\left(\theta+\frac{i \pi}{2}\right) Y\left(\theta-\frac{i \pi}{2}\right)=\left(1+Y\left(\theta+\frac{i a r t}{2}\right)\right)\left(1+Y\left(\theta-\frac{i a r t}{2}\right)\right)
$$

$$
X\left(\theta+\frac{i a \pi}{2}\right) X\left(\theta-\frac{i a \pi}{2}\right)=Y(\theta)
$$

$$
X\left(\theta+\frac{i \pi}{2}\right) X\left(\theta-\frac{i \pi}{2}\right)=1+Y(\theta)
$$

Armed with these relations, con extend x and then Y to the wide complex plane, starting from ε on the real axis.

The $p \rightarrow 0$ limit
As $p \rightarrow 0$ the kernel $\phi(\theta)$ concentrates near $\theta=0$ and $\phi\left(\theta-\theta^{\prime}\right)$ can be replaced in the TBA by $2 \pi \delta\left(\theta-\theta^{\prime}\right)$. Then the equation becomes

$$
\varepsilon(\theta)=r \cosh \theta-S_{\mathbb{R}} \delta\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}=r \cosh \theta-L(\theta)
$$

The $p \rightarrow 0$ limit
As $p \rightarrow 0$ the kernel $\phi(\theta)$ concentrates near $\theta=0$ and $\phi\left(\theta-\theta^{\prime}\right)$ can be replaced in the $T B A$ by $2 \pi \delta(\theta-\theta)$. Then the equation becomes

$$
\varepsilon(\theta)=r \cosh \theta-S_{R} \delta\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}=r \cosh \theta-L(\theta)
$$

Solving, $y(\theta)=e^{-\varepsilon(\theta)}=\frac{1}{e^{r \operatorname{cosin} \theta}-1}$
and hence $c(r)=-\frac{3}{\pi^{2}} \int_{\mathbb{R}} r \cosh \theta \log \left(1-e^{-r \cos h \theta}\right) d \theta$

The $p \rightarrow 0$ limit
As $p \rightarrow 0$ the kernel $\phi(\theta)$ concentrates near $\theta=0$ and $\phi\left(\theta-\theta^{\prime}\right)$ can be replaced in the $T B A$ by $2 \pi \delta(\theta-\theta)$. Then the equation becomes

$$
\varepsilon(\theta)=r \cosh \theta-S_{R} \delta\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) d \theta^{\prime}=r \cosh \theta-L(\theta)
$$

Solving, $y(\theta)=e^{-\varepsilon(\theta)}=\frac{1}{e^{r \operatorname{cosin} \theta}-1}$
and hence $c(r)=-\frac{3}{\pi^{2}} \int_{R^{2}} r \cosh \theta \log \left(1-e^{-r \cosh \theta}\right) d \theta$
This resembles $C^{(\text {sing })}(r)$ but with some sign flips - it is $\delta(r)$, the elective Central charge of a dree boson on a circle, with $c_{0}(0)=1$.

Maybe not surprising, but there's a problem here. oo

The problem:
Just as with $\left.c^{(1 / i m}\right)(r)$, there's an alternative formula for $c_{0}(r)$ [eeg, KlasenalMdeer nail]:

$$
\begin{aligned}
c_{0}(r)=1-\frac{3 r}{\pi} & +\frac{3 r^{2}}{\pi^{2}}\left[\ln \frac{1}{r}+\frac{1}{2}+\ln 4 \pi-r_{E}\right] \\
& -\frac{\sigma}{\pi} \sum_{k=1}^{\sum}\left(\sqrt{(2 k r)^{2}+r^{2}}-2 k \pi-\frac{r^{2}}{4 k \pi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cr: } \quad c^{\operatorname{cin} \pi r)}(r)=\frac{1}{2}-\frac{3 \pi^{2}}{2 \pi^{2}}\left[\log \frac{1}{r}+\frac{1}{2}+\ln \pi-r_{E}\right] \\
& +\frac{6}{\pi} \sum_{k=1}^{\infty}\left(\sqrt{r^{2}+2(2 k-1) \pi^{2}}-(2 k-1) \pi-\frac{r^{2}}{2(k-1) \pi}\right)
\end{aligned}
$$

- This time the branch point are at even multiples of ir, not odd ones.
- But more crucially, the signs of the square roots are reversed!

Why might this be a problem?

- When continuing $c^{(\sin n)^{2}}(r)$ around branch points from the ground state, the lipped signs of the square roots led to an increase in $E(m, R)$ and excited states with higher energies than the ground state. [good!]

Why might this be a problem?

- When continuing $c^{\left(\sin n n^{\prime}\right)}(r)$ around branch points from the ground state, the flipped signs of the square roots led to an increase in $E(m, R)$ and excited states with higher energies than the ground state. [good!]
- But the square roots in $c_{0}(r)$ start with the opposite sign, so dipping any of them decreases $E(m, R)$, (eading to "state" with lower energy than the ground state. [bad!]

Why might this not be a problem?

- Toy example: SHO (dree boson in a universe with one point)

$$
\begin{equation*}
\left(-\frac{d^{2}}{d x^{2}}+v^{2} x^{2}\right) \psi=H_{v} \psi=E \psi \tag{*}
\end{equation*}
$$

Why might this not be a problem?

- Toy example: SHO (dree boson in a universe with one point)

$$
\begin{equation*}
\left(-\frac{a^{2}}{d x^{2}}+v^{2} x^{2}\right) \psi=H_{v} \psi=E \psi \tag{*}
\end{equation*}
$$

- Usually demand $\psi \in L^{2}(C)$, where $C=\mathbb{R}$,

$$
\rightarrow E=(2 n+1) \cup \quad(n=0,1,2 \ldots)
$$

Why might this not be a problem?

- Toy example: SHO (dree boson in a universe with one point)

$$
\begin{equation*}
\left(-\frac{a^{2}}{d x^{2}}+v^{2} x^{2}\right) \psi=H_{v} \psi=E \psi \tag{*}
\end{equation*}
$$

- Usually demand $\psi \in L^{2}(C)$, where $C=\mathbb{R}$,

$$
\rightarrow E=(2 n+1) \cup \quad(n=0,1,2 \ldots)
$$

- But if we set $v=r e^{i \phi}$ (real) and continue ϕ rom O to π, then the eigenvalues change sign even though $H_{v} \rightarrow H_{v}=H_{v}$.

Why did this happen?

- WKB for $\psi: \psi_{ \pm}(x) \sim e^{ \pm v x^{2} / 2}$

Why did this happen?

- WKB for $\psi: \quad \psi_{ \pm}(x) \sim e^{ \pm v x^{2} / 2}$
- If $x \rightarrow \infty$ on the ray $x=\rho e^{i \theta}$, usually
- one of $\Psi_{ \pm}$grows as $p \rightarrow \infty$ (is dominant)

- while the other shrinks (is subdominant)

Why did this happen?

- WKB for $\psi: \psi_{ \pm}(x) \sim e^{ \pm v x^{2} / 2}$
- If $x \rightarrow \infty$ on the ray $x=\rho e^{i \theta}$, usually
- one of $\Psi_{ \pm}$grows as $p \rightarrow \infty$ (is dominant)
-while the other shrinks (is subdominant)

- But if $\operatorname{Re}\left(v z^{2} / 2\right)=\operatorname{Re}\left(r e^{i \phi} p^{2} e^{2 i \theta} / 2\right)=0$ then both oscillate.

Why did this happen?

- WKB for $\psi: \psi_{ \pm}(x) \sim e^{ \pm v x^{2} / 2}$
- If $x \rightarrow \infty$ on the ray $x=\rho e^{i \theta}$, usually
- one of $\Psi_{ \pm}$grows os $p \rightarrow \infty$ (is dominant)

- while the other shrinks (is subdominant)
- But if $\operatorname{Re}\left(v z^{2} / 2\right)=\operatorname{Re}\left(r e^{i \phi} p^{2} e^{2 i \theta} / 2\right)=0$ then both oscillate.
- Such θ destine the anti Stokes lines, and split the complex plane into Stokes sectors:

- If v is such that the quantisation contour C coincides with an anti-Stokes line at $\pm \infty$, the eigenvalue problem will be in trouble.
- If v is such that the quantisation contour C coincides with an anti-Stokes line at $\pm \infty$, the eigenvalue problem will be in trouble.
- To keep out of trouble during continuation, C must be distorted soasto track the same pair of Steles sectors at $\pm \infty$, to avoid antistokes lines being crossed.
- If v is such that the quantisation contour C coincides with an anti-Stokes line at $\pm \infty$, the eigenvalue problem will be in trouble.
- To keep out of trouble during continuation, C must be distorted soasto track the same pair of Steles sectors at $\pm \infty$, to avoid antidotes lines being crossed.
- For the case in hand, as ϕ increases from 0 to $\pi, v=r e^{i f} \rightarrow-\nu$, $H_{\nu}=\left(\frac{-d^{2}}{d x^{2}}+v^{2} x^{2}\right) \rightarrow H_{-\nu}=H_{\nu}$, but the stoles rectors od ate by \rightarrow H/ 2 so $C \rightarrow i C$

e.. so the b.c.'s for ψ have changed.
- The same happens dor two coupled harmonic oscillators if gar continue in the coupling between them (universe with two points) [see Penderetai 1702.03839]
- The same happens dor two coupled harmonic oscillators if gar continue in the coupling between them (universe with two points) [see Benderetal 1702.03839]

Claim: this is what is happening for the free boson. By contrast we would ut expect to see this in sinh-Gorden, where the growth of the potential cosh $(\phi(x))$ at each point x is much stronger.

- The same happens dor two coupled harmonic oscillators if gar continue in the coupling between them (universe with two points) [see Benderetal 1702.03839]

Claim: this is what is happening for the free boson. By contrast we would ut expect to see this in sinh-Gorden, where the growth of the potential cosh $\phi(x)$) at each point x is much stronger.

Further reassurance comes from numerical work (next section) which shows that for $p>0$ continuation round branch points \& back to the real axis does indeed lead to states of higher energy.

5 Results
Ground state TBA solution for $p=0.04$: contours of $\operatorname{Rec}(r))$ and $\ln (c(r))$. Gopaticles
Note paired branch points at $\langle A, A\rangle$,

$$
\left\{B, B^{\prime}\right\},\left\{C, C^{\prime}\right\},\left\{D, D^{\prime}\right\} .
$$

5 Results
Ground state TBA solution for $p=0.04$: contours of $\operatorname{Rec}((r))$ and $\ln ((r))$.

Note paired branch points at $\langle A, A\rangle$,

$$
\left\{B, B^{\prime}\right\},\left\{C, C^{\prime}\right\},\left\{D, D^{\prime}\right\} .
$$

$A_{s p} \rightarrow 0$,

$$
\begin{array}{ll}
A \& A^{\prime} \rightarrow 2 \pi i & B \& B^{\prime} \rightarrow 4 \pi i \\
C \& C^{\prime} \rightarrow 6 \pi i & D \& O^{\prime} \rightarrow 8 \pi i
\end{array}
$$

5 Results
Ground state TBA solution for $p=0.04$: contours of $\operatorname{Rec}((r))$ and $\ln ((r))$.

Note paired brach points at $\langle A, A\rangle$,

$$
\left\{B, B^{\prime}\right\},\left\{C, C^{\prime}\right\},\left\{D, D^{\prime}\right\} .
$$

$A_{s p} \rightarrow 0$,

$$
\begin{array}{ll}
A \& A^{\prime} \rightarrow 2 \pi i & B \& B^{\prime} \rightarrow 4 \pi i \\
C \& C^{\prime} \rightarrow 6 \pi i & D \& O^{\prime} \rightarrow 8 \pi i
\end{array}
$$

Each comnetsts to a 2-paticle TBA stettin, with Bethe number $N=1\left(A \& A^{\prime}\right), N=2\left(B 2 \pi b^{\prime}\right)$, $N=3\left(\angle 8 C^{\prime}\right) \& N=4\left(P 2 D^{\prime}\right)$ and so on co.

Two.particle sinht-Gordon TBA with $N=1$

Two.particle sinth Gordon TBA with $N=2$

Some 3d plots of $\operatorname{Re}(c(r)) \quad(p=0.02$ thistime $)$

(afurther branch point, the first of a sequence, near to A)

To track transitions between TBA, monitor point at which $Y(\theta)=-1$ to see when they cross the contour along which the TBA is being salved.

Situation for real $r>0$:

Plot of $|1+y(\theta)|$ for complex θ : ground state

$|1+Y|: 2$ particle, $N=1$

$|1+y|: 2$ particles, $N=2$

$|1+y|: 2$ partices, $N=3$

$|1+Y|: 2$ partices, $N=4$
 $|1+Y|$: 4 particles, $N_{1}, N_{2}=1,2$

As r leaves the real axis the zeros of $|1+y|$ wander about and induce transitions between the different TBA.

〈see movies 〉

Conclusions:

- The $p \rightarrow 0$ limit shows regularities of structure which make us expect that a more-complete picture of $c(r)$ in the complex plane will te possible.
- It would be interesting to study other models in a similar way, \& also other limits of sinh-Gordon such as the staircase models...

The end...

